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Abstract

Objectives: Ecological momentary interventions (EMI) are digital mobile health in-

terventions administered in an individual's daily life to improve mental health by

tailoring intervention components to person and context. Experience sampling via

ecological momentary assessments (EMA) furthermore provides dynamic contextual

information on an individual's mental health state. We propose a personalized data‐
driven generic framework to select and evaluate EMI based on EMA.

Methods: We analyze EMA/EMI time‐series from 10 individuals, published in a

previous study. The EMA consist of multivariate psychological Likert scales. The EMI

are mental health trainings presented on a smartphone. We model EMA as linear

dynamical systems (DS) and EMI as perturbations. Using concepts from network

control theory, we propose and evaluate three personalized data‐driven interven-

tion delivery strategies. Moreover, we study putative change mechanisms in

response to interventions.
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Results: We identify promising intervention delivery strategies that outperform

empirical strategies in simulation. We pinpoint interventions with a high positive

impact on the network, at low energetic costs. Although mechanisms differ between

individuals ‐ demanding personalized solutions ‐ the proposed strategies are generic

and applicable to various real‐world settings.

Conclusions: Combined with knowledge from mental health experts, DS and control

algorithms may provide powerful data‐driven and personalized intervention delivery

and evaluation strategies.
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computational psychiatry, control theory, ecological momentary assessment, ecological
momentary intervention, mobile health

1 | INTRODUCTION

Mobile devices, such as smartphones and sensors, facilitate the rich

and dynamic collection of information pertaining to an individual's

mental state (Myin‐Germeys et al., 2009; Schick et al., 2021;

Shiffman et al., 2008; Trull & Ebner‐Priemer, 2009). Specifically,

ecological momentary assessments (EMA) afford the acquisition of

high‐dimensional data related to positive and negative affect,

physical needs, and social interaction multiple times throughout the

day (Myin‐Germeys et al., 2018), extending to periods of several

months (Reichert et al., 2021). A central advantage inherent in these

approaches is the sampling of mental health states within the nat-

ural context of an individual's everyday life. Through these

ecologically valid assessments, a more granular understanding of

the reasons and moments at which mental health deteriorates

becomes attainable (Myin‐Germeys et al., 2018; Schulte‐Strathaus

et al., 2022).

Ecological momentary interventions (EMI) constitute a distinct

category of mobile health (mHealth) interventions designed to fill this

crucial gap in the treatment of mental health conditions. EMI are

administered via smartphone devices and are designed to intervene

in an individual's natural environment, precisely targeting moments

when mental health is at risk (Heron & Smyth, 2010; Myin‐Germeys

et al., 2016; Schulte‐Strathaus et al., 2022). For instance, EMI have

been employed to enhance resilience in response to stress in youth at

risk to develop, or with first episodes of, severe mental disorders

(Rauschenberg et al., 2021; Reininghaus et al., 2023; Schick

et al., 2021), and to reduce depression and anxiety (Schueller

et al., 2017; Seppälä et al., 2019).

Although the integration of EMA and EMI holds significant

promise for mitigating the burden of mental health, it concurrently

poses several conceptual and data‐analytic challenges. Specifically,

the selection and delivery of an effective EMI requires determining

its proximal utility. However, determining the utility based on EMA

can become challenging, particularly for high‐dimensional recordings,

as EMA are inherently dynamic and interdependent. Due to

interdependencies and feedback loops among various psychological

variables, it is conceivable, for instance, that seemingly modest im-

mediate effects accumulate over time, or immediate favorable effects

backfire over an extended period (Borsboom, 2017; Henry

et al., 2022; Rabbi et al., 2019). Thus, evaluating intervention de-

liveries requires accounting for the temporal dynamics and in-

terdependencies among the sampled EMA variables (e.g.,

Borsboom, 2017; Boruvka et al., 2018; Schueller et al., 2017). In

addition, when designing personalized EMI delivery strategies, we

may need to factor in inter‐individual differences into these dynamics

(Bidargaddi et al., 2020; Nahum‐Shani et al., 2018). Finally, different

researchers may have different definitions of utility (e.g., some may

want to reduce negative affect while others aim to increase activity

levels Rabbi et al., 2019). It is therefore desirable to have an inde-

pendent data‐driven framework to obtain personalized EMI delivery

schemes.

