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The objective of this study was to investigate mechanisms of allergic inflammation both in
vitro and in vivo in details. For this, RNA sequencing was performed. Early growth
response 3 gene (Egr3) was one of the most highly upregulated genes in rat basophilic
leukemia (RBL2H3) cells stimulated by antigen. The role of Egr3 in allergic inflammation
has not been studied extensively. Egr3 was necessary for passive cutaneous anaphylaxis
(PCA) and passive systemic anaphylaxis (PSA). Egr3 promoter sequences contained
potential binding site for NF-kB p65. NF-kB p65 directly regulated Egr3 expression and
mediated allergic inflammation in vitro. Histone deacetylases (HDACs) is known to be
involved in allergic airway inflammation. HDAC6 promoter sequences contained potential
binding site for EGR3. EGR3 showed binding to promoter sequences of HDAC6. EGR3
was necessary for increased expression of histone deacetylase 6 (HDAC6) in antigen-
stimulated RBL2H3 cells. HDAC6 mediated allergic inflammation in vitro and PSA.
TargetScan analysis predicted that miR-182-5p was a negative regulator of EGR3.
Luciferase activity assay confirmed that miR-182-5p was a direct regulator of EGR3.
MiR-182-5p mimic inhibited allergic inflammation both in vitro and in vivo. Cytokine array
showed that HDAC6 was necessary for increased interleukin-27 (IL-27) expression in
BALB/C mouse model of PSA. Antigen stimulation did not affect expression of EBI3,
another subunit of IL-27 in RBL2H3 cells or BALB/C mouse model of PCA or PSA. IL-27
receptor alpha was shown to be able to bind to HDAC6. IL-27 p28 mediated allergic
inflammation in vitro, PCA, and PSA. Mouse recombinant IL-27 protein promoted features
of allergic inflammation in an antigen-independent manner. HDAC6 was necessary for
tumorigenic and metastatic potential enhanced by PSA. PSA enhanced the metastatic
potential of mouse melanoma B16F1 cells in an IL-27-dependent manner. Experiments
employing culture medium and mouse recombinant IL-27 protein showed that IL-27
org June 2021 | Volume 12 | Article 6804411
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mediated and promoted cellular interactions involving B16F1 cells, lung macrophages,
and mast cells during allergic inflammation. IL-27 was present in exosomes of antigen-
stimulated RBL2H3 cells. Exosomes from antigen-stimulated RBL2H3 cells enhanced
invasion of B16F1 melanoma cells in an IL-27-dependemt manner. These results present
evidence that EGR3-HDAC6-IL-27 axis can regulate allergic inflammation by mediating
cellular interactions.
Keywords: allergic inflammation, cellular interactions, EGR3, HDAC6, IL-27, MiR-182-5p
INTRODUCTION

FcϵRI signaling contributes to the pathogenesis of systemic
anaphylaxis, passive cutaneous anaphylaxis (PCA), passive
systemic anaphylaxis (PSA) (1–3), and atopic dermatitis (4).
Systemic anaphylaxis is accompanied by hypotension, decreased
body temperature, and increased b-hexosaminidase activity (5).
Cellular interactions involving mast cells, macrophages, and
many other immune cells contribute to the pathogenesis
of anaphylaxis (6). Exosomes mediate these cellular
interactions (7).

Early growth response gene 3 (Egr3) is necessary for the
upregulation of both IL-6 and IL-8 (8). Both IL-6 and IL-8 serve
as direct targets of Egr3 (8). Both IL-6 and IL-8 play important
roles in airway smooth muscle cell inflammation (9). Thus, Egr 3
may allergic inflammation such as anaphylaxis.

Epigenetic modifications contribute to the pathogenesis
of allergic diseases. FcϵRI-HDAC3-MCP1 axis mediates
allergic inflammations both in vitro and in vivo (7). DNA
methyltransferase I (DNMT1) can suppress allergic skin
inflammation (10). A low level of DNMT1 contributes to the
pathogenesis of asthma (11). Histone deacetylases (HDACs) play
critical roles in house dust mite (HDM)-induced allergic airway
inflammations (12). T cell-specific loss of HDAC1 increases
inflammatory response in a mouse model of asthma (13).
Decreased expression of HDAC2 is responsible for allergic
airway inflammation (14) and PCA (15). HDAC3 can bind to
FcϵRI and mediate PCA and PSA (15, 16). Tubastatin A can
suppress airway inflammation by inhibiting histone deacetylase 6
(HDAC6), thereby decreasing levels of Th2 cytokines (17).

Activation of TLR4-NF-kB contributes to the pathogenesis of
allergic contact dermatitis (18). TLR2/TLR4/MyD88-signaling
pathway mediates allergic asthma (19). HDAC6 is necessary for
the activation of TLR4-MAPK/NF-kB signaling in LPS-induced
inflammation (20). These reports imply that TLR-HDAC6-
MAPK- NF-kB signaling might regulate allergic inflammation
such as anaphylaxis.
ived mast cells; CCL1, CC chemokine
SA, 2,4-dinitrophenyl human serum
ERK, extracellular regulated kinase;

leukin-27; iNOS, inducible nitric oxide
eloid differentiation primary response
; PSA, passive systemic anaphylaxis;
A, small interfering RNA; SOCS1,
; TLR, toll-l ike receptor; UTR,

org 2
IL-27 enhances proinflammatory responses by increasing
TLR4 expression in a NF-kB-dependent manner (21). IL-27
mediates the increase of IL-1 beta by LPS in human
monocytes (22).

MicroRNAs (miRNAs) are non-coding small RNAs that
contribute to the pathogenesis of allergic diseases. MiR-20a-5p
targets HDAC4 and suppresses allergic inflammation in human
mast cells (HMC-1) (23). MiR-34a can mediate allergic asthma
by increasing forkhead box P3 (FOXP3) expression (24). MiR-
142-3p affects the balance between proliferation and
differentiation of airway smooth muscle cells in asthma by
regulating WNT signaling (25). MiR-133b can inhibit allergic
rhinitis by targeting NOD-like receptor pyrin domain-
containing protein 3 (Nlrp3) inflammasome-meditated
inflammation (26). MiR-155 can mediate allergic airway
inflammation by regulating IL-33 signaling (27). These reports
suggest that miRNAs play important roles in anaphylaxis.

Global-level identification of antigen-regulated genes is
critical for understanding the mechanism that contributes to
the pathogenesis of anaphylaxis. In the present study, RNA
sequencing analysis revealed that Egr3 was one of the most
highly upregulated genes in rat basophilic leukemia cells
(RBL2H3) stimulated with antigen. We found that EGR3
regulated the expression of HDAC6 which was necessary for
increased expression of IL-27 during allergic inflammation. MiR-
182-5p targeted Egr3 and negatively regulated anaphylaxis.
Cellular interactions contributed to the tumorigenic and
metastatic potential of cancer cells enhanced by PSA. IL-27
was present in exosomes and mediated cellular interactions
during allergic inflammation. Our results presented novel roles
of EGR3-HDAC6-IL-27 axis in allergic inflammation.
MATERIALS AND METHODS

Materials
We purchased oligonucleotides from Bioneer Company
(Daejeon Korea) . We purchased DNP-HSA (2, 4-
dinitrophenyl-human serum albumin) and DNP-specific IgE
antibody from Sigma. Anti-mouse and anti-rabbit IgG-
horseradish peroxidase-conjugated antibody were purchased
from Pierce. We purchased other antibodies from Cell
Signaling Co. (Beverly, MA). We purchased in vitro
transfection agents (Lipofectamine and PlusTM reagent) from
Invitrogen. We purchased mouse recombinant IL-27 protein
from R&D systems.
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Cell Culture
We purchased rat basophilic leukemia (RBL2H3) cells and
mouse melanoma B16F1 cells from the Korea Cell Line Bank.
We isolated lung mast cells, lung macrophages, and bone
marrow-derived mast cells, according to the standard
procedures (7).

Mice
We purchased female BALB/C mice Nara Biotech (Seoul, Korea).
All animal experiments were approved by the Institutional
Animal Care and Use Committee (IACUC) of Kangwon
National University.

