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The potential of rapalogs to enhance resilience against 
SARS-CoV-2 infection and reduce the severity of COVID-19
Evelyne Bischof*, Richard C Siow*, Alex Zhavoronkov, Matt Kaeberlein

COVID-19 disproportionately affects older people, with likelihood of severe complications and death mirroring that of 
other age-associated diseases. Inhibition of the mechanistic target of rapamycin complex 1 (mTORC1) has been 
shown to delay or reverse many age-related phenotypes, including declining immune function. Rapamycin (sirolimus)  
and rapamycin derivatives are US Food and Drug Administration-approved inhibitors of mTORC1 with broad clinical 
utility and well established dosing and safety profiles. Based on preclinical and clinical evidence, a strong case can be 
made for immediate large-scale clinical trials to assess whether rapamycin and other mTORC1 inhibitors can prevent 
COVID-19 infection in these populations and also to determine whether these drugs can improve outcomes in 
patients with severe COVID-19.

Introduction
The first case of infection caused by severe acute 
respiratory coronavirus 2 (SARS-CoV-2) was reported in 
Wuhan, China, in December, 2019. On March 11, 2020, 
WHO declared COVID-19 a global pandemic. Since then, 
COVID-19 has affected the lives of billions of people; as 
of December, 2020, it is estimated that nearly 65 million 
people have been infected with and 1·8 million have died 
of COVID-19. After the rate of new infections and deaths 
plateaued after the first wave, the infection incidence 
is currently rapidly increasing again, as are concerns 
regarding the ongoing second wave and potential further 
waves, and the long-term effects following infection and 
recovery. Globally, we are observing geographical re-
distribution of hotspots and are faced with the distinct 
possibility that outbreaks could reoccur not only in the 
months, but perhaps years ahead. 

Similar to other viral infections, such as influenza, 
older people (eg, ≥65 years) are at a substantially 
increased risk of suffering adverse outcomes from 
COVID-19.1 Although it remains too early to know the 
extent to which age affects the risk of initial infection, 
it is clear that age is by far the greatest risk factor for 
severe COVID-19 complications and death. Data from 
the US Centers for Disease Control and Prevention 
reveal that the risk of dying from COVID-19 increases 
approximately 10-fold for every 20 years of age.2 This 
association between age and risk of COVID-19 mortality 
is comparable with the relationship between age and 
risk of death from Alzheimer’s disease.3

We have postulated that the relationship between 
chronological age and COVID-19 mortality is driven 
primarily by the biological mechanisms of ageing,2 
a concept which has recently become more widely appre-
ciated among clinicians and researchers.4 At the cellular 
and molecular levels, these mechanisms have been 
described as the hallmarks5 or pillars6 of ageing. Previous 
research has revealed that these hallmarks can be directly 
linked to the age-associated loss of immune function 
concomitant with increases in systemic inflam m ation 
(also referred to as inflammaging).7 Inflammaging can 
been seen in the form of aberrant acti vation of innate 

immune mech anisms, such as elevation of pro-inflam-
matory cytokines and increased numbers of natural killer 
cells,8 with such activation exacerbating the increased risk 
of viral and bacterial infections that are associated with 
age. Impairment of immune function could also contribute 
to additional age-associated problems, including in creased 
prevalence of auto immune disorders and increased risk 
for numerous types of cancer due to impaired immune 
surveillance.9,10 

The immune system loses efficacy with age.9 Immuno-
senescence affects both innate and acquired immunity 
and greatly reduces the production of naive T-cells and 
B-cells in the thymus and bone marrow. Consequently, 
decreased antibody production leads to fewer T cell and 
B cell interactions, and a reduced release of thyroid 
hormones, thus leading to decreased natural killer cell 
activity and a functional decline in the body’s ability to 
mount an immune response.7 Older people are known 
to have a chronic low-threshold proinflammatory status 
along with elevated plasma markers (eg, interleukin-6, 
tumour necrosis factor-α, and C-reactive protein) in the 
absence of clinical symptoms.8 On a cellular level, this 
translates to enhanced inflammatory activity, especially in 
monocytes and macro phages (ie, the innate immune 
system) that work to reciprocally enforce the ongoing 
inflammaging processes.9