One way to address these challenges is to understand and treat

the psychological variables collected within an EMA as nodes in an

interconnected dynamic network (Borsboom, 2017; Bringmann

et al., 2022; Hamaker et al., 2015; Henry et al., 2022; Hofmann

et al., 2016; Stocker et al., 2022; Wigman et al., 2013). By operating

on such networks, network control theory (NCT) offers guidelines

and insights on how to address current questions in EMI research

(Henry et al., 2022). NCT is a contemporary branch of dynamical

systems theory that concerns itself with quantifying the control an

external input (such as an intervention) exerts over a dynamical

system (DS). Specifically, NCT studies how a network behaves under

perturbation both immediately and over time, and how to place input

to achieve some goal or desired state (Brunton & Kutz, 2022). In this

way, NCT provides insight into which individuals are particularly

sensitive to which external inputs based on their network structure,

and which network nodes (e.g., which EMA variables) are best to

target in order to effect change.

In a proof‐of‐concept study, we aimed to illustrate these princi-

ples on a dataset of individuals that underwent several weeks of EMI

for the improvement of emotional resilience in youth with early

2 of 10 - FECHTELPETER ET AL.



mental health problems (Rauschenberg et al., 2021). Our contribu-

tions are two‐fold: First, we used NCT to gain insights into network

mechanisms by studying how the network behaves in response to

real and hypothetical interventions. Second, we used concepts from

control theory to propose and test three viable and personalized

online strategies to guide the EMA‐based delivery of EMI.

2 | MATERIALS AND METHODS

2.1 | Linear dynamical system models

Ten participants underwent several weeks of EMA with interleaved

EMI (see Rauschenberg et al. (2021) and Supplement 1.1 in Sup-

porting Information S1). The EMA consisted of 7 point Likert scales

that were centered on 0, ranging from −3 to 3, prior to analysis (see

Supplement 1.2 in Supporting Information S1 for details on all pre-

processing steps). Table S1 lists the M = 15 assessed EMA variables.

To extract their dynamics and the associated network structure, we

modeled the EMA time series as a linear dynamical system (LDS),

where the EMI constitute external inputs, that is, perturbations, to

this system. The dynamics and network structure of each participant

are described by the following map:

xtþ1 ¼ Axt þ But þ et ð1Þ

Here, xt is a (state) vector collecting all EMA scores at time t, A is

an adjacency matrix which describes how different vector elements

(linearly) affect each other from one time point to the next (i.e., A

describes the network structure), ut are binary vectors that code for

the presence of a specific external input at time t, B is a matrix

specifying the degree to which each external input perturbs the

system state, and et is Gaussian white noise with 0 mean and

covariance Σ. Each element of ut indicates the delivery of one of three

types of EMI (with a 1 indicating a delivery), or whether the individual

was currently alone or in the presence of social company (a 1 indi-

cating company). This model delineates a vector‐autoregressive

(VAR) model of first order with external inputs that was inferred

separately for each participant via regularized least squares using

Ridge regression. For further details on model estimation and code

see Supplement 1.3 in Supporting Information S1.