RNA Sequencing and Analysis
TRIzol® RNA Isolation Reagents (Life technologies) were
employed for extraction of total RNA. Total RNA was then
processed for preparing mRNA sequencing library using the
Illumina TruSeq Stranded mRNA Sample Preparation kit
(Illumina). All libraries were quantified by qPCR (CFX96,
Biorad) and sequenced on the NextSeq500 sequencers
(Illumina) with a paired-end 75bp plus single 8bp index read
run. To quantify the mapped reads on the reference genome into
the gene expression values, Cufflinks (28) with the strand-specific
library option and other default options was used. The
differentially expressed genes were analyzed by Cuffdiff
software (29) with the strand-specific library option. To
compare the expression profiles among the samples, the
normalized expression values of the selected a few hundred of
the differentially expressed genes were unsupervised clustered by
in-house R scripts.

Data Availability
The RNAseq data sets analyzed for this study can be found at the
NCBI’s Sequence Read Archive (https://www.ncbi.nlm.nih.gov/
sra) (PRJNA606652).

Quantitative Real Time PCR
Total miRNA isolated by miRNeasy Mini Kit (QIAGEN) was
extended and synthesized from miRNA to cDNA according to
the standard procedures (Sigma-Aldrich). Determination of
miR-182-5p expression level was based on the threshold (Ct),
and relative expression level was determined as 2−(CtofmiR−182−5p)

−(CtofU6) after normalization with reference to expression of U6
small nuclear RNA. For quantitative real-time PCR, SYBR PCR
Master Mix (Applied Biosystems) was used in a CFX96 Real
Time System thermocycler (Bio-Rad). The primer sequences for
qRT-PCR are provided in Supplementary Tables.

Constructs
Gene segment encompassing 3′-UTR of rat Egr3 (758 bp) was
PCR-amplified and cloned into the pGL3 luciferase plasmid.
QuikChange site-directed mutagenesis kit (Stratagene) was used
to make mutant pGL3–3′-UTR-Egr3 construct. Gene segment
encompassing full-length rat HDAC6 promoter (736 bp) or rat
Egr3 promoter (943 bp) was PCR-amplified and cloned into the
pGL2 basic luciferase plasmid. Promoter deletion constructs
were also made by PCR amplification and cloning into the
Frontiers in Immunology | www.frontiersin.org 3
pGL2 basic luciferase plasmid. Luciferase activity was
determined as described (7).

Transfections
The negative control siRNA was purchased from Bioneer
Company (cat.SN-1002). For in vivo transfections, in vivo-
jetPEI® (Polyplus, cat.201-10G) was used. The sequences of
miR-mimic and siRNAs are listed in Supplementary Tables.

Cytokine Array
Cytokine array analysis (Proteom ProfilerTM Mouse Cytokine
Array Kit) was performed as described (R&D system).

MiRNA Target Analysis
TargetScan program identified targets of miR-182-5p.

Chromatin Immunoprecipitation Assay
The RBL2H3 cells were cross-linked and ChIP DNA was
isolated. EGR3-specific antibody, NF-kB p65-specific antibody
and IgG control were used for ChIP assay. PCR was done with
spec ific pr imer s o f the HDAC6 promote r -1 (5 ′ -
TGGGCGGGCAAATGAAAAAG-3 ′ (sense) and 5 ′ -
GCCTACCGT TTAACCAGGCT-3′(antisense)), HDAC6
promoter-2(5′- GGATTC TGATCGAAAGGGGCA-3′ (sense)
and 5′-TCCACTTCCCACATCCTTTCAT-3′ (antisense)), and
HDAC6 promoter-3 (5′-GGGT AGGGCAGGCCTAAGAA-3′
(sense) and 5′- CTAGATCGCA GCCTTCACCG-3′ (antisense))
sequences were used to determine the binding of EGR3. Egr3
promoter-1 (5′- GGGTTGA AGCGGTCATCTCC -3′ (sense)
and 5′- ACCGCTCGCCGTTCTTTATG -3′ (antisense)), Egr3
promoter-2 (5′- CATAAAG AACGGCGAGCGGT -3′ (sense)
and 5′- ACCTCCTCTGCTGCTGCT -3′ (antisense)), and Egr3
promoter-3 (5′- GCGCGTGTCTGTGAGATCA -3′ (sense) and
5′- CTTCCAGGCTAGCGGCAT -3′ (antisense)) were used to
determine the binding of NF-kB p65.

b-hexosaminidase Activity Assays
The b-hexosaminidase activity was performed according to the
standard procedures (7). The detailed procedures are in
Supplementary Methods.

Immunoblot and Immunoprecipitation
Immunoblot and immunoprecipitation were performed
according to the standard procedures with some modifications.
The detailed procedures are in Supplementary Methods. The
lists of antibodies are in Supplementary Table.

Immunofluorescence Staining
Cells were subjected to fixing (4% paraformaldehyde (v/v) and
then permeabilization (0.4% Triton X-100) and incubated with
anti-IL-27 receptor (BIO-RAD), anti-NF-kB p65 (Cell signaling)
or anti-HDAC6 antibody (ABclonal) for 2 h. For detection of IL-
27 receptor and NF- kB, anti-rabbit Alexa Fluor 488 secondary
antibody (Molecular probes) was added to cells and incubated
for 1 h. For detection of HDAC6, anti-goat Alexa Fluor 546
(Molecular probes) was employed. For fluorescence imaging,
confocal laser scanning microscope and software (Fluoview
June 2021 | Volume 12 | Article 680441
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version 2.0) with a X 60 objective (Olympus FV300, Tokyo,
Japan) were employed. The lists of antibodies are described in
Supplementary Table.

Immunohistochemical Staining
Sections of the paraffin-embedded tissue blocks (4–6 mm-thick)
were mounted on positively charged glass slides, and dried in an
oven at 56°C for 30 min. The sections were deparaffinized and
then rehydrated, and hydrogen peroxide was added to suppress
endogenous peroxidase. After treatment with bovine serum
albumin (BSA) to block nonspecific binding, the sections were
then incubated with primary antibody overnight at 4°C. After
washing, biotinylated secondary antibody was added for 1 h.
Diaminobenzidine (Vector Laboratories, Inc.) was employed for
color development. Mayer’s hematoxylin was used for
counterstaining of sections. The lists of antibodies are
described in Supplementary Table.

Passive Cutaneous Anaphylaxis
The induction of passive cutaneous anaphylaxis (PCA) in BALB/C
mice was performed as described (7). To determine the effect of
miR-182-5p on the PCA, BALB/C mice were giving an
intradermal injection with DNP-IgE (0.5 mg/kg) and also
intravenously injected with control mimic (3 mg/kg) or miR-
182-5p mimic (3 mg/kg). The next day, BALB/C mice were
intravenously injected with PBS or DNP-HSA (250 mg/kg) along
with 2% (v/v) Evans blue solution. To determine the effect of Egr3
on the PCA, BALB/C mice were given an intradermal injection of
DNP-IgE (0.5 mg/kg) and intravenously injected with negative
control siRNA (3 mg/kg) or Egr3 siRNA (3 mg/kg). The next day,
BALB/C mice were intravenously injected with PBS or DNP-HSA
(250 mg/kg) along with 2% (v/v) Evans blue solution.

Passive Systemic Anaphylaxis
The induction of passive systemic anaphylaxis (PSA) in BALB/C
mice was performed as described (7). To examine the effect of
HDAC6 on PSA, BALB/C mice were intravenously injected with
DNP-specific IgE (0.5 mg/kg) along with control siRNA (3 mg/kg)
or HDAC6 siRNA (3 mg/kg). Twenty-four hours later, mice were
intravenously injected with DNP-HSA (250 mg/kg).

Effect of Passive Systemic Anaphylaxis on
Tumorigenic and Metastatic Potential
PSA was induced as described. To determine the effect of
HDAC6 on tumorigenic potential and metastatic potential
enhanced by PSA, BALB/C mice were intravenously injected
with control siRNA (3 mg/kg) or HDAC6 siRNA (3 mg/kg) on the
indicated days as described in Figure 7. To determine the effect
of IL-27 on metastatic potential enhanced by PSA, BALB/C mice
were intravenously injected with isotype-matched IgG (20 mg/kg)
or nIL-27 antibody (20 mg/kg) on the indicated days as described
in Figure 8.

