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Application of personalized medicine requires integration of different data to determine each patient’s unique clinical constitution.
The automated analysis of medical data is a growing field where different machine learning techniques are used to minimize the
time-consuming task of manual analysis. The evaluation, and often training, of automated classifiers requires manually labelled data
as ground truth. In many cases such labelling is not perfect, either because of the data being ambiguous even for a trained expert or
because of mistakes. Here we investigated the interobserver variability of image data comprising fluorescently stained circulating
tumor cells and its effect on the performance of two automated classifiers, a random forest and a support vector machine. We
found that uncertainty in annotation between observers limited the performance of the automated classifiers, especially when it
was included in the test set on which classifier performance was measured. The random forest classifier turned out to be resilient to
uncertainty in the training data while the support vector machine’s performance is highly dependent on the amount of uncertainty
in the training data. We finally introduced the consensus data set as a possible solution for evaluation of automated classifiers that

minimizes the penalty of interobserver variability.

1. Introduction

The identification and enumeration of circulating tumor cells
is an important tool for evaluation of the disease progression
in especially breast cancer [1-3] and is also under consider-
ation as a diagnostic tool in various other types including
lung and colorectal cancer [4-6]. The type of CTCs found also
serves as a potential marker for changes in the chemotherapy
resistance of a cancer [7]. The extreme rarity of CTCs in
patient blood, typically one CTC per 10° blood cells [8],
makes both collection and detection of these cells extremely
challenging. The collection of CTCs from peripheral blood is
in a majority of studies done by antiepithelial-cell-adhesion-
molecule (EpCAM) antibody-coated isolation systems [5, 9],
but also other types of immunomagnetic devices [10, 11],

density gradient centrifugation [12], and membrane filtra-
tion [13] are used for CTC enrichment. The detection of
CTCs after collection is done by immunocytological staining
or polymerase chain reaction (PCR) [14]. In the case of
immunocytological staining the standard method of CTC
enumeration is manual counting either at the microscope or
from microscopy images [15, 16]. However, progress was lately
made in using machine learning techniques for the detection
of CTCs from fluorescence microscopy images [17, 18]. In
these studies, as well as in any study applying classifiers to
data, manual labelling was used for validation and also for
training using (semi)supervised training regiments. The use
of computational methods, in this case machine vision, makes
the screening of the vast amounts of data that is readily
available today quicker and more efficient. Instead of having
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a highly trained expert performing the time-consuming task
of looking at numerous images, this can be done by the
computer. Even if the computer is not able to completely
take over the manual analysis it can at least screen the image
data for regions of interest and provide a second opinion in
difficult cases.

This paper builds on the previous result in enumerating
CTCs in images using image analysis techniques combined
with support vector machines (SVMs) and naive Bayesian
classifiers (NBCs) [18]. Data for the study was collected with a
functionalized and structured medical wire (FSMW) [19] that
is a CE-certified medical device for the isolation of CTCs.
Human carcinoma cells expresses the epithelial cell adhesion
molecule (EpCAM) on their surface while this molecule is
absent from the surface of haematological cells [20-22]. The
FSMW is functionalized with anti-EpCAM antibodies and
was inserted into the cubital vein of a patient through a
standard 20 G intravenous cannula, where it was left for 30
minutes collecting CTCs from the blood that flows past [19].
After cell collection the FSMW was fluorescently stained and
microscopy images were made in which we aim to enumerate
CTCs. Ideally only CTCs should adhere to the FSMW but
because of the many blood cells compared to CTCs, even the
unlikely event of catching a blood cell occurs regularly. The
first step in the analysis was to identify regions of interest
(ROIs) which are candidates as CTCs but may in fact also
be a blood cell, some kind of debris or a staining artifact.
In the previous study we concluded that both SVMs and
NBCs achieved an accuracy of CTC detection in the range
of 85-90% after ROIs were identified [18]. In that study,
the annotation used for evaluation of classifier performance
and training of the classifiers were based on the manual
classification of the ROIs by one author (CMS).