2.2 | Average controllability

Average controllability (AC) determines interventions ut that can

cause large state changes with little (input) energy (Gu et al., 2015). It

is assessed here via the so‐called controllability Gramian WT as

AC¼ traceðWTÞ

with T ¼M (Pasqualetti et al., 2014; Summers et al., 2015). The

controllability Gramian is computed based on matrices A and B (see

Supplement 1.4.2 in Supporting Information S1 for intuition and de-

tails on Gramian).Through matrix A in Equation (1), the EMA nodes x:;i

form an interconnected network. The four columns of B specify the

nodes which are targeted and the degree to which they are targeted

by the four inputs. While B is derived from the data, we could replace

it by an arbitrary matrix ~B with the same number of rows. In doing so,

we can simulate the effect of any hypothetical set of inputs. For

instance, we can simulate an input that targets only a specific node i

by setting ~B to a column vector of zeros with a one at position i. To

assess the AC of the empirical inputs (including the EMI), we set ~B to

the inferred columns of B (Equation 1). To assess the AC of simulated

hypothetical interventions targeted at single network nodes, we set ~B

to unit (canonical) vectors (multiplied by −1 to account for positive

effects on mental health).

2.3 | Cumulative impulse response

The CIR quantifies the isolated response of every system node (e.g.,

EMA variable) in response to an initial input (e.g., EMI), integrated

over time. Essentially, it integrates the system trajectory along each

dimension after initial perturbation. We compute the CIR as

CIRT ¼
XT

t¼0

At~B

where the j‐th component of CIRT represents the total effect on

observable j of the intervention defined by control vector ~B after

applying a control input once at time t = 0, and accumulating effects

over time (see also Henry et al., 2022). As such, the CIR captures a

system's immediate change in response to an intervention, as well as

the prolonged deviation away from its equilibrium point, and may

therefore be understood as the total “benefit” (or harm) induced by

an intervention over a specific time period. Once more, we set ~B to

columns of B to compute CIRs for the presented inputs, and to −ej
(i.e., to canonical unit vectors multiplied by −1) to compute CIRs for

simulated interventions which target single network nodes. The

minus sign accounts for simulating interventions with positive effects

on mental health. T was set to 100 to account for a sufficient tem-

poral horizon.

2.4 | Control strategies

Equation (1) defines a DS that models the future fate of the network

of EMA variables, and relatedly, the system's future response to any

proposed sequence of interventions represented by u1;…; uT−1 (also

termed a control policy), where each ut represents one external input

available in the original study. By adjusting this sequence, we may

thus control the system state. We evaluated three model‐based

control strategies that each propose a distinct control policy, with

the goal of driving the system toward a desired target (here, the most

positive EMA state, cf. Supplement 1.2.1 & 1.5 in Supporting
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Information S1), while minimizing the required effort to do so. That is,

we evaluated three policies to select interventions so as to improve

mental health.

Optimal control strategy. The first control strategy was derived

from the linear quadratic regulator (LQR). The LQR is a well‐defined

approach toward computing an optimal solution to a linear control

problem, under circumstances in which we can dimensionally vary

inputs ut (i.e., we have no input constraints). For these settings, the

LQR returns an optimal control sequence u∗
1;…; u

∗
T−1 as a function of

speed of convergence to the desired state (i.e., how quickly do we

wish a system to converge to the target), and enforced input energy

(i.e., how much energy do we want to exert to get there), regulated by

a parameter ρ. However, the LQR cannot be applied directly, because

our admissible input is restricted to the finite set of available in-

terventions. We therefore defined an adjusted strategy by first

obtaining the optimal control input proposed by the LQR (therefore

termed 'optimal control strategy' here), and then selecting the

element ut from the set of interventions with minimal squared

Euclidean distance to the former (see details in Supplement 1.6.2 in

Supporting Information S1).

Brute force strategy. The second strategy is a brute‐force

strategy. It simulates the effect of all combinations of available in-

puts forward in time and selects the intervention with lowest pre-

dicted loss (where we used the LQR loss; details in Supplement 1.6.3

in Supporting Information S1).

Max AC strategy. Finally, we tested a third comparatively simple

strategy, based on the AC of each intervention. The max AC strategy

selects the intervention with highest AC. All three strategies were

implemented in an offline and an online evaluation (see Supplement

1.6.5 in Supporting Information S1).