Isolation of Exosomes
Exosomes were purified using Total Exosome Isolation Reagent
(ThermoFisher, USA) and observed under a Tecnai T10
transmission electron microscope (FEI, USA).
Frontiers in Immunology | www.frontiersin.org 4
Shuttling of Exosomes Between Cells
PKH67 Fluorescent Cell Linker kits (Sigma-Aldrich, St. Louis,
MO) were employed for labeling of exosomes. To examine the
uptake of exosomes, PKH67-labeled or PKH67-unlabeled
exosomes were added into unstimulated RBL2H3 cells on
coverslip (2 × 104 cells) for 24 h, followed by washing and
fixing with paraformaldehyde solution (4% v/v) for 15 min. The
uptake of exosomes was visualized under a confocal laser
scanning microscope LX70 FV300 05-LPG-193 (Olympus).

The Presence of IL-27 in the Exosomes
The presence of IL-27 in the exosomes was determined according
to the standard procedures (7). Collected extracellular vesicles
were treated with fixing solution (7) for 1 h at 4°C and then
osmium tetroxide 2%) for 30 min at 4°C. They were dehydrated
with a graded series of ethanol followed by treatment with graded
propylene oxide series, and embedded into epoxy resin (PELCO,
USA). Ultrathin sections (~80 nm) obtained with Ultracut UCT
(Leica, Germany) were mounted on copper grids and stained
with 1% uranyl acetate and lead citrate (10 min). For immune-
gold labeling electron microscopy, ultrathin sections on the grids
were treated with 0.02 M glycine for 10 min. Sections were
washed for 1 h in PBS, and incubation with the primary rabbit or
mouse antibody (Anti-IL-27 p28 or/and Anti-TSG101 antibody
at 1:20 dilution) for overnight at 4°C was followed. The grids
were washed with 0.1% BSA in PBS, incubation with anti-
Rabbit IgG conjugated to 10 nm or anti-mouse IgG conjugated
to 25 nm (AURION, Holland) was followed. The grids were
examined using a Tecnai T10 transmission electron microscope
(FEI, USA) and JEOL-2100F transmission electron microscope
(JEOL, USA).

Monitoring of Rectal Temperature
Rectal temperatures associated with passive systemic anaphylaxis
were monitored by using a digital thermometer.

Statistical Analysis
Data were analyzed and graphed using GraphPad Prism statistics
program (GraphPad Prism software). Results are presented as
means ± S.E. Student’s t tests were performed for comparisons
between two groups. One-way ANOVA was carried out for
comparisons among three or more groups and was followed by
Tukey’s post hoc test. Values were considered significant at
p value less than 0.05.
RESULTS

Antigen Stimulation Increased EGR3
Which Mediates Allergic Inflammation
In Vitro
We wanted to investigate the mechanism of allergic
inflammation. To identify genes that could regulate allergic
inflammation, RNA sequencing analysis was performed using
rat basophilic leukemia (RBL2H3) cells (Figure 1A). RNA
sequencing revealed that early growth response 3 (Egr3) was
June 2021 | Volume 12 | Article 680441
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one of the most highly upregulated genes in RBL2H3 cells
stimulated with antigen. Antigen stimulation increased the
expression of EGR3 in RBL2H3 cells in a time-dependent
manner (Figure 1A). RNA interference decreased the
expression of Egr3 which inhibited expression levels of
HDAC6, TLR2, and TLR4 in RBL2H3 cells and lung mast cells
increased by antigen stimulation (Figure 1B). TLR2 (30) and
TLR4 (31) mediate allergic airway inflammation and atopic
dermatitis, respectively. Decreased expression of Egr3 by RNA
interference inhibited interaction between FcϵRI and Lyn in
RBL2H3 cells and lung mast cells induced by antigen
stimulation (Figure 1B). Decreased expression of Egr3 by RNA
interference inhibited the increase of b-hexosaminidase activity
in RBL2H3 cells induced by antigen stimulation (Figure 1C).
EGR3 and HDAC6 serve as targets of estrogen receptor a (32).
HDAC6 promoter sequences contain potential binding site for
Egr3 (Figure 1D). EGR3 was shown to be able to bind to
promoter sequences of HDAC6 in antigen-stimulated RBL2H3
cells (Figure 1D). Antigen stimulation increased luciferase
activity associated with full-length HDAC6 promoter (pGL2-
HDAC6) in RBL2H3 cells (Figure S1). Deletion of site 1 (pGL2-
Frontiers in Immunology | www.frontiersin.org 5
Del628) or sites 1 and 2 (pGL2-Del336) of HDAC6 promoter
sequences did not prevent antigen from increasing luciferase
activity associated with HDAC6 promoter in RBL2H3 cells
(Figure S1). However, deletions of both site 2 and site 3
(pGL2-Del849) of HDAC6 promoter sequences prevented
antigen from increasing luciferase activity associated with
HDAC6 promoter in RBL2H3 cells (Figure S1). These results
indicate that EGR3 binds to site 2 (P2) and site 3 (P3) of HDAC6
promoter sequences to increase HDAC6 expression in response
to antigen. Therefore, Egr3 might mediate allergic inflammation
in vitro by increasing HDAC6 expression.

NF-kB p65 Directly Regulates the
Expression of Egr3 and Mediates Allergic
Inflammation In Vitro
Since antigen increased EGR3 expression in RBL2H3 cells and
lung mast cells, we investigated the mechanism of expression
regulation of Egr3. Antigen increased Egr3 expression in
RBL2H3 cells at the transcriptional level in a time-dependent
manner (Figure 2A). This suggests that transcriptional factors
might regulate EGR3 expression. Egr3 promoter sequences
A B C

D

FIGURE 1 | Antigen stimulation increases EGR3 that mediates allergic inflammation in vitro and EGR3 binds to the promoter sequences of HDAC6. (A) The DNP-
specific IgE-sensitized RBL2H3 cells were treated without or with DNP-HSA (100 ng/ml) for 1 h. Total RNAs were subjected to RNA sequencing analysis (upper
panel). RNA sequencing analysis represents replicates within one experiment. Cell lysates prepared at each time point were subjected to immunoblot (lower).
Representative blots of three independent experiments are shown. (B) The indicated siRNA (each at 10 nM) was transfected into RBL2H3 cells (left) or lung mast
cells (right). At 24 hours after transfection, cells were sensitized with IgE for 24 h, followed by stimulation with DNP-HSA for 1 h. Ctrl. denotes negative control siRNA.
The IgE-sensitized lung mast cells were stimulated with DNP-HSA for 1 h (upper, right). Immunoblot and immunoprecipitation were performed. Immunoprecipitation
using isotype-matched IgG antibody (2 mg/ml) was also performed. Representative blots of three independent experiments are shown. (C) The b-hexosaminidase
activity assays were performed in RBL2H3 cells. ***p<0.001. Average values of three independent experiments are shown. (D) ChIP assays were performed in
RBL2H3 cells treated without or with DNP-HSA (100 ng/ml) for 1 h. P1, P2, and P3 denote primer-binding sites. Anti-actin antibody served as a control antibody.
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showed the presence of potential binding sites for YY1, NF-kB,
and SP1 (Figure 2B). We hypothesized that these transcription
factor(s) might increase Egr3 expression. NF-kB p65 was shown
to be able to bind to promoter sequences of Egr3 in antigen-
stimulated RBL2H3 cells (Figure 2B). Antigen increased
expression levels of pERKT204, NF-kB p65, pJNKT183/Y185,
pp38MAPKT180/Y182, and EGR3 in bone marrow-derived mast
cells (BMMCs) in a time-dependent manner (Figure 2C).
Decreased expression of Egr3 by RNA interference decreases of
expression levels of pERKT204 and NF-kB p65 in RBL2H3 cells
induced by antigen stimulation (Figure 2D). This suggests that
Egr3 and NF-kB p65 might form a positive feedback loop to
regulate allergic inflammation. Egr3 might regulate expressions
of NF-kB p65 regulators. It is necessary to identify EGR3-
regulated genes to understand the mechanism of increase of
NF-kB p65 by allergic inflammation. BAY-11-7082, an NF-kB
p65 inhibitor, suppressed the interaction between FcϵRI and Lyn
in RBL2H3 cells (Figure 2D, right). BAY-11-7082 exerted
negative effects on increases of expression levels of NF-kB p65,
pIkBaS32, EGR3, COX2, HDAC3, TLR2, and TLR4 induced by
antigen in RBL2H3 cells (Figure 2E). BAY-11-7082 inhibited
Frontiers in Immunology | www.frontiersin.org 6
decrease of IkBa expression induced by antigen stimulation
(Figure 2E). BAY-11-7082 also prevented the antigen from
increasing expression levels of NF-kB p65, EGR3, and
pIkBaS32 in bone marrow-derived mast cells (BMMCs)
(Figure 2E). BAY-11-7082 inhibited the increase of b-
hexosaminidase activity in RBL2H3 cells induced by antigen
stimulation (Figure 2F). Immunofluorescence staining also showed
an increased expression of NF-kB p65 expression in RBL2H3 cells
induced by antigen (Figure 2G). Antigen stimulation increased
luciferase activity associated with full-length EGR3 promoter
(pGL2-Egr3) in RBL2H3 cells (Figure S2). Deletion of site 1
(pGL2-Del677) did not prevent antigen from increasing luciferase
activity associated with EGR3 promoter in RBL2H3 cells
(Figure S2). However, deletions of both site 1 and site 2 of EGR3
promoter (pGL2-Del326) prevented antigen from increasing
luciferase activity associated with EGR3 promoter in RBL2H3
cells (Figure S2). These results suggest that NF-kB p65 binds to
site 1 (P1) and site 2 (P2) of EGR3 promoter sequences to increase
EGR3 expression in response to antigen in RBL2H3 cells. Thus,
NF-kB p65 can mediate allergic inflammation by directly increasing
EGR3 expression.
A C D