The use of different machine learning and machine
vision techniques is an active research field with the aim
of making disease diagnosis more accurate and efficient
[23]. Especially in the diagnosis and treatment evaluation of
different cancer types, including but not limited to prostate
[24, 25] and colorectal cancer [26], automated algorithms are
used. However, interobserver variability is a known issue in
diagnostics of different cancer types and a disagreement of
more than 15% is not uncommon when multiple observers,
normally all trained experts, are interpreting patient image
data of different types [27-29]. When training and evaluating
an automated classifier the labels provided by observers are
of great importance as any inconsistencies will affect the
performance of the classifier. In this study, we investigated
how uncertainty in annotation, so called label noise, affects
the performance of automated classification using a random
forest (RF) and a SVM and relate that to the performance
of earlier studies [17, 18]. Interobserver variability for disease
progression using CTCs is reported to be as low as 1% but
is then related to the question if the patient has more than 4
CTCs per 7.5mL blood [27]. When considering the manual
classification of images of possible CTCs, Scholtens et al.
presented that observers disagree on approximately 15% of
the data points [17]. To investigate how this variability affects
the estimated performance of the classifiers, we in this study
carefully identified possible label noise through analysis of

Journal of Immunology Research

the manual annotation. Moreover, a consensus annotation
was identified and training and testing of the classifiers with
a controlled amount of label noise in both training and test
sets was evaluated.

2. Materials and Methods

2.1. Image Data. The data set used for this study was the
same as used in our earlier publication [18], where CTCs were
captured using the FSMW both in vivo and in vitro [19]. After
collection the FSMW was fluorescently stained for cell nuclei
(blue), EpCAM, or cytokeratins (green) and counterstained
for CD45 (red) in order to differentiate between CTCs and
blood cells that may have attached to the wire. Images were
taken using a 10x ocular and 10x, 20x, or 40x objective
resulting in 1.0 um?, 0.5um?, or 0.25um* pixel resolution
of the images. CTCs are those cells that exhibit nuclear dye
(blue) colocalized with the antibodies against cytokeratin
and/or EpCAM (both green); see Figurel(a). ROIs, for
example, objects that may be CTCs and most likely at least
some type of cell, were identified based on the blue signal that
indicates positive staining of a cell nucleus. For full details
of the collection, staining, imaging, and ROI identification
we refer the reader to earlier publications using this data set
(18, 19]. The data points used for CTC classification were
obtained by cutting out an image with area 100 x 100 pixels
around the center of each identified ROI resulting in 617 data
points from 61 original microscopy images.

2.2. Manual Annotation. Manual annotation was needed for
both training and evaluation of the classifiers as well as for
the determination of interobserver variability. The observers
were instructed to determine if the most central object in
each image cutout was a CTC or not. For an example of
multiple objects occurring in the same cutout see Figure 1(a).
According to guidelines used in earlier studies [18, 19],
observers were instructed to count the object as a CTC if
the nuclei (blue staining) were intact and the object showed
positive staining for EpCAM or cytokeratin (green staining).
The blue and green staining had to be distinguishable from
each other; for example, the nuclei and the EpCAM staining
should be structured. While it was required that the nuclei
should be intact, it was allowed for CTCs to have irregular
shapes or be clustered. Any object that showed positive CD45
staining (red) was not to be counted as a CTC; see Figure 1(b).
All N = 11 observers (with 5/6 male/female) had normal
or corrected to normal eyesight and no one had any known
issues with color vision. Cutouts were presented on individual
laptops in one session to avoid different light conditions and
without any time restrictions. The order of the data points was
random and the observers were instructed not to confer.

2.3. Data Preprocessing and Automatic Classification. As the
cutouts have been taken at different magnifications we first
normalized the image matrix to cover a region of the size of
2500 um? around the center of each image cutout. This means
that the cutouts had 100 x 100, 71 x 71, or 50 x 50 pixels,
depending on if they were from an image taken with a 40x,
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(a)

(c)

FIGURE 1: Examples of image cutouts classified with regard to the most central object being a CTC or not. (a) All eleven human observers
agree that this is a CTC. (b) All eleven observers agree that this is not a CTC. (c) Six observers classify that this is a CTC while the other five

say that it is not a CTC.