2.5 | Software

All calculations were done using self‐developed Python code, using

the open source packages Numpy (Harris et al., 2020), Scipy (Virta-

nen et al., 2020), Pandas (McKinney, 2010), NetworkX (Hagberg

et al., 2008), and Matplotlib (Hunter, 2007).

3 | RESULTS

3.1 | Gaining mechanistic insights with control‐
theoretic approaches

3.1.1 | Average controllability

After verifying that our LDS models explained a significant amount of

variation in the data, validly capturing intervention effects (Supple-

ment 2.1 in Supporting Information S1, Figure S1), we analyzed their

control to gain mechanistic insights. We first explored the AC, as a

marker of interventions that may cause large state changes with little

input energy (Gu et al., 2015; Karrer et al., 2020; Pasqualetti

et al., 2014), of the empirical interventions. We observed statistically

larger AC values for the three EMI compared to the input that

indicated the mere presence or absence of social company (T

(38) = −2.09, p = 0.043, Figure 1a), indicating that the inputs which

were specifically designed to improve mental well‐being were also

indexed by comparatively large ACs.

Next, we assessed the AC of hypothetical interventions tar-

geted at single network nodes (i.e., EMA variables). Nodewise ACs

showed high variations across participants (see Figure 1b left for

interquartile ranges). This variation was consistent with a high de-

gree of inter‐individual differences in network structure. That is,

network edge weights also exhibited high variance with no consis-

tent pattern for positive or negative weights across individuals (all

pBonf > 0.05 Bonferroni corrected; but see supplementary

Figure S3). Nonetheless, we also found evidence for a few common

nodes with high AC across individuals. For instance, “social un-

pleasant”, “agreeable*”, and “rather company” (reflecting an in-

dividual's desire to rather be with company when alone) were

frequently identified among the four nodes with highest AC in each

individual (identified in 5 out of 10 individuals, Figure 1a right).

Moreover, “anxious” was the node with highest median AC

(Figure 1b left), also exerting a high degree of average control over

the inferred DS.

Nodes which exert high average control are typically hub nodes

(Gu et al., 2015), that is, nodes with strong connections to other

nodes. This could be confirmed here as well, with AC being positively

associated with node centrality (the log net magnitude of incoming

and outgoing edge weights of a given node, see Figure 1c; r = 0.71,

p < 0.001 over all participants and nodes).

3.1.2 | Cumulative impulse response

Since AC is an average descriptor of network control, it provides little

insight into the dimensions of change that an experimenter is

commonly interested in. We therefore also examined the CIR. CIRT

quantifies the network connectivity‐dependent effect an input exerts

on each network state, accumulated over a fixed number of time

steps T (cf. Methods 2.3).

First off, we assessed whether CIRT returns reasonable results

for the empirical inputs. Figure 2a shows the predicted median

CIR100, that is, accumulated over 100 time steps, for the three EMI

and the social external input (indicating the presence or absence of

social company). EMI‐I and EMI‐II resulted in a temporary improve-

ment across the assessed psychological variables, predicted by a

significantly negative median CIR (EMI‐I: T (14) = −4.15,

pBonf = 0.004, EMI‐II: T (14) = −6.55, pBonf < 0.001, EMI‐III:
T (14) = −2.0, pBonf = 0.261). Simulating an increase of company did

not improve the mental state (T (14) = −1.58, pBonf = 0.547). The

specific temporary improvements observed for the EMI are thus

largely consistent with expectations.