E G

F

B

FIGURE 2 | NF-kB directly regulates EGR3 expression and mediates allergic inflammation in vitro. (A) Cell lysates prepared at each time point were subjected to
qRT-PCR. *p<0.05. Average values of three independent experiments are shown. (B) Shows promoter sequences of Egr3 with potential binding sites for the
indicated transcriptional factors. ChIP assays were then performed in RBL2H3 cells treated without or with DNP-HSA for 1h. P1, P2, and P3 denote primer-binding
sites. Anti-actin antibody served as a control antibody. (C) The IgE-sensitized RBL2H3 cells (upper) or BMMCs (lower) were treated with DNP-HSA for various time
intervals. Representative blots of three independent experiments are shown. (D) RBL2H3 cells were transfected with the indicated siRNA (each at 10 nM). The next
day, cells were then sensitized with IgE for 24 h, and then stimulated by DNP-HSA for 1 h. Representative blots of three independent experiments are shown.
(E) The IgE-sensitized RBL2H3 cells (left) or BMMCs (right) were treated without or with BAY-11-7082 (10 mM) for 1 h. Cells were then stimulated without or with
DNP-HSA for 1h, followed by immunoblot and immunoprecipitation (right upper). Representative blots of three independent experiments are shown.
(F) The b-hexosaminidase activity assays were performed in RBL2H3 cells. ***p<0.001. Average values of three independent experiments are shown.
(G) Immunofluorescence staining was performed in RBL2H3 cells.
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Egr3 Mediates PCA and PSA
Since Eg3 expression was increased during allergic inflammation
in vitro, we examined the role of Egr3 in allergic inflammation in
vivo. Egr3 was necessary for the decrease of rectal temperature by
passive systemic anaphylaxis (PSA) in BALB/C mice
(Figure 3A). The decrease of Egr3 expression by RNA
interference inhibited the increase of b-hexosaminidase activity
in BALB/C mice induced by PSA (Figure 3B). PSA increased
Egr3 expression at the transcriptional level in BALB/C mice
(Figure 3B). Immunohistochemical staining employing lung
tissues showed that PSA increased EGR3 expression
(Figure 3C). The decreased expression of Egr3 by RNA
interference inhibited increases of the expression levels of
HDAC6, COX2, and SOCS1 in lung tissue lysates induced by
Frontiers in Immunology | www.frontiersin.org 7
PSA based on immunoblot (Figure 3D). The decreased
expression of Egr3 by RNA interference also inhibited
interactions of FcϵRI with Lyn and SOCS1 in lung tissue
lysates induced by PSA based on immunoprecipitation
(Figure 3D). Egr3 mediated passive cutaneous anaphylaxis
(PCA) in BALB/C mice (Figure 3E). Immunoblot of ear tissue
lysates showed that the decreased expression of Egr3 by RNA
interference inhibited increases of expression levels of HDAC3,
TLR2, TLR4, COX2, and SOCS1 induced by PCA (Figure 3F).
Immunoprecipitation of ear tissue lysates showed that decreased
expression of Egr3 by RNA interference inhibited interactions of
FcϵRI with Lyn and HDAC3 induced by PCA (Figure 3F). Thus,
Egr3 can mediate anaphylaxis. Further studies are needed to
investigate the mechanism of Egr3-mediated anaphylaxis.
A D
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FIGURE 3 | Egr3 is necessary for anaphylaxis. (A) BALB/C mice were intravenously injected with the indicated siRNA (each at 3 mg/kg). The next day, BALB/C mice
were given an intravenous injection of IgE (0.5 mg/kg). The following day, BALB/C mice were intravenously injected with DNP-HSA (250 mg/kg), and rectal
temperatures were measured. Each experimental group comprised five mice. The means ± S.E. of three independent experiments were shown. **p<0.01, compared
with IgE/Ctrl./DNP-HSA. (B) Lung tissue lysates were subjected to b-hexosaminidase activity assays and qRT-PCR. *, p<0.05; **p<0.01; ***p<0.001. The data are
expressed as mean ± SE of results from four mice of each experimental group. (C) Immunohistochemical staining employing lung tissues was performed.
Representative images of the staining are shown (n=3). Quantification was performed by calculating the percentage of the staining intensities using Image J (NIH).
***p<0.001. (D) Immunoblot and immunoprecipitation employing lung tissue lysates were performed (n=4). Representative blots of three independent experiments
are shown. (E) BALB/C mice were given an intradermal injection of IgE (0.5 mg/kg) and an intravenous injection of the indicated siRNA (each at 3 mg/kg). The next
day, BALB/C mice were intravenously injected with PBS or DNP-HSA (250 mg/kg) along with 2% (v/v) Evans blue solution. Each experimental group comprised four
BALB/C mice. **p<0.01; ***p<0.001. (F) Immunoblot and immunoprecipitation employing ear tissue lysates were performed (n=4). Representative blots of three
independent experiments are shown.
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HDAC6 Mediates Passive
Systemic Anaphylaxis
EGR3 could bind to promoter sequences of HDAC6
(Figure 1D). Anaphylaxis increased the expression of HDAC6
in an Egr3-dependent manner (Figure 3D). We therefore
examined the effect of HDAC6 on anaphylaxis. Decreased
expression of HDAC6 by RNA interference inhibited decrease
of rectal temperature (Figure 4A) and increase of b-
hexosaminidase activity in BALB/C mice induced by PSA
(Figure 4B). Decreased expression of HDAC6 by RNA
interference inhibited the effect of PSA on increases of
expression levels of EGR3, TLR2, TLR4, COX2, and HDAC3
(Figure 4C) and interactions of FcϵRI with Lyn and HDAC3
in BALB/C mice induced by PSA (Figure 4C). Immuno
histochemical staining employing lung tissues of BALB/C mice
showed that HDAC6 was necessary for the increased EGR3
expression by PSA (Figure 4D). Thus, HDAC6 can mediate
anaphylaxis by regulating FcϵRI signaling.

MiR-182-5p Targets Egr3 and Negatively
Regulates Allergic Inflammation In Vitro
Since miRNAs play important roles in anaphylaxis (2, 7), we
hypothesized that miRNAs that regulate Egr3 could play critical
Frontiers in Immunology | www.frontiersin.org 8
roles in anaphylaxis. TargetScan analysis predicted that miR-
182-5p was a negative regulator of Egr3. MiR-182-5p was shown
to be a direct regulator of Egr3 based on luciferase activity assays
in RBL2H3 cells (Figure S3A). Antigen stimulation decreased
miR-182-5p expression in RBL2H3 cells (Figure S3B). MiR-182-
5p mimic inhibited increases of b-hexosaminidase activity
(Figure S3C) and the expression levels of EGR3, HDAC6,
TLR2, TLR4, and COX2 in RBL2H3 cells (Figure S3D)
induced by antigen. MiR-182-5p mimic inhibited interactions
of FcϵRI with Lyn and HDAC3 in RBL2H3 cells (Figure S3D)
induced by antigen stimulation. However, Egr3 did not affect the
expression of miR-182-5p (data not shown). Thus, miR-182-5p
functions upstream of Egr3 and negatively regulates allergic
inflammation in vitro.