20x, or 10x ocular. We then applied a Gauss convolution filter
with standard deviation o = 1 pixel to the cutouts to reduce
the effects of high frequency noise. The classifiers we used,
SVM and RE, both required inputs with fixed dimensions
and therefore all cutouts were downsampled to 50 x 50
pixels using the raster package in R (https://cran.r-project
.org/package=raster). The color space of the cutouts were red-
green-blue (RGB) when read but for the classification we
transformed them to hue-saturation-value (HSV) using the
grDevices package (https://stat.ethz.ch/R-manual/). This was
done as HSV has a natural division between color dimensions
(H and S) and intensity (V), which is not present in RGB
space. In the HSV space we dropped the V dimension as
preliminary tests revealed that this factor is not decisive in
the classification of cutouts containing a CTC or not. The
image matrix was then vectorized so that each cutout is then
represented by an array with 5000 entries with the hue and
saturation values of the cutout. For the rest of this paper any
reference to automated classification of a data point or cutout
will mean that this vector containing the hue and saturation
values of a cutout was presented to the classifier.

The automated classifiers were implemented in R using
the h2o interface (https://cran.r-project.org/package=h2o)
for the RF and the kernlab package (https://cran.r-project.org/
package=kernlab) for the SVM. The RF was an implementa-
tion of the Breiman forest [30] consisting of 500 trees. The
SVM with radial basis function (RBF) kernel [31] had the
parameters C = 2 and y = 0.005, where C is the soft margin
penalty and y the inverted radius of the RBE. Parameters,
number of trees as well as C and y for the SVM, were
optimized to give the highest accuracy possible on a subset
of the data.

To get the classifier responses to the data, all data sets, that
is, both the entire set of 617 cutouts and subsets that will be
described, were divided into randomized folds. Training of
the classifier was then performed on a number of folds and
testing was then done on one or more folds that were not used
for training. This was done iteratively with new folds chosen
for training and testing until all data points were classified.

For each subset of data the number of folds and how they were
used for training and testing are described in the text where
appropriate.

3. Results

3.1 Interobserver Variability Reveals Differences in Bias and
Large Degree of Uncertainty. In the N = 617 data points
the observers found on average 300 CTCs with the median
being 318, but the number varied largely as can be seen
in Table 1. The lowest number of CTCs was found by the
observer MTF with 221 CTCs and the largest number was 354
CTCs observed by ST. The largest interobserver distance in
an ordered list was between MB (223) and MP (281) with 48
CTCs, while the second largest distance was 17 between JP
(330) and CMS (347). The initial conclusion is therefore that
two observers, MTF and MB, had a much more conservative
opinion on what was to be considered a CTC than the other
observers, thereby minimizing the risk for false positive CTC
annotation. The rest of the observers have a range of detected
CTCs that corresponds to approximately 10% of the total
number of data points presented.
We define the agreement between observers A and B as

1 N
Py (AB) =1~ N;abs (A, -B,), ey

where A;, B; € [0, 1] indicates the annotation of image cutout
ias CTC (1) or no CTC (0) by the respective observer. If two
observers agreed on all data points their agreement is one,
whereas total disagreement gives the value zero. In Figure 2
a heat map showing the agreement between all observers is
shown. It is worth noticing that the maximal agreement was
0.91 and that the average (median) agreement was 0.85 (0.87).
This average agreement can be compared to the study by
Scholtens et al. [17] that also had an interobserver agreement
of 0.85, in that case across five observers. It should, however,
be noted that the classification task in their study was not
binary but objects were classified into one of five classes
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TABLE 1: The number of CTCs identified in the data set by each observer.