We then assessed CIRs for the single node interventions, by

perturbing them with −1, toward higher mental well‐being. Figure 2b
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delineates CIR100 for simulated interventions that target the EMA

node “social unpleasant” which frequently was among the top AC

nodes (Figure 2b left) and the personalized node with highest AC in

each participant (Figure 2b right). Interventions on the identified high

AC nodes yielded significantly negative CIR scores (‘social unpleas-

ant’: T (14) = −2.77, pBonf = 0.046, personalized AC nodes:

T (14) = −3.07, pBonf = 0.025). Among these two interventions, a

'personalized intervention' which targeted the highest AC node in

each individual was superior in improving mental health than tar-

geting “social unpleasant” (T (14) = 3.04, p = 0.009). The results are

consistent with the notion that decreasing social unpleasantness

results in a favorable mental health state, and that personalized in-

terventions which target high AC nodes in each individual can be

(even more) effective in temporarily improving mental health (also

confirmed by a sample mean negative correlation between AC and

CIR100; r = −0.50 � 0.24, see Figure 2c).

F I GUR E 1 Node‐wise AC. (a) AC of presented inputs (mean and SEM are displayed) (b) left: AC of single network nodes (median and
interquartile range are displayed). Right: Distribution over the number of times each node was identified as one of the 4 nodes with highest AC

in each individual. (c) Relationship between log‐transformed AC and node centrality, measured by the sum of absolute incoming and outgoing
weights, for each participant and node.

F I GUR E 2 Cumulative impulse responses. (a) Predicted CIR for 100 time steps in response to the four presented inputs (median and 25‐
75 percentile range are displayed). Negative values always indicate an improvement in observed variables since an unfavorable mental health
state is reduced. Asterisks mark inverted scales. (b) Left: CIR100 of node “soc. unpleasant,” which was frequently found to have high AC. Right:

CIR of participant specific node with highest AC. In each frame, median and interquartile range are displayed. (c) Relationship CIR100 and log
AC for each participant and node.
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3.2 | Control strategies to inform the ambulatory
selection of EMI

Finally, we aimed at exploring different strategies to obtain person-

alized intervention selection schemes and guide intervention selec-

tion in empirical settings with a finite number of pre‐defined

interventions (see Figure 3a for proposed approach). We explored

three strategies, one based on the LQR referred to as “optimal con-

trol,” one based on a brute‐force search strategy termed “brute

force,” and one based on selecting inputs with high AC, termed “max

AC.” These three strategies were evaluated as an alternative to the

empirical strategy (Rauschenberg et al., 2021), and were deployed to

select inputs at the time the empirical interventions were

administered.

To evaluate intervention selection based on these control stra-

tegies, we compared the model‐predicted improvement in mental

well‐being in response to the selected inputs, to the empirical

improvement. More specifically, we assessed the predicted mean

change D̂ in EMA values before and after an intervention, and

compared it to the empirical change D (Supplement 1.6.1 in Sup-

porting Information S1). The control strategies were implemented in

both an “offline” and an “online” version. The offline versions provide

control inputs based on models inferred on the entire time series,

while the online versions iteratively infer models up to the decision

point, closely mimicking the empirical application setting (Supple-

ment 1.6.5 in Supporting Information S1). See Figure 3d–e for two

example trajectories, intervention selection points, and empirical and

predicted improvement in EMA state for the online version of the

max AC and brute force strategy.

3.2.1 | Offline control strategies

Optimal control strategy. The optimal control strategy had a large

predicted effect size (Hedge's g = 1.03), with a mean change of D̂ =
−0.38 � 0.35. The predicted mean change was larger than the

empirical change across participants on a marginally significant level

(T (9) = −2.14, p = 0.061), despite the small sample (see Figure 3b).

F I GUR E 3 Control strategy results. (a) Proposed analysis approach. After assessing ecological momentary assessments (EMA) and
Ecological momentary interventions (EMI) time series, we infer dynamical systems models on these time series and conduct perturbation

analyses to obtain insights into network control and future system behavior. (b) Predicted improvements in EMA states, D̂, for optimal control,

brute force, and max AC selection strategies minus the empirically observed effects D (mean and standard error over participants are displayed)
for offline strategy. Negative values indicate a relative improvement. (c) Same as (b) for online strategy. (d) Empirical time series (top panel) and
intervention time points in empirical data and control strategy (middle panel). Bottom panel shows improvement in EMA state for empirical