The collective outcome is a compromised immune 
response and an increased incidence of inflammatory 
comorbidities—eg, cancers and age-related neuro degen-
eration, which further weaken the immune system.10–13 The 
innate immune system, which is primarily involved in 
the response to new infections, is also compromised due to 
a reduction in clonal diversity.14 This reciprocal relationship 
between inflam maging and immuno senescence is be-
lieved to underlie the adaptive processes, which exacerbates 
the severity of symptoms in older individuals who tend to 
exhibit an enhanced susceptibility towards infections along 
with a dimin ished response to vaccines.15–17 Therefore, we 
and others propose that novel and effective strategies 
for combating COVID-19 can be developed by directly 
targeting the hallmarks of ageing to prevent or diminish 
inflammaging and immuno senescence.2,11,12 

http://crossmark.crossref.org/dialog/?doi=10.1016/S2666-7568(20)30068-4&domain=pdf
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mTOR inhibition increases lifespan and health in 
preclinical research
Studies investigating the mechanistic target of rapamycin 
(mTOR) pathway have shown that immunosenescence 
can be reversed by targeting biological ageing.13,14 The 
mTOR protein is a nutrient-responsive and stress-
responsive kinase that functions as a conserved regulator 
of ageing in eukaryotes.14,15 Activation of mTOR promotes 
development and growth,16,17 whereas genetic inhibition of 
mTOR increases lifespan in yeast,18,19 nema todes,20 fruit 
flies,21 and mice.22 The mTOR kinase acts in two distinct 
protein complexes: mTOR complex 1 (mTORC1) and 
mTOR complex 2 (mTORC2).23 In the context of biological 
ageing, inhibition of mTORC1 is consistently associated 
with increased lifespan, whereas inhibition of mTORC2 
is associated with reduced life span, at least in mice.24 
mTORC1 regulates several key homoeostatic processes 
including autophagy, mRNA trans lation, and metabolism, 
each of which affects the hallmarks of ageing and, 
therefore, the lifespan of different model organisms.25

The macrolide antibiotic rapamycin (sirolimus) is an 
allosteric inhibitor of mTORC1 that acts by binding to the 
FK506 binding protein (FKBP12).26–28 Similar to genetic 
inhibition of mTORC1, rapamycin has been shown to 
increase lifespan in yeast,19 nematode worms,29 fruit flies,30 
and mice.31 The effects of rapamycin on lifespan have 
shown to be robust in mice, with lifespan extension being 
reported in multiple strain backgrounds across a broad 
dose range, involving both oral delivery and intraperitoneal 
injection.31–41 Lifespan extension is com parable when 
treatment is initi ated at young age,41 in mid-life,31 or 
transiently in late life.40 Intermittent treatment with 
rapamycin in late life has also been shown to be effective at 
extending lifespan.42 Importantly, the effects of rapamycin 
extend beyond increasing lifespan in mice, with evidence 
of reduction in hallmarks of ageing. These effects include 
fewer age-related cancers,32,43 protection against cognitive 
decline,44,45 improved cardiovascular function,46–48 restor-
ation of immune function,49 and im proved renal function,50 
oral health,51,52 intestinal function and reduced gut 
dysbiosis,40,53 and preserved ovarian function.54

Other pharmacological inhibitors of mTOR have been 
described but there is relatively little data on their effects 
on lifespan or health during ageing. In general, existing 
mTOR inhibitors can be classified into three categories: 
rapamycin derivatives (rapalogs), other mTORC1-specific 
inhibitors not structurally related to rapamycin, and ATP-
competitive inhibitors of mTOR. Rapalogs and other 
mTORC1-specific inhibitors are generally predicted to 
function similarly to rapamycin in enhancing lifespan 
and improving age-related phenotypes;55 however, only 
everolimus (known as RAD001) has been studied in this 
context. The evidence supporting geroprotective effects 
from everolimus include improved muscle function 
during ageing in rats50 and improved immune function in 
healthy older people.56,57 ATP-competitive inhibitors, which 
inhibit mTORC1 and mTORC2, usually have off-target 

effects on other kinases.58 Examples of ATP-competitive 
inhibitors of mTOR include Torin 1, Torin 2, and the 
PI3K/mTOR dual kinase inhibitors such as dactolisib 
(known as BEZ235 or RTB101).59–61 To our knowledge, 
there are scarce data supporting the positive effects of 
ATP-competitive mTOR inhibitors on lifespan in any 
research done in animals and only rapamycin has been 
shown to increase lifespan in mice.