MiR-182-5p Negatively
Regulates Anaphylaxis
Since miR-182-5p inhibited allergic inflammation in vitro, we
next examined whether miR-182-5p could affect anaphylaxis.
MiR-182-5p mimic exerted a negative effect on PCA in BALB/C
mice (Figure S4A). MiR-182-5p mimic inhibited increase
of b-hexosaminidase activity in BALB/C mice induced by
PCA (Figure S4B). PCA decreased miR-182-5p expression
A C D

B

FIGURE 4 | HDAC6 mediates passive systemic anaphylaxis. (A) BALB/C mice were intravenously injected with the indicated siRNA (each at 3 mg/kg). Each
experimental group comprised five mice. The means ± S.E. of three independent experiments are depicted. **p<0.01, compared with IgE/Ctrl./DNP-HSA;
***p<0.001, compared with IgE/Ctrl./DNP-HSA. (B) The b-hexosaminidase activity assays were performed. ***p<0.001. The data are expressed as mean ± SE of
results from four mice of each experimental group. Average values of three independent experiments are shown. (C) Immunoblot and immunoprecipitation employing
lung tissue lysates were performed (n=4). Representative blots of three independent experiments are shown. (D) Immunohistochemical staining employing lung tissue
was performed. Representative images of the staining are shown (n=3). Quantification was performed using Image J (NIH). **p<0.01; ***p<0.001.
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(Figure S4B) but increased Egr3 expression at the transcriptional
level in BALB/C mice (Figure S4B). MiR-182-5p mimic
inhibited increases of EGR3, HDAC6, TLR2, TLR4, and COX2
expression levels (Figure S4C) and interactions of FcϵRI
with HDAC3 and Lyn in BALB/C mice induced by PCA
(Figure S4C). MiR-182-5p mimic inhibited decrease of rectal
temperature (Figure S5A) and increase of b-hexosaminidase
activity in BALB/C mice induced by PSA (Figure S3B). PSA
decreased the expression of miR-182-5p in BALB/C mice
(Figure S5B). MiR-182-5p mimic inhibited increases of
EGR3, HDAC6, and HDAC3 expression levels in BALB/C
mice induced by PSA (Figure S5C). Immunohistochemical
staining employing lung tissues showed that miR-182-5p
mimic inhibited increase of EGR3 expression in BALB/C mice
induced by PSA (Figure S5D). These results indicate that miR-
182-5p can inhibit anaphylaxis by regulating expression levels
of EGR3 and HDAC6.
Frontiers in Immunology | www.frontiersin.org 9
IL-27 Increased by Antigen Stimulation in
an HDAC6-Dependent Manner Mediates
Allergic Inflammation In Vitro

Since HDAC6 mediated anaphylaxis, it was necessary to identify
downstream targets of HDAC6. Cytokine array analysis was
performed to identify HDAC6-regualted cytokines. HDAC6 was
necessary for the increase of IL-27 expression in BALB/C mouse
model of PSA. (Figure 5A). The decrease of HDAC6 expression
by RNA interference inhibited increases of EGR3, IL-27 p28,
pERKT204, and NF-kB p65 expression levels in RBL2H3 cells
induced by antigen stimulation (Figure 5B). Antigen stimulation
did not affect expression level of EBI3, another subunit of IL-27
(Figure 5B). HDAC6 mediated the effect of antigen on the
increase of IL-27 p28 expression at the transcriptional level in
RBL2H3 cells (Figure 5C). The decrease of Egr3 expression by
RNA interference inhibited increase of IL-27 p28 expression in
A B
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FIGURE 5 | IL-27, increased in an HDAC6-dependent manner, mediates allergic inflammation in vitro. (A) BALB/C mice were intravenously injected with indicated
siRNA (each at 3 mg/kg). The next day, BALB/C mice were intravenously injected with IgE. The following day, BALB/C mice were given an intravenous injection with
DNP-HSA for 1 h. Serum from PSA-activated BALB/C mouse was subjected to cytokine array analysis (n=3). Representative image is shown. (B) RBL2H3 cells
transfected with the indicated siRNA were sensitized with IgE for 24 h, and then stimulated by DNP-HSA for 1 h. Representative blots of three independent
experiments are shown. (C) QRT-PCR was performed. **p<0.01; ***p<0.001. Average values of three independent experiments are shown. (D) Same as (B) except
that cells were transfected with Egr3 siRNA. (E) Cell lysates from antigen-stimulated RBL2H3 cells were subjected to immunoprecipitation. Representative blots of three
independent experiments are shown. (F) Immunofluorescence staining was performed. (G) The IgE-sensitized RBL2H3 cells were preincubated with the indicated
antibody (each at 10 mg/ml) for 2 h, and then stimulated by DNP-HSA for 2 h. nIL-27 denotes neutralizing IL-27 antibody. Representative blots of three independent
experiments are shown. (H) The b-hexosaminidase activity assays were performed. **p<0.01. Average values of three independent experiments are shown.
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RBL2H3 cells induced by antigen stimulation (Figure 5D).
However, the decrease of Egr3 did not affect EBI3 expression
regardless of antigen stimulation (Figure 5D). Antigen increased
the interaction between IL-27 receptor alpha (WSX-1) and
HDAC6 in RBL2H3 cells (Figure 5E). IL-27RA showed a co-
localization with HDAC6 in antigen-stimulated RBL2H3 cells
(Figure 5F). Blocking of IL-27 p28 by a neutralizing antibody
(nIL-27 Ab) inhibited increases of IL-27 p28, HDAC3, HDAC6,
TLR2, and TLR4 expression levels in RBL2H3 cells induced by
antigen stimulation (Figure 5G). However, blocking of IL-27 p28
did not affect EBI3 expression level in RBL2H3 cells regardless of
antigen stimulation (Figure 5G). IL-27 was necessary for
antigen-induced interaction between FcϵRI and Lyn in
RBL2H3 cells (Figure 5G). Blocking of IL-27 inhibited increase
of b-hexosaminidase activity in RBL2H3 cells induced by antigen
stimulation (Figure 5H). These results indicate a role of IL-27 in
allergic inflammation. These results also suggest that IL-27 might
induce features of allergic inflammation in an antigen-
independent manner. The mouse recombinant IL-27 protein
increased b-hexosaminidase activity (Figure S6A) and
pERKT204, NFkBp65, EGR3 and HDAC6 expression levels in
RBL2H3 cells in an antigen-independent manner (Figure S6B).
Mouse recombinant IL-27 protein did not affect EBI3 expression
level (Figure S6B). Mouse recombinant IL-27 protein induced
interactions of HDAC6 with MyD88 and IL-27RA in RBL2H3
cells in an antigen-independent manner (Figure S6B). The
decrease of IL-27 expression by RNA interference inhibited
increases of IL-27 p28, HDAC6, EGR3, and pERKT204

expression levels in RBL2H3 cells induced by antigen
stimulation (Figure S6B). The decrease of IL-27 expression did
not affect EBI3 expression level (Figure S6B). The inhibition of
NF-kB p65 by BAY-11-7082 prevented antigen from increasing
expression levels of EGR3, HDAC6, and IL-27 p28 in RBL2H3
cells (Figure S6B). However, inhibition of NF-kB p65 did not
affect EBI3 expression level in RBL2H3 cells (Figure S6B). Thus,
IL-27 p28 and NF-kB p65 may form a positive feedback loop.
The decrease of EBI3 prevented antigen from increasing
expression levels of IL-27p28, HDAC6, and EGR3 in RBL2H3
cells (Figure S6C). Mouse recombinant IL-27 protein increased
vascular permeability and b-hexosaminidase activity in BALB/C
mice in an antigen-independent manner (Figure S6D). Mouse
recombinant IL-27 protein also increased IL-27 p28 mRNA
expression level in an antigen-independent manner (Figure
S6D). Mouse recombinant IL-27 protein increased expression
levels of hallmarks of allergic inflammation (Figure S6E) and
induced interactions of FcϵRI with HDAC3 and Lyn in BALB/C
mice in an antigen-independent manner (Figure S6E). However,
mouse recombinant IL-27 protein did not affect EBI3 expression
level (Figure S6E). These results imply that IL-27 can indeed
mediate allergic inflammation both in vitro and in vivo.