strategy (gray) and predicted improvement for online control strategy of one participant. Effect of max AC control strategy is displayed. Effects
were computed from time step 20 onward. (e) Same as (d) for the brute force strategy.
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Brute force strategy. The brute force strategy had a large effect

size (Hedge's g = 1.58), and resulted in a significantly larger improve-

ment in EMA variables when compared to the empirical prediction

(T (9) = 3.59, p = 0.006, D̂ = −0.39 � 0.23; see Figure 3b). While this

may be expected, as both the evaluation and the selection strategy are

based on model simulation, it is not necessarily trivial. The improve-

ment in EMA variables is assessed based on the one‐step ahead pre-

diction, the brute force scheme selects its control based on iterating

τ = 5 steps forward in time. A significant finding here thus requires

models that are valid several steps into the future. Also, the results

demonstrate that the models predict there even exist superior

personalized control sequences to the empirical one, in the first place.

Max AC strategy. Interventions with high AC are interventions

that cause relatively large state changes with little input energy (c.f.

Methods Section 2.2). While the AC is a marker of change, and does

not differentiate between positive and negative state changes per se,

the results (Section 3.1.1, 3.1.2) indicate that in the current setting,

the AC was associated with positive state changes. Additionally, we

observed the LQR consistently invested more energy in high AC in-

puts for ρ > 10 (Supplement 2.4 in Supporting Information S1). Thus,

the AC may provide a simple marker of an intervention's efficacy. As

a third strategy, we therefore implemented a scheme that selects the

intervention with maximum AC.

On average, the max AC strategy had a medium effect size

(Hedge's g = 0.64), with a descriptively greater mean improvement

(D̂ = −0.33 þ/− 0.48), although this was not statistically significant

compared to empirical improvement in this small sample

(T (9) = −1.38, p = 0.201, see Figure 3b).

3.2.2 | Online control strategies

For the online setting, results are displayed in Figure 3c. Although the

optimal control strategy did not statistically differ from the empirical

selections (T (8) = −0.73, p = 0.48), it yet exhibited a positive effect

size (Hedge's g = 0.37). Interestingly, when excluding decision points

t < 40, we observed a moderate negative correlation between the

number of time steps used for model estimation and the optimal

control strategy's predicted effect D̂ (r = −0.3, p = 0.026), possibly

indicating that this strategy may improve upon additional data. The

brute force and max AC strategies, moreover, showed large effect

sizes and statistically significant reductions in target state deviation

in this setting as compared to the empirical reduction (brute force:

Hedge's g = 1.32, T (8) = 3.67, p = 0.006, max AC: Hedge's g = 1.3,

T (8) = 3.86, p = 0.005).

4 | DISCUSSION

The delivery of EMI in naturalistic settings holds significant potential

for mental health promotion and treatment (Myin‐Germeys

et al., 2016; Schulte‐Strathaus et al., 2022). However, assessing the

impact of interventions, identifying change mechanisms, and opti-

mizing EMI delivery strategies is challenging due to the dynamic

nature of psychological states (Boruvka et al., 2018; Henry

et al., 2022; Koppe et al., 2019). To address this, we propose control‐
theoretic approaches, unexplored in EMA and EMI contexts, which

view EMA variables as interconnected states and interventions as

perturbations to these states (Borsboom, 2017; Bringmann

et al., 2015, 2022; Henry et al., 2022). We furthermore propose three

online control strategies for data‐driven personalized EMI delivery

that show promising efficacy in initial tests.

In an offline evaluation, all data‐driven computational strategies

for personalized EMI selection demonstrated moderate to substantial

effect sizes. In online evaluations, the brute force and max AC stra-

tegies demonstrated potential for real‐world applications. The pro-

posed strategies offer a versatile data‐driven control‐theoretic

framework adaptable to various experimental protocols. However,

experimental validation is required to ascertain their superiority over

existing delivery schemes.