Inhibition of mTOR reverses age-related decline 
in immune function
Although rapamycin and rapalogs have usually been 
considered immuno suppressives, multiple studies have 
shown that rapalog monotherapy is sufficient to reverse 
age-related declines in immune function in mice and 
people. One of the first studies to show the effectiveness 
of rapalogs was done using research done in mice that 
investigated age-related immune senescence.49 In that 
study, aged mice (aged 22–24 months) were treated with 
either rapamycin or a vehicle control for a period of 
6 weeks. After a 2-week washout period, mice in each 
group were immunised against H1N1 influenza. 2 weeks 
later, both groups were challenged with live H1N1 and 
their survival was quantified. When compared with 
young immunised mice (aged 2 months), the aged mice 
that did not receive rapamycin showed a substantial 
reduction in response to the vaccine, with approximately 
two-thirds of the mice failing to mount an immune 
response and dying within 10 days of H1N1 challenge.49 
By contrast, aged mice that received rapamycin exhibited 
improved immune function, with all of the rapamycin-
treated mice responding to the vaccine and surviving 
the subsequent H1N1 challenge past the endpoint of the 
experiment. This functional rejuvenation was associated 
with a decrease in senescence markers in haematopoietic 
stem cells along with improved stem-cell function,49 
although the precise mechanism of action remains to be 
established.

This preclinical work spurred efforts to assess whether 
similar outcomes would be seen in a clinical setting. 
Two phase 2 clinical trials have been completed in which 
older healthy adults were treated with everolimus alone56 
or everolimus combined with RTB10157 for 6 weeks. 
Both studies were randomised, placebo-controlled and 
found that patients who were given the rapalog showed 
improved responses to influenza vaccine when compared 
with those who received the placebo only. In the study 
using a combined treatment,57 patients who received 
everolimus plus RTB101 also had fewer infections over 
the following year, suggesting that the immune-boosting 
effect might extend beyond the initial vaccine response. 
Enhanced autophagy because of mTOR inhibition along 
with increased expression of anti-viral proteins have 
been proposed as potential mechanisms of action for the 
observed immune-boosting effects in people. However, 
a subsequent phase 3 clinical trial using RTB101 alone 
did not meet its endpoint. 
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The observation that immune function can be improved 
over a period of several weeks to months following a single 
6-week interval of mTORC1 inhibition has important 
clinical implications. Influenza alone is estimated to result 
in 300 000 to 500 000 deaths annually, with older individuals 
at highest risk.62,63 Improving vaccine response among this 
susceptible population could substantially enhance pre-
ven tive measures and reduce severe clinical outcomes. 
A transient treatment regimen is also likely to be more 
easily adopted across large cohorts and have substantially 
fewer adverse effects compared with chronic high-dose 
regimens adopted by organ transplant patients. Indeed, no 
clinically significant adverse events were noted in either of 
the phase 2 mTOR inhibitor trials,56,57 and there is growing 
evidence that low-dose rapalog monotherapy has minimal 
side-effects in healthy older adults.64,65 These findings are 
further supported by the absence of observed side-effects in 
non-human primate marmosets66 and in older companion 
dogs67,68 treated with lower doses of rapamycin.

A restoration of immune function in older adults 
is likely to have benefits that extend beyond simply 
boosting the response to an influenza vaccine. Before 
COVID-19, respiratory infections were estimated to 
account for more than 1 million deaths in adults older 
than 70 years and more than 2 million deaths in people 
of all ages annually worldwide,69 numbers that were 
much higher in 2020. Additionally, it is expected that 
enhanced immune function would lead to reduced 
rates of age-associated cancers, as immune surveillance 
is known to be a crucial anti-cancer mechanism that 
is impaired by the aging process.10 Reversion of age-
related changes in the micro biome could also be 
expected following mTOR inhibition, as the immune 
system plays an important role in maintaining a healthy 
microbiome.70 Rapamycin has been found to reduce 
age-related cancers32,41 and modify the aged microbiome 
in mice,40,51 although it remains to be established 

whether these effects are mediated by the immune 
system.