IL-27 Mediates Anaphylaxis
Since IL-27 promoted features of allergic inflammation in an
antigen-independent manner, we examined the role of IL-27 in
anaphylaxis. Blocking of IL-27 p28 by neutralizing antibody
(nIL-27) exerted a negative effect on vascular permeability in
BALB/C mouse model of PCA (Figure 6A). Blocking of IL-27
Frontiers in Immunology | www.frontiersin.org 10
p28 inhibited increase of b-hexosaminidase activity (Figure 6B)
and increases of HDAC6, HDAC3, SOCS1, and COX2
expression levels in BALB/C mice induced by PCA
(Figure 6C). Blocking of IL-27 inhibited interaction between
FcϵRI and Lyn in BALB/C mice induced by PCA (Figure 6C).
PCA increases IL-27 expression at the transcriptional level
(Figure 6C). IL-27 mediated PSA (Figure 6D). Blocking of IL-
27 inhibited increase of b-hexosaminidase activity (Figure 6E)
and IL-27 p28, HDAC6, HDAC3, and SOCS1 expression levels
in BALB/C mice induced by PSA (Figure 6F). Blocking of IL-27
did not affect EBI3 expression in BALB/C mice (Figure 6F).
Blocking of IL-27 inhibited interaction between FcϵRI and Lyn in
BALB/C mice induced by PSA (Figure 6F). PSA increased IL-27
p28 expression at the transcriptional level in BALB/C mice
(Figure 6G). It has been shown that allergic inflammation can
enhance tumorigenic and metastatic potentials of cancer cells
(7). Thus, IL-27 might enhance tumorigenic and metastatic
potentials of cancer cells.

HDAC6 Is Necessary for Tumorigenic and
Metastatic Potential Enhanced by PSA
Since PSA could enhance tumorigenic and metastatic potential
(7), we examined whether HDAC6 was needed for the
tumorigenic and metastatic potentials enhanced by PSA. RNA
interference of HDAC6 showed that HDAC6 was necessary for
tumorigenic (Figure 7A) and metastatic potential (Figure 7C)
enhanced by PSA. RNA interference of HDAC6 also showed that
HDAC6 mediated increases of allergic inflammation hallmarks
and interactions of FcϵRI with HDAC3, Lyn, and SOCS1
induced by PSA (Figures 7B, D). These results imply that IL-
27 might be necessary for cellular interactions important for
tumorigenic and metastatic potentials enhanced by PSA.

IL-27 Is Necessary for Enhanced
Metastatic Potential by PSA
Since HDAC6 was necessary for the metastatic potential
enhanced by PSA, we examined the effect of IL-27 on the
metastatic potential of cancer cells. PSA enhanced metastatic
potential of mouse melanoma B16F1 cells (Figure 8A) and
increased b-hexosaminidase activity (Figure 8B) in an IL-27-
dependent manner. Immunoblot of lung tumor tissue lysates
showed that PSA increased expression levels of HDAC6,
HDAC3, and SOCS1 in an IL-27-dependent manner
(Figure 8C). However, PSA did not affect EBI3 expression
(Figure 8C). Immunohistochemical staining employing lung
tumor tissue showed that the enhanced metastatic potential of
B16F1 cells was accompanied by the increased expression of IL-
27 p28 (Figure 8D). These results led us to hypothesize that IL-
27 might mediate cellular interactions that are necessary for
tumorigenic and metastatic potentials enhanced by PSA.

IL-27 Is Present in Exosomes and
Mediates Cellular Interactions During
Allergic Inflammation
It is known that enhanced tumorigenic and metastatic potential
of cancer cells results from cellular interactions between cancer
cells and immune cells such as mast cells and macrophages (7).
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We first examined whether IL-27 could affect invasion potential
of cancer cells. Mouse recombinant IL-27 protein increased
expression levels of IL-27p28, HDAC6, EGR3 and SNAIL in
B16F1 cells (Figure 9A) and enhanced invasion of B16F1 cells
(Figure 9B). Mouse recombinant IL-27 protein did not affect
EBI3 expression level in B16F1 cells (Figure 9B). Mouse
recombinant IL-27 protein also increased expression levels of
HDAC6 and EGR3 in BMMCs in an antigen-independent
manner (Figure 9C). The culture medium of BMMCs treated
with mouse recombinant IL-27 protein increased expression
levels of EGR3 and SNAIL in B16F1 cells (Figure 9D) and
enhanced the invasion of B16F1 cells (Figure 9E). Culture
medium of BMMCs treated with mouse recombinant IL-27
protein for 2 h was washed and replaced with serum-free
DMEM. At 12 h after, culture medium was then added to
B16F1 cells (Figure 9D). Thus, the effect of culture medium of
Frontiers in Immunology | www.frontiersin.org 11
BMMCs on the increased expression levels of EGR3 and SNAIL
in B16F1 cells may not be a direct effect of recombinant IL-27
protein in the culture medium.The above results suggest that
mouse recombinant IL-27 protein can promote cellular
interaction in an antigen-independent manner. Antigen
increased HDAC6 expression in an IL-27-dependent manner
in lung mast cells (Figure 9F, left). Culture medium of lung mast
cells increased expression levels of HDAC6 and SNAIL, but
decreased the expression level of E-cadherin in an IL-27-
dependent manner in B16F1 cells (Figure 9F, right). Culture
medium of lung mast cells enhanced the invasion of B16F cells in
an IL-27-dependent manner (Figure 9G). Culture medium of
lung mast cells increased CD163 expression, but decreased
inducible nitric oxide synthase (iNOS) expression in lung
macrophages in an IL-27-dependent manner (Figure 9H).
Mouse recombinant IL-27 protein increased CD163
A C D E

F GB

FIGURE 6 | IL-27 mediates both PCA and PSA. (A) BALB/C mice were given an intradermal injection of IgE (0.5 mg/kg) and an intravenous injection of the indicated
antibody (each at 20 µg/kg). The next day, BALB/C mice were intravenously injected with PBS or DNP-HSA (250 mg/kg) along with 2% (v/v) Evans blue solution. Each
experimental group comprised four BALB/C mice. **p<0.01. (B) The b-hexosaminidase activity assays using ear tissue lysates were performed (n=4). *p<0.05;
**p<0.01. Average values of three independent experiments are shown. (C) Immunoblot and immunoprecipitation employing ear tissue lysates were performed (n=4).
Representative blots of three independent experiments are shown. Ear tissue lysates were also subjected to qRT-PCR (lower). *p<0.05. (D) BALB/C mice were given
an intravenous injection of DNP-specific IgE (0.5 µg/kg) along with the indicated antibody (each at 20 µg/kg). The next day, BALB/C mice were given an intravenous
injection with DNP-HSA (250 mg/kg), and the rectal temperatures were measured. Each experimental group comprised four mice. **p<0.01, compared with IgE/IgG/
DNP-HSA. (E) The b-hexosaminidase activity assays employing lung tissue lysates were performed (n=4). **p<0.01. Average values of three independent experiments
are shown. (F) Immunoblot and immunoprecipitation employing lung tissue lysates were performed (n=4). Representative blots of three independent experiments are
shown. (G) QRT-PCR analysis employing lung tissue lysates was performed. **p<0.01. Average values of three independent experiments are shown.
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expression, but decreased iNOS expression in lung macrophages
(Figure 9I). CD163 and iNOS are markers M2 macrophages and
M1 macrophages, respectively. Since culture medium of BMMCs
treated with mouse recombinant IL-27 protein enhanced the
expression levels of EGR3 and SNAIL (Figure 9D) and the
invasion of B16F1 cells (Figure 9E), we first examined whether
macrophages polarization induced by culture medium of mast
cells was a direct effect of the recombinant IL-27 protein in the
culture medium. For this, culture medium of BMMCs treated
with mouse recombinant IL-27 protein for 2 h was removed and
replaced with serum-free DMEM. At 12 h after, culture medium
was added to lung macrophages. Thus obtained culture medium
increased CD163, but decreased iNOS expression in lung
macrophages (Figure S7A). This suggests that effect of culture
medium of BMMCs on macrophages polarization was not a
direct effect of the recombinant IL-27 protein in the culture
medium. The effects of culture medium of B16F1 cells on mast
cell activation andM2macrophages were not a direct effect of the
recombinant IL-27 protein in the culture medium (Figure S7B).
Effects of culture medium of lung macrophages on the increased
expression levels of IL-27p28, HDAC6, and EGR3 in B16F1 cells
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and BMMCs were not a direct effect of the recombinant IL-27
protein in the culture medium (Figure S7C). These results imply
that IL-27 can mediate cellular interactions necessary for
tumorigenic and metastatic potentials enhanced by allergic
inflammation. Further studies are needed to identify
downstream targets of IL-27 for better understanding of
cellular interactions during allergic inflammation. We next
examined whether exosomes could mediate these cellular
interactions. Culture medium of RBL2H3 cells enhanced the
invasion of B16F1 cells in an IL-27-dependent manner
(Figure 10A) and increased allergic inflammation hallmarks
including HDAC6, HDAC3, and SOCS1 in an IL-27-
dependent manner in B16F1 cells (Figure 10B). Culture
medium of RBL2H3 cells increased CD163 expression but
decreased iNOS expression in an IL-27-dependent manner in
lung macrophages (Figures 10C, D). These results imply that
exosomes might mediate these cellular interactions during
allergic inflammation. We also hypothesized that exosomes
contained IL-27. Immunoblot of exosomes from antigen-
stimulated RBL2H3 cells showed the presence of IL-27 p28
and EBI3 (Figure 10E). Exosomes isolated from RBL2H3 cells
A B C D