Observer Sb MP TL ST MB BH MIF CMS SB JP. RH

?fuingf; offound CTCs (Nerc) all data, 507 91 303 354 223 327 21 347 318 330 294

Number of found CTCs (Ncrc), 244 244 248 258 206 257 210 260 255 250 245

consensus, N = 502

Observer agreement, all data
1.00
SD . 0.91

MP
TL

ST : 0.9 09

MB L 0.76 0.82 0.8 0.83 0.90
BH b 0.83

0.95

MTE 0.77 0.81 0.8 0.85
CMS
SB 0.80
JP
RH = - - = = - 2 = = 0.75
» S B o S H EBE 3 -

FIGURE 2: The agreement, Py, between observersacrossall N = 617
cutouts.

dividing the data into different types of CTCs and other
objects including leukocytes. On the other hand, all observers
in their study were referred to as experts, whereas in the
present study the observers comprise experts as well as non-
experts that were asked to identify CTC for the first time
according to the criteria described in Section 2.

In Figure3 we present the average agreement per
observer against the average difference in identified CTCs
between one specific observer and all other observers. The
average agreement between observer A and the others is
defined as

1

Py (A)= ——
Agr( ) Nobs_l

P Agr (A) B) (2)
Be(observers+A)

and the mean difference in the number of CTCs found for
observer A against all other observers is given by

1
ACTC(A)z—N — Nere (A)
obs Be(observers#A) (3)
— Nerc (B)-

It can be seen from the clustering in Figure3 that the
two observers avoiding false positives in their indication of
CTCs are isolated from the rest of the observers in both
dimensions. Even though all participants were given identical
instructions, both written and orally, these two observers
made a different interpretation on how to annotate the data
compared to the other nine observers. While the majority
of observers tried to make a guess on cases where they
were unsure, the observers MTF and MB always went for
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FIGURE 3: The average agreement for the observers plotted against
the difference in number of found CTCs between the observers. Bars
indicate the standard errors around the means.

no CTC when unsure. For the two observers which avoided
false positive CTC annotation the difference in the number
of found CTCs seems to be the underlying reason for the
low agreement with the other observers. The difference or
similarity in number of identified CTCs however does not
uniquely predict observer agreement. As an example we
consider the two observers SD and TL, who have indicated
307 and 303 CTCs, respectively, that have an agreement of
0.88. On the other hand the observers MP and JP had an
agreement of 0.89 although JP identified 49 more CTCs
than MP. This emphasizes the need for a multidimensional
and a multiobserver analysis regarding the interobserver
agreement, rather than just looking at pairwise agreement
and averages to identify observers with different biases.

The average agreement between any pair of observers was
85%; that is, P(A = B) = 0.85, and the assumption that
the probability of agreement would be equal for each image
cutout can be inserted into the Bernoulli distribution

P(A=B)= C) p* =0.85, (4)
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resulting in p = +/0.85 = 0.92. Based on this value, we
estimate that all eleven observers should agree in 617 - p'' =
259 of the cases. In our dataset, all eleven observers agreed on
365 data points and we refer to these data points as the total
consensus data set. This implies in turn an average pairwise
agreement of P(A = B) = 0.91, which is significantly dif-
ferent (p < 107", Student’s ¢-test) from the measured agree-
ments in Figure 2. From these considerations we can draw
the conclusion that the probability for disagreement is not the
same for all image cutouts. To exemplify this, we in Figure 1
show a cutout for which all observers agreed of having a CTC
(a) and one for which all agreed that there is no CTC (b).
In the first case the conditions for a CTC are clearly fulfilled
with the strong green staining and the clear integrity of the
nucleus shown by the blue staining. The flanking objects were
apparently not disturbing the observers. In Figure 1(b) the red
staining identifies the object as a blood cell and all observers
agreed that this is not a CTC. The third case, Figure 1(c),
shows an example where the decision was split six versus
five. The staining intensity in this cutout is lower than for the
other cutouts and it is therefore hard to verify the integrity
of the nucleus. Furthermore, it is difficult to determine if
the green staining is structured enough for a positive CTC
classification. It is also quite possible that some observers did
not see the green staining at all due to the low color intensity.