Evaluating the feasibility of rapamycin for 
COVID-19 prevention
The most important consideration for any clinical 
intervention is to evaluate the potential benefit against 
the potential risk. This evaluation is always challenging 
to quantify but is even more difficult for a preventive 
treat ment that is given to individuals who are not 
currently sick. As discussed, the potential benefits of 
preventing immunosenescence in older people are quite 
large and include reductions in morbidity and mortality 
from infectious disease and cancer. Regarding COVID-19, 
extrapolation from preclinical studies suggests that the 
immune restorative properties of rapamycin might be 
expected to reduce COVID-19 deaths substantially in the 
absence of a vaccine2 and possibly by an even greater 
amount once a vaccine is widely available.

Because there are abundant clinical data on rapamycin 
use, we can also predict the potential risks. Rapamycin 
and other rapalogs (ie, everolimus, temsirolimus) have 
been widely used to prevent organ transplant rejection but 
are also approved for use in lymphangioleio myomatosis, 
coronary stenting, and particular types of cancer (eg, 
hormone receptor positive breast cancer or neuroendocrine 
tumours.71,72 Use of high-dose rapamycin (>15–25mg/kg) 
by organ transplant patients is associated with numerous 
side-effects including general ised pain (≥30% occur rence, 
leading to a 5% treatment dis con tinuation rate), headache, 
fever, hypertension, nausea, abdominal pain, constipation, 
diarrhoea, urinary tract infection, peri pheral oedema, 
anaemia, arthralgia, thrombo cytopenia, hyper choles-
terolaemia, hypertri glyceridemia, and in creased creatin-
ine.73,74 Side-effects are mostly reversible and represent 
a worst-case scenario, as these patients are severely ill 
and taking high doses of the drug along with other 

Recruitment 
status

Estimated 
enrolment

Study start 
date

Intervention group Control group

Efficacy and safety of sirolimus in COVID-19 infection 
(NCT04461340)

Recruiting 40 July 25, 2020 20 patients will receive sirolimus (oral dose of 6 mg 
on day 1 followed by 2 mg daily for 9 days) plus 
national standard of care therapy against COVID 19

Placebo plus standard 
medical care

Sirolimus treatment in hospitalised patients with COVID-19 
pneumonia (NCT04341675)

Recruiting 30 April 24, 2020 Sirolimus 6 mg on day 1 followed by 2 mg daily for 
the next 13 days or until hospital discharge, 
whichever happens sooner

Placebo plus standard 
medical care

Sirolimus in COVID-19 phase 1 (NCT04371640) Recruiting 40 July 6, 2020 Sirolimus 10 mg on day 1 followed by 5 mg on days 
2–7 plus standard medical care

Placebo plus standard 
medical care

Hydroxychloroquine in combination with azithromycin or 
sirolimus for treating patients with COVID-19 (NCT04374903)

Not yet 
recruiting

58 May 1, 2020 Participants will receive 600 mg hydroxychloroquine 
orally for 10 days and 250 mg azithromycin orally 
and daily for 10 days, or sirolimus 4 mg orally for 
1 day then 2 mg orally daily for 9 days

Placebo plus standard 
medical care

Phase 3 study to determine if RTB101 reduces the severity of 
COVID-19 in older adults residing in nursing homes 
(NCT04409327)

Recruiting 550 July 11, 2020 10 mg daily RTB101 mTORC1 inhibitor (once daily 
for 4 weeks)

Placebo plus standard 
medical care

These studies were found using a search for COVID-19-related clinical trials on ClinicalTrials.gov on Oct 23, 2020. mTOR=mechanistic target of rapamycin. mTORC1=mTOR complex 1.