FIGURE 7 | HDAC6 is necessary for tumorigenic and metastatic potential enhanced by PSA. (A) PSA was induced as described. Each mouse was given an
injection with B16F1 melanoma cells (2 × 105) on day 3 of the time line. After tumor reached a certain size, each BALB/C mouse was intravenously injected with the
indicated siRNA (each at 3 mg/kg) on the indicated days. Each experimental group comprised four BALB/C mice. **p<0.01, compared with IgE/Ctrl./DNP-HSA;
***p<0.001, compared with IgE/Ctrl./PBS (B) Immunoblot and immunoprecipitation employing tumor tissue lysates were performed (n=4). Representative blots of
three independent experiments are shown. (C) Each mouse was injected with B16F1 melanoma cells (2 × 105) on day 3. The number of lung metastatic foci was
determined. Each experimental group comprised four BALB/C mice. ***p<0.001. (D) Immunoblot and immunoprecipitation employing tumor lysates were performed
(n=4). Representative blots of three independent experiments are shown.
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displayed normal sizes based on nanoparticle tracking analysis
(NTA) (Figure 10F). Exosomes were seen in the culture medium
of RBL2H3 cells regardless of antigen stimulation (Figure 10F,
right). Immuno-EM showed the presence of IL-27 p28 within
exosomes of antigen-stimulated RBL2H3 cells (Figure 10G).
Exosomes of antigen-stimulated RBL2H3 cells increased
HDAC6 expression (Figure 10H) and enhanced the invasion
of B16F1 cells (Figure 10I) in an IL-27-dependent manner.
PKH67-labeling of exosomes showed internalization of
exosomes from RBL2H3 cells into B16F1 cells and lung
macrophages (Figures S8A, B). Exosomes of RBL2H3 cells
increased CD163 expression, but decreased iNOS expression in
an IL-27-dependent manner in lung macrophages (Figure S8C).
These results indicate that IL-27-mediated cellular interactions
might be responsible for remodeled tumor microenvironment
induced by allergic inflammation. Exosomes of PSA-activated
mast cells might enhance the invasion of cancer cells and induce
M2 macrophages polarization.
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DISCUSSION

Egr3 was found to be one of the most highly upregulated genes in
antigen-stimulated RBL2H3 cells. Egr3 is an immediate early
zinc finger transcriptional factor activated by mitogenic signals
(33). Egr3 promotes an adaptive immune response by driving
Th17 response (34). We have previously reported the role of
SOCS1 in allergic inflammation both in vitro and in vivo (2).
Egr3 can directly induce the expression of SOCS1 (35). Egr3
might regulate Th17/Treg balance during allergic inflammation.
Further studies are needed to identify Egr3-regualted cytokines
that mediate anaphylaxis.

NF-kB and MAPK signaling pathways can regulate Egr3
expression in breast adipose fibroblasts (36). NF-kB signaling
is critical for mast cell-mediated allergic inflammation (37).
Eupatilin can suppress NF-kB-mediated anaphylactic shock
and the release of histamine by promoting phosphorylation
and degradation of IkBa via the Akt/IKK(a/b) pathway (38).
A C
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FIGURE 8 | IL-27 is necessary for enhanced metastatic potential by PSA. (A) Each mouse was injected with B16F1 melanoma cells (2 × 105) on day 3. The extent
of lung metastasis was determined. **p<0.01. (B) The b-hexosaminidase activity assays employing lung tumor tissue lysates were performed (n=4). **p<0.01;
***p<0.001. Average values of three independent experiments are shown. (C) Immunoblot employing tumor lysates was performed (n=4). Representative blots of
three independent experiments are shown. (D) Lung tumor tissues were subjected to H&E staining and Immunohistochemical staining. Representative images of the
staining are shown (n=3). Quantification was performed using Image J (NIH). ***p<0.001.
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Our results showed that antigen stimulation increased NF-kB
p65 expression in RBL2H3 cells. ChIP assays showed that NF-kB
p65 could bind to the promoter sequences of Egr3. We showed
that inhibition of NF-kB p65 exerted a negative effect on
increases of Egr3 expression in RBL2H3 cells induced by
antigen stimulation. Inhibition of Egr3 decreases NF-kB
activity during myoblast proliferation (39). Decreased
expression of Egr3 by RNA interference prevented antigen
from increasing NF-kB p65 expression in RBL2H3 cells. Thus,
Egr3 and NF-kB p65 form a positive feedback loop to regulate
allergic inflammation. The mechanism involved in the increase
of NF-kB p65 expression during allergic inflammation merits
further study. NF-kB might play a critical role in anaphylaxis.

House dust mite allergen Derp5 can increase IL-8 expression
in respiratory epithelial cells through NF-kB signaling (40). IL-6
and IL-8 function as downstream targets of Egr3 in breast
Frontiers in Immunology | www.frontiersin.org 14
cancers (8). Therefore, Egr3 may increase expression levels of
IL-6 and IL-8 during anaphylaxis via NF-kB. Further studies
are needed to examine effects of IL-6 and IL-8 on allergic
inflammations in vitro and in vivo.