An analysis of empirical and simulated inputs revealed mecha-

nistic insights, with intervention effects generally aligning with ex-

pectations. For instance, empirical EMI resulted in an overall pattern

of improvement across predicted psychological variables, and exer-

ted a stronger degree of system control than the mere passive

indication of social presence and absence. This aligns well with pre-

vious observations of immediate EMI‐driven mental health im-

provements (Rauschenberg et al., 2021), as well as the general

motivation behind delivering these specific EMI (Paetzold

et al., 2022; Reininghaus et al., 2023). However, the observed inter‐
individual differences in dynamical systems and responses also imply

personalized intervention approaches are necessary. Personalized

interventions targeting participant‐specific nodes with high AC pre-

dicted larger mental health improvements, indicating the potential

effectiveness of individualized interventions based on network dy-

namics and control.

4.1 | Implications for EMI delivery schemes and
evaluation

The study suggests innovative directions for EMI research, empha-

sizing the integration of energetic considerations and individual

dynamics into intervention design. Integrating psychotherapeutic

research focusing on real‐time state changes with dynamical sys-

tems and control theory could further enhance future EMI delivery

schemes. As an example, the EMI selected in the current data set

are based on principles of CFT that rest on cultivating and

enhancing compassion in individuals. These compassion focused in-

terventions (CFIs) are particularly designed to act on three inter-

acting emotional systems (Paetzold et al., 2022). By capturing the

dynamics of these emotional systems and integrating CFIs into

personalized EMI selection based on proximal prediction of effects

and energetic constraints, interventions could be strategically

placed and utilized.
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AC and CIR provide interpretable measures of intervention ef-

fects and offer insights into behavioral contingencies and network

mechanisms (Gu et al., 2015; Lynn & Bassett, 2019). These could be

used for personalized feedback to increase awareness of individual

behavioral patterns. For instance, one could inform on interactions

between psychological variables (e.g., ‘when you are not relaxed, you

tend to feel less appreciated’), educate on the effects of a given CFI

(e.g., ‘positive imagery relaxes you’), and raise awareness for effects

of other recorded external factors (e.g., ‘spending time in nature had

a positive effect on your mood’). In blended care settings, such

evaluations could moreover guide therapists in identifying effective

intervention points (e.g., high AC nodes).

4.2 | Limitations

The success of the proposed approaches hinges on the DS model's

ability to accurately reconstruct dynamics, as highlighted in (Henry

et al., 2022; see also Durstewitz et al., 2023). However, the linear

VAR(1) model used is limited by a single fixed point, causing per-

turbations to decay exponentially and limiting its capacity to repre-

sent long‐term changes induced by interventions. An alternative

employed by Henry and colleagues (2022) is the integrated VAR

model. While this model is theoretically capable of capturing long‐
term dynamical changes, we found it to explain significantly less

variance in the present data.

While linear models may thus not fully reflect reality, they

remain effective approximations for many systems (Hamaker

et al., 2015; Kirk, 2004; Peralta et al., 2020). However, more powerful

nonlinear approaches exist, which can better account for permanent

stable changes in mental health states but require longer time series

for accurate generalization. Future studies should focus on validating

proposed approaches on longer time series, using methods such as

inferring models on part of the time series to predict statistics for the

left‐out part, thus enabling validation on a personalized level (Koppe

et al., 2021; Thome et al., 2023).

5 | CONCLUSION

The proposed approach aligns with network theories of mental dis-

orders, emphasizing the interaction between mental health symp-

toms or latent variables (Borsboom, 2017; Bringmann et al., 2018;

Fried & Cramer, 2017). In digital mental health research, the goals of

administering personalized mHealth interventions and understanding

inter‐individual variations in intervention responses are eminent.

EMA offers opportunities to study intervention effects by tracking

psychological variables over time. By integrating these variables into

a dynamic system responsive to perturbations, NCT facilitates

personalized intervention delivery and identifies key drivers of

change.
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