Table: Clinical trials of mTOR inhibitors and treatment of COVID-19
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medications. Risk of serious complications, even from 
acute overdose with rapamycin, is extremely low.75 For this 
reason, we believe that short-term treatment (up to a few 
months) with low doses (eg, a range of 5–10mg weekly) of 
rapamycin will have minimal adverse events and that the 
risk–reward ratio strongly favours the potential beneficial 
effects from treatment. 

To our knowledge, there are no active or planned 
clinical trials of rapamycin or rapalogs as a preventive 
treatment for COVID-19. As of November, 2020, 
there were 214 incomplete clinical trials registered on 
ClinicalTrials.gov, identified using the search term 
“rapamycin” or “sirolimus”; five of these trials are related 
to COVID-19 (table). In each of the existing or planned 
trials, rapamycin is being tested as a treatment in 
hospitalised patients with confirmed COVID-19, with 
primary endpoints such as the change in SARS-CoV-2 
viral burden and time to clinical recovery. Thus, the 
rationale for potential efficacy in these trials, based on 
the ability of rapamycin to prevent the cytokine storm 
seen in patients with severe COVID-1976,77 or its potential 
direct anti-viral effects78, is quite different from the effects 
of rapamycin on biological ageing. The biopharmaceutical 
company resTORbio (Boston, MA, USA) initiated a small 
clinical trial of RTB101 in nursing home residents, to 
determine whether COVID-19 severity is affected by the 
drug (table). The US Food and Drug Administration 
(FDA)-approved endpoint for this trial is “the percentage 
of subjects who develop laboratory-confirmed COVID-19 
with protocol-defined progressive symptoms or are 
hospitalized or die through four weeks of study drug 
treatment”.79 Although there is supportive data from 

a phase 2 study57 suggesting that everolimus plus 
RTB101 can improve immune function in older people, 
RTB101 acts by a different biochemical mechanism from 
rapamycin and has not yet been shown preclinically to 
have effects on biological ageing.58 Thus, although we 
are hopeful that these ongoing clinical trials will prove 
successful, none of them address the possibility that 
rapamycin will rejuvenate immune function in older 
people and afford protection against COVID-19 to the 
most susceptible individuals. 

We strongly advocate for a large-scale clinical trial in at-
risk populations to test for prevention of COVID-19 by 
rapamycin. The rationale for such a trial is provided by 
the observed ability of rapamycin and rapalogs to reverse 
age-related declines in immune function in preclinical 
models and in people. Older patients have substantially 
worse clinical outcomes following COVID-19 infection, 
and pre ventive treatment with rapamycin is predicted to 
reduce rates of infection and improve clinical outcomes 
by reducing the number and severity of com plications in 
biologically aged patients. Based on research done in 
mice, we hypothesise that rapamycin will restore immune 
function corres ponding to approxi mately 20 years of bio-
logical age, thereby reducing severe outcomes and death 
from COVID-19 by approxi mately 4–10-times. Further-
more, enhanced immune function following rapamycin 
treatment is expected to improve the response to the 
COVID-19 vaccines and provide ongoing protection 
against other infections that preferentially affect older 
people. 

The details of a well designed randomised clinical 
trial would need to be carefully considered, including 
the dose of rapamycin, duration of treatment, demo-
graphic features of the patients enrolled in the study, 
specific endpoints to be evaluated, the duration of 
follow-up, and necessary cohort sizes to reach statistical 
power (panel, appendix). Although the simplest study 
design would include only placebo and rapamycin 
treatment groups, a multi-arm design that is worth 
exploring could include additional treatment with 
metformin. Metformin is the most widely used anti-
diabetes drug globally and is being tested for beneficial 
effects on ageing through the Targeting Aging with 
Metformin global study.80 The preclinical evidence that 
metformin can positively affect the aged immune 
system is less robust than that for rapamycin; however, 
there is accumulating evidence that people with 
diabetes taking metformin are at reduced risk of severe 
outcomes or death from COVID-19 compared with 
people with diabetes not taking metformin.81 Further-
more, metformin combined with rapamycin in mice 
is thought to improve metabolic function and slightly 
further increase lifespan, relative to rapamycin alone.82 

One innovative feature that we suggest should be 
incorporated into a trial is the consideration of predicted 
biological age as an enrolment criterion. Enrolment 
based on chronological age is common in clinical 

Panel: Initial recommendations for a clinical trial assessing the effects of rapamycin 
on COVID-19 outcomes and vaccine response

General design
An ideal design is a double masked and placebo-controlled randomised controlled trial.