3.2. Interobserver Agreement Does Not on Average Exceed
93% for Consensus Data. The requirement that all observers
should agree may be unnecessarily harsh as we may then
discard data that a single observer made a mistake on. In
studies where observers are not well supervised and possibly
anonymous, as in the case of citizen science projects [32,
33], a single observer that misunderstands the task (or for
some reason willingly gives false annotations) can severely
damage the integrity of the data set. To determine how many
observers we require to vote either CTC or no CTC, we
defined a consensus limit, ¢, for which we say that consensus
was reached. As the decision between CTC or no CTC is
binary, we required that for the N = 11 observers

N,

i (sz3> (%)Nb < 0.05; (5)

i=1

Pbin =

that is, the probability that ¢ observers by chance annotated
the cutout as containing a CTC or not should be less than
5%. In our case this means that ¢ = 9 observers had to agree
that the cutout does or does not contain a CTC for consensus
to be reached and in our data set consensus was reached
in 502 of the 617 cutouts (81%). For the consensus data set
the interobserver agreement was naturally higher with mean
(median) of 0.93 (0.95). In Figure 4 the agreement between
observers for the consensus data set is shown as a heat
map.

In the case of consensus data points, the observers that
avoided false positive CTC annotation again had consider-
ably lower number of CTCs than the other nine observers; see
Table 1. Excluding the two observers with the no false positive
bias (MB and MTF), the other nine observers are identified

Observer agreement, consensus data

SD 0.96 0.97 0.96 {IEN 0.94 (1828 0.96 0.96 0.96 0.96 0.99
MP

L 0.96
ST

MB

BH 0.93
MTF
CMS 0.90
SB

Jp 0.87
RH

5 :E 52 EE g8 =3

FIGURE 4: The agreement between observers for the 502 data points
of the consensus data set.

between 244 and 260 CTCs which gave a variation of around
3% of the total number of cutouts presented.

Given the distinctly different number of CTCs (see
Table 1) identified by observers MTF and MB and their
deviation from consensus (see Figure 4) the hypothesis that
these two observers had a different bias than the others is
further validated. However, instead of discarding the two
observers as outliers, we decided that it may be rather
interesting to see how annotations that arise from different
biases affect the training of automated classifiers. In a setting
where fewer observers are used it may not be possible to
identify such differences in bias and it is also not sure that
the differences in bias is restricted to a clear minority of
observers.

3.3. Performance of Automated Classification Strongly Affected
by Annotation Ambiguities. When evaluating automated
classifiers different performance measures are used to show
their agreement with an annotation considered to be ground
truth. We have so far demonstrated that for certain data sets
the annotation can vary strongly depending on the observer
performing the annotation. The performance measures we
use to evaluate the automated classifiers are defined with
the help of correctly identified CTCs (TP), falsely identified
CTCs (FP), objects correctly identified as not CTCs (TN), and
CTCs that were not identified as such (FN). Our performance
measures are then defined as accuracy Acc:

TP + TN
Acc = Al ) (6)
TP + FP + TN + FN
precision Pre:
TP
Pre = ——, (7)
TP + FP
and recall Rec:
TP
Rec = ——. 8
“TTPIEN ®)

Here, accuracy quantifies the fraction of correctly classified
data points relative to all data points, whereas a high precision
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TABLE 2: The performance of the classifiers when trained on two folds from probGT and GT in different combinations. It is cyclically tested

on one GT fold that was not used for training.

Training on two GT Iraining on one GT

Training on two

probGT folds Entire data set (across observers)

Acc: 0.94 £ 0.02
Pre: 0.89 £ 0.05
Rec: 0.97 £ 0.03

Acc: 0.86 + 0.04
Pre: 0.83 + 0.06
Rec: 0.88 + 0.08

Acc: 0.81+0.04

Acc: 0.86 £0.03

folds fold and one probGT
fold
Acc: 0.98 £ 0.00 Acc: 0.96 +0.01
RF Pre: 0.98 £ 0.00 Pre: 0.94 + 0.02
Rec: 0.98 + 0.00 Rec: 0.98 + 0.01
Acc: 0.96 +0.00 Acc:0.92 £ 0.01
SVM Pre: 0.95 + 0.00 Pre: 0.88 + 0.02

Rec: 0.96 + 0.00 Rec: 0.95 + 0.01

Pre: 0.85 + 0.05
Rec: 0.85 + 0.08

Pre: 0.75 + 0.08
Rec: 0.84 +£0.07

(recall) indicates a low number of falsely identified CTCs
(missed CTCs).

In our earlier study [18], a support vector machine (SVM)
achieved accuracy Acc = 0.89, precision Pre = 0.87, and
recall Rec = 0.93 on the data set used here, given an anno-
tation of data points performed by one observer (CMS).
In the same study, a naive Bayesian classifier (NBC) was
trained without the use of labels, also known as unsupervised
learning, which achieved accuracy Acc = 0.87, precision
Pre = 0.85, and recall Rec = 0.92.

Our results from the interobserver variability study indi-
cate that a different observer might have annotated the data
quite differently. We divided the data set into five randomized
folds, without any regard to whether the observers agreed on
data points and train a random forest (RF) and a SVM on 3
of those and test on 1 fold. We got the average performance
measures Acc = 0.86 + 0.04, Pre = 0.83 + 0.06, and Rec =
0.88 + 0.08 across observers for the RF and the performance
measures Acc=0.86 +0.03, Pre =0.85+0.05,and Rec=0.85 +
0.08 for the SVM (see Table 2). Thus, the performance of the
SVM and NBC in our previous study [18] was within one
standard deviation of the numbers found here, for both the
RF and the SVM. It should be noted that besides different
implementations of the classifiers and the fact that only one
annotation was used in [18], different features were also
used. In our previous study, the features used were one-
dimensional color histograms while in the present study
the hue and saturation channels of HSV images were used.
Taken together, we have used three automated classifiers
(one RE, two SVM implementations, and one NBC) that
performed almost equal on the data set. To add to this,
the average interobserver variability was conspicuously close
the accuracy of the classifiers, strongly suggesting that the
performance of the classifiers was strongly influenced by
annotation ambiguities.

To examine if and how differences in annotation affected
the classifiers’ performance, we split the data set into the total
consensus data set that can be considered ground truth (GT)
with 365 data points and a part with probabilistic annotation
(probGT) containing the remaining 252 data points. From
probGT different annotations can be generated by assigning
the label for each data point from a randomly chosen
observer. On average 81 data points will change label between
two probabilistic annotations. For classifier evaluation, GT

was in turn split into three folds and the probGT into two
folds, giving in total five folds with approximately the same
number of cutouts. To get prediction by the classifiers we
trained on two folds and tested on a third fold. The test
fold was always one of the GT folds as we were here trying
to separate the effects of uncertain labels in the test set
from uncertainty in training labels. Averages and standard
deviations were obtained by 50 repetitions of the training
and testing across the folds with new annotations drawn for
probGT between each repetition. When training on only GT
folds, which do not change any labels between repetitions, we
repeated the procedure 10 times to check if any randomness
originated in the training of the classifiers.

In Table 2 the performances of the classifiers are listed
as we introduced different amounts of uncertainty in the
training data. If training and testing were done only on the GT
part of the data, the RF achieved performance measures Acc =
0.98 £+ 0.00, Pre = 0.98 + 0.00, and Rec = 0.98 + 0.00, whereas
the SVM achieved performance measures Acc = 0.96 +
0.00, Pre = 0.95 + 0.00, and Rec = 0.96 + 0.00. The standard
deviations were less than 1% confirming that both classifiers
were stable between training runs and any deviations of this
magnitude would originate from annotation changes in the
probGT folds. The RF performances did vary in the order
of 0.1%, which is due to the probabilistic build of the forest.
Compared with the values achieved on the full data set this
was a clear improvement when we tested and trained on
noise-free data.