Patient population
We suggest enrolling older adults (eg, ≥60 years) who are predicted to have a biological 
age that is at least 5 years older than their chronological age.

Cohort sizes
Would be determined based on predicted infection rate and progression to severe 
outcomes. Several thousand people per study group would probably be needed.

Dose
5–10 mg rapamycin orally provided once per week.

Duration
6–10 weeks treatment with 8–10 months follow-up.

Exclusion criteria
Previous COVID-19 infection, immune compromised, or active infection.

Endpoints
Rates of COVID-19 infection, severity of outcomes (eg, hospitalisation, death), vaccine 
response (if available).
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studies, similar to the design of the rapalog trials that 
investigated influenza vaccine response.56,57 However, we 
propose that it could be useful to consider newly 
developed measures of predicted biological age for 
geroprotective clinical trials. Such biological age pre-
dictors could include estimates of epigenetic age using 
commonly applied epigenetic clocks83 and so-called 
deep ageing clocks,84 based on signatures derived from 
blood biochemistry, imaging, transcriptomics, and 
other types of available data. Patients whose biological 
age exceeds their chronological age by a chosen thresh-
old (eg, 5 years) could be enrolled, thus targeting 
individuals at the highest risk for negative outcomes 
and death and who are predicted to receive the greatest 
benefit from a geroprotective intervention such as 
rapamycin. Although we recognise that the mechanisms 
and predictive power of current biological age estimators 
have yet to be clinically validated and could present 
unique challenges from a regulatory perspective, there 
is growing consensus among researchers investigating 
artificial intelligence and ageing that these tools can 
provide valuable insights into underlying physiological 
states that affect risk for age-related diseases and for all-
cause mortality. However, they could be used as auxiliary 
markers until clinical validation in COVID-19 has been 
achieved.

A final consideration might be whether, even once 
shown to be efficacious, widespread use of a geroprotective 
intervention is economically feasible or justified, given the 
strain on many national health-care systems. Because 
there is more than one COVID-19 vaccine available, there 
is a danger that the incentive to continue to develop novel 
preventive therapies will decrease. However, influenza 
deaths still number in the hundreds of thousands each 
year even with effective vaccines, and those most 
susceptible to severe cases of both COVID-19 and 
influenza are also the least likely to mount an effective 
vaccine response. Thus, from the perspective of cost in 
terms of human lives, justification for this type of 
approach is obvious. It is also well established that the 
total economic benefit from a successful geroprotective 
therapy far outweighs the cost of development and 
implementation. Work from Goldman85 and Olshansky86 
done before the COVID-19 pandemic has estimated that 
the total economic benefit from such an intervention will 
exceed US$7 trillion over the next 3–4 decades. The total 
economic value of an effective geroprotective strategy is 
likely to be substantially greater today than before the 
pandemic.

Conclusion
SARS-CoV-2 disproportionately affects older people and 
people with comorbidities, with likelihood of severe 
complications and death mirroring that of other age-
associated diseases. Inhibition of mTOR has been 
shown to delay or reverse many age-related phenotypes, 
including declining immune function. There is an 

urgent need for a precision medicine trial using a 
functional metric of ageing that investigates individuals 
assessed by biological age, who can then be further 
stratified into groups of those individuals who achieve 
optimal outcomes and benefit from the treatment. 
Rapamycin and rapamycin derivatives (rapalogs) are 
FDA-approved inhibitors of mTOR with broad clinical 
utility and well established dosing and safety profiles. 
Based on pre-clinical and clinical evidence, a strong case 
can be made for immediate large-scale clinical trials to 
assess whether rapamycin and other mTOR inhibitors 
can enhance resilience towards communicable and non-
communicable diseases, prevent COVID-19 infection in 
those most at risk, and improve outcomes in patients 
with COVID-19.
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