If we, instead of training only on GT, took one fold from
GT and one from probGT and then tested on one GT fold the
RF achieved performance measures Acc = 0.96 + 0.01, Pre =
0.94 £ 0.02, and Rec = 0.98 + 0.01 and the SVM achieved
performance measures Acc = 0.92 + 0.01, Pre = 0.88 +
0.02, and Rec = 0.95 + 0.01. This means that the label noise
during training generally decreased the performance with a
stronger performance reduction for the SVM than for the RE.
The performances of both classifiers were still better than that
recorded on the entire data set where testing was done against
partly probabilistic annotation. Even when we trained the RF
on the two probGT folds, which we know has a high degree of
label noise and it can be assumed that the data in probGT is
of alower quality than in GT, its performance measures were
Acc =0.94 £ 0.02, Pre = 0.89 + 0.05, and Rec = 0.97 + 0.03.
An example of what we refer to as low quality data is the low
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color intensity cutout shown in Figure 1(c). For this setting
the performance of the SVM clearly dropped to Acc = 0.81 +
0.04, Pre = 0.75 + 0.08, and Rec = 0.84 + 0.07.

This nicely illustrates that the RF is more robust when
faced with label noise than many other classifiers, as was
shown in the comparison between RFs and decision trees by
Breiman [30]. While the SVM performed well in the pure
GT case, its performance dropped more rapidly than the RF
when uncertainty was introduced. When the training data
contained at least 50% certain cases the SVM still performed
better than it did on the entire data set, but when only probGT
was used the SVM dropped to considerably lower levels.
For the RF the performance level seen for the whole data
set was mainly because the classifier is tested on unreliable
annotation; that is, the training on unreliable labels did have
an effect but that is fairly mild in comparison.

3.4. Consensus Data Provides a Base for Classifier Evaluation.
To at least partly solve the issue of uncertain annotation
affecting the performance of the automated classifiers we
evaluated the classifiers against the consensus data set. As
discussed earlier, it is reasonable that the consensus data set
is defined as cutouts for which at least nine out of eleven
observers agree with each other, because in this case the
probability for random annotation of cutouts as containing
a CTC or not is less than 5%. In the case of five observers
it would be required that all five observers agree in order to
satisfy this condition. Thus, the consensus limit varies with
the number of observers. When training and evaluating the
classifiers against the consensus data set we split the data set
of 502 consensus data points into four folds, trained on three
of them and tested on the fourth.

In Figure 5 the performances of the manual observers,
RF and SVM versus the consensus labeling, are plotted. The
performances of the RF and the SVM were close to each
other. The SVM had a bit better precision, whereas the RF
had a somewhat better recall. The performance measures for
the RF were Acc = 0.94, Pre = 0.96, and Rec = 0.93,
whereas the SVM had performance measures Acc = 0.94,
Pre = 0.95, and Rec = 0.94. In comparison with our
earlier study [18], we found an increase of the accuracy by
approximately 5%, a precision increase by around 9%, while
recall remained unchanged. Given the uncertainty in anno-
tation that has been demonstrated in this study these values
are much more representative performance measures for
the task of automated classification of fluorescently stained
CTCs. The majority of observers had better performances
than the automated classifiers, but it should be noted that
each observer had a vote when determining the consensus,
whereas the RF and SVM did not. It should also be noted that
none of the observers reached perfect performance in any of
the measures. Hence, there exists not a subset of observers
that could have served as a substitute for the consensus
annotation.

In summary, the use of a consensus data set for training
and evaluation of automated classifiers turned out to be a
good option for evaluation of automated classification. In
combination with the resilience of the RF to label noise
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FIGURE 5: The accuracy, precision, and recall of observers (dots), RF
(black line), and SVM (blue line) with the consensus annotation of
the 502 cutouts for which consensus could be reached.

in the training data, it seems that especially the test set
has to be carefully chosen to give a correct evaluation
of how well the classifier performs. The issue remains to
find a good consensus data set as the manual annotation
of data is hard to come by and time-consuming for the
observers. This is especially the case when the annotation
requires expert knowledge and experience in interpreting, for
example, radiology images [28, 29].

4. Conclusions

As the use of computational methods is growing in cell
biology, both for classification and modeling of biological
systems [17, 18, 34, 35], we have in this paper investigated the
effect of label noise caused by uncertain or faulty annotation
on the performance of automated classification tasks. In total,
eleven observers were asked to manually classify 617 image
cutouts that may or may not contain CTCs. The rarity of
CTCs in patient blood [7] can easily inflate the accuracy of
any classifier due to the many true negatives (TN) that are
normally present. The cutouts we used here were identified
using a morphological classifier among approximately 35000
foreground objects found during initial image segmentation.
The morphological classifier was designed for high recall so
that very few CTCs were overlooked at the initial stage, for
full details of the procedure see Svensson et al. [18]. For
the 617 cutouts, it was revealed that observers agreed with
probability 85% whether a CTC was present or not. This
degree of agreement is comparable to the uncertainty often
seen in manual assessment of medical image data [19, 23—
29]. When only considering cutouts on which all observers
agreed, the classifiers RF and SVM reached performance
measures above 95% (see Table 2). This is considerably higher
than the previously reported performances when attempting
to automatically classify images of CTCs using RF and SVM
(17, 18]. The RF turned out to be quite resilient to noise
in the training data, even when using only uncertain data



points in the course of training it performed better on the
total consensus test set than classifiers in previous studies
(see Table 2). The SVM was more sensitive to label noise in
the training data and actually performed worse than it did
when the whole data set was used for training and testing.
These findings are in line with the findings of Breiman [30]
that RFs are stable with regard to noise, although in that
study RFs were only compared with decision trees. Going
beyond that study, here we have demonstrated that they are
also more stable than SVMs with a radial basis function
(RBF) kernel. To test classifiers on data which is with a
high probability incorrectly annotated or for which it cannot
be uniquely decided on the actual class, as is the case for
probGT, is of disadvantage for classifiers that cannot be
corrected by machine learning algorithms. Any performance
improvement above the uncertainty in annotation will be
a type of overfitting and even if the achieved performance
measures seem impressive the algorithm will most likely not
perform well on other data sets. On the other hand, if the
test data suffers from label noise it is of great importance to
take this into consideration when evaluation any automated
classifier.

Two very pressing questions remain to be investigated:
(i) how to determine what is good data to use for training
and testing the classifiers and (ii) how to detect and treat data
that may occur in a clinical setting that is not appropriate for
classification using the automated classification. Regarding
the first question, we have shown that the creation of a con-
sensus data set is a valid approach, but this normally requires
a considerable effort from many observers to make the
consensus statistically sound. In many cases these observer
also have to be experts, for example, trained physicians that
may not be very motivated to annotate data for machine
learning algorithms rather than dealing with patients. It can
be imagined that machine vision could step in to provide
additional observers supplementing human observers. In this
case care must be taken that the automated classification
can be interpreted as an independent observer that is not
getting slaved by human observers. This study suggests that
RFs may be a strong candidate for this issue, because we have
shown that noise in training data does not strongly affect
the RF’s performance on a total consensus test set. Another
possibility is to use generative models which can be trained
without labels [18] and which are therefore independent of
the performance of the human observers. For the second
question the ideal solution would be if the CTC imaging
procedure would be (close to) perfect. In the case of CTC
collection using FSMW, as done for the present data set, the
cylindrical or spiral shape of the wire presents a considerable
imaging challenge to get the entire surface in focus [18]. Even
assuming a close-to-perfect data collection technique, it can
be expected that clinical use will regularly produce data of a
type that was not seen in training of the classifiers. A human
observer could in such cases easily conclude that this is an
uncertain case, whereas an SVM or RF will be forced to
make a decision by design. In the machine learning literature
there are methods for outlier detection and these may have to
be implemented and developed to handle this task [36, 37].
For outlier detection to be efficient in this classification task,
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a further subgrouping of objects would probably be needed
as the class representing objects that are not CTCs is a very
inhomogeneous group of objects.

Instead of simply enumerating CTCs, as done here, it is
desirable to determine subgroups within the CTC population,
for example, to distinguish between apoptotic and viable
CTCs [7, 17]. In order to do this, new sets of features may
have to be identified that complement or even replace the
color content of the cutouts. Examples of possible features
would be further morphological quantities and Fourier-
ring descriptors [38]. To apply machine learning to the
subgrouping task would require more data than used here and
a more rigorous manual classification performed by experts.
As Scholtens et al. [17] demonstrated, we would in that case
still be faced with a considerable interobserver variability that
would require a handling along the lines presented in this
study.
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