HDAC6 can mediate allergic airway inflammation by
increasing expression levels of IL-4 and IL-5 (17). It is known
that HDAC6 can promote CD8 T cell activation during allergic
skin inflammation (41), mediate the activation of TGFb-Notch
signaling (42), and mediate airway hyperresponsiveness in obese
mice with asthma (43). Notch1 can mediate asthma by regulating
Th1/Th2 balance (44). These reports imply the role of HDAC6 in
allergic inflammations such as anaphylaxis. Our results showed
roles of HDAC6 in PSA and allergic inflammation in vitro.
Global identification of downstream targets of HDAC6 is needed
in the future to better understanding the mechanism of HDAC6-
promoted anaphylaxis.
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FIGURE 9 | IL-27 is necessary for enhanced invasion of B16F1 melanoma cells and lung macrophages polarization induced by mast cells. (A) B16F1 cells were
treated without or with mouse recombinant IL-27 protein (20 ng) for 1 h. rIL-27 denotes mouse recombinant IL-27 protein. Representative blots of three independent
experiments are shown. (B) Invasion of B16F1 cells was determined. ***p<0.001. Average values of three independent experiments are shown. (C) BMMCs were
treated without or with IL-27 protein (20 ng/ml) for 1 h. Representative blots of three independent experiments are shown. (D) Culture medium of BMMCs treated
with mouse recombinant IL-27 protein (20 ng/ml) for 2 h was removed and replaced with serum-free DMEM. At 12 h after, culture medium was added to B16F1
cells for 16 h. W denotes removal of culture medium of the cells treated with mouse recombinant IL-27 protein. Representative blots of three independent
experiments are shown. (E) Invasion of B16F1 cells was determined. ***p<0.001. Average values of three independent experiments are shown. (F) Lung mast cells
were treated with DNP-specific IgE along with the indicated antibody (each at 10 mg/ml) for 24 h, and stimulated by DNP-HSA along without or with rIL-27 (20 ng/ml)
for 1 h (left). The culture medium was then added to B16F1cells for 16 h (right). (G) Same as (F) except that invasion of B16F1 cells was determined. ***p<0.001.
Average values of three independent experiments are shown. (H) Lung mast cells were treated with DNP-specific IgE along with the indicated antibody (each at 10
mg/ml) for 24 h, and then stimulated by DNP-HSA for 1 h. The culture medium was then added to lung macrophages for 16 h. Immunofluorescence staining (left)
and immunoblot (right) were performed. Representative blots of three independent experiments are shown. (I) Lung macrophages were treated without or with
mouse recombinant IL-27 protein (20 ng/ml) for 1 h. Immunofluorescence staining (left) and immunoblot (right) were performed. Representative blots of three
independent experiments are shown.
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MiR-182-5p can inhibit oxidative stress and apoptosis by
inactivating TLR4 in atherosclerosis (45). It is known that miR-
182-5p targets TLR4 and attenuates ischemia-reperfusion injury
(46). MiR-182-5p can decrease TLR4 expression by binding to its
3’-UTR (47). We found that TLR4 was necessary for both PCA
and PSA (personal observations). We therefore hypothesized
that miR-182-5p might regulate the expression of Egr3.
TargetScan analysis predicted that miR-182-5p was a negative
regulator of Egr3. We found that miR-182-5p could bind to the
3’-UTR of Egr3. Our results showed regulatory effects of miR-
182-5p on PCA and PSA. Further studies are needed to identify
more targets of miR-182-5p.

HDAC6 can increase expression levels of proinflammatory
genes via ROS-MAPK-NF-kB/AP-1 pathways (48). Our results
showed that Egr3 and HDAC6 were necessary for increased
expression levels of pERKT204 and NF-kB p65 in antigen-
stimulated RBL2H3 cells. Cytokine array analysis showed
that HDAC6 was responsible for the increase of IL-27
expression in a mouse model of PSA. HDAC6 was also
Frontiers in Immunology | www.frontiersin.org 15
responsible for the increase of IL-27 RNA level in antigen-
stimulated RBL2H3 cells.

TLR7/8 agonist R848 suppresses experimental asthma by
increasing IL-27 level (49). IL-27 receptor (WSX-1) suppresses
mast cell activity (50). IL-27 directly inhibits Th2 cytokine
production (50). These reports suggest anti-inflammatory effect
of IL-27. However, cytokines can display dual roles. In this study,
we found that antigen stimulation increased IL-27 p28, but not
EBI3, another subunit of IL-27. QRT-PCR analysis also showed
that antigen stimulation did not affect EBI3 mRNA level in
RBL2H3 cells or BALB/C mouse model of PCA or PSA (personal
observations). The role of EBL3 in anaphylaxis remains to
be seen.

IL-27 can increase levels of IL-6 and IL-8 by activating TLR4-
JAK signaling pathways (51). Further studies are needed to
examine the effect of HDAC6 on the JAK signaling pathways.
IL-27, along with IFN-g, can mediate virus-induced allergic
airway inflammation (52). TLR3/4 and IFNAR signaling
pathways are known to regulate the production of IL-27 (53).
A
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FIGURE 10 | IL-27 is present in exosomes and mediates the effects of exosomes of RBL2H3 cells on invasion of B16F1 melanoma cells. (A) RBL2H3 cells were
treated with DNP-specific IgE along with the indicated antibody (each at 10 mg/ml) for 24 h, and then stimulated by DNP-HSA along with rIL-27 (20 ng/ml) for 1 h.
The culture medium was then added to B16F1cells for 16 h. Invasion potential of B16F1 cells was determined. **p<0.01; ***p<0.001. Average values of three
independent experiments are shown. (B) Immunoblot employing B16F1 cell lysates was performed. Representative blots of three independent experiments are
shown. (C) RBL2H3 cells were treated with DNP-specific IgE along with the indicated antibody (each at 10 mg/ml) for 24 h, and then stimulated by DNP-HSA.
Culture medium was then added to lung macrophages for 16 h, followed by immunofluorescence staining. (D) Immunoblot was performed. Representative blots of
three independent experiments are shown. (E) Exosomes isolated from RBL2H3 cells were subjected to immunoblot. Representative blots of three independent
experiments are shown. (F) Shows size distributions of exosomes isolated from RBL2H3 cells employing nanoparticle tracking analysis (NTA). Exosomes isolated
from RBL2H3 cells were observed by negative staining electron microscopy (right). (G) Immuno-gold staining images using anti-TSG101, a known membrane marker
for the exosomes, and anti-IL-27 p28 antibody. Twenty-five and 10 nm gold particles show the presence of TSG101 and IL-27 p28, respectively. (H) Exosomes (20
mg) isolated from RBL2H3 cells were added to B16F1 cells for 24 h. immunoblot was performed. Representative blots of three independent experiments are shown.
(I) Invasion assays were performed as described. **p<0.01. Average values of three independent experiments are shown.
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TLR4 activation by lipopolysaccharide (LPS) can increase the
expression of IL-27 in macrophages (53). IL-27 induces the
activation of ERK and plays a pro-inflammatory role (54). IL-27
is involved in steroid-resistant airway hyperresponsiveness (55).
IL-27 amplifies airway inflammation by increasing CXCL10
production (56). These reports imply roles of IL-27 in
anaphylaxis. HDAC6 might regulate transcriptional factors that
directly regulate IL-27 expression. Further studies are needed to
identify transcriptional factors for better understanding the
mechanism involved in IL-27-medaited anaphylaxis.

We found that mouse recombinant IL-27 protein promoted
features of allergic inflammation both in vitro and in vivo in an
antigen-independent manner. This implies that IL-27 can
mediate cellular interactions during allergic inflammation. Our
results showed roles of IL-27 in anaphylaxis and metastatic
potential of cancer cells enhanced by PSA. Cellular interactions
are responsible for tumorigenic and metastatic potentials
enhanced by PSA (7). Thus, IL-27 may mediate these cellular
interactions. High level of interleukin-27 is seen in patients with
lymph node metastatic gastroesophageal cancer (57). IL-27
promotes survival, decreases apoptosis and sensitivity to
chemotherapy in AML cells (58). IL-27 induces the expression
of immune-regulatory molecules such as PD-L1 and IDO in
human ovarian cancer cells (59). IL-27 increases PDL1
expression in human lymphoma macrophages (60). CD63
suppresses hepatocellular carcinoma by inhibiting the increase
of IL-27 (61). IL-27 increases CD39 expression in ovarian cancer
associated macrophages (62). B16F10 melanoma cells that
express single chain IL-27 exerts anti-angiogenic and
antitumor activity (63). These anti-angiogenic and antitumor
activities were observed in IFN-g knockout mice (63). In this
study, we showed that IL-27 was necessary for metastatic
potential of B16F1 cells enhanced by PSA. IL-27 is necessary
for nitric oxide (NO) production induced by LPS in peritoneal
macrophages (64). IL-27 negatively regulates iNOS-producing
dendritic cells (65). We showed that IL-27 was responsible for
the decrease of iNOS in lung macrophages by antigen-stimulated
lung mast cells.

Further studies are needed to examine the role of IL-27 in
remodeled tumor microenvironment induced by cellular
interactions involving cancer cell and immune cells such
as mast cells and macrophages. Experiments employing culture
medium showed that IL-27 was involved in cellular interactions
responsible for tumorigenic and metastatic potentials enhanced
by allergic inflammation. Further studies are needed identify
IL-27-regualted molecules for better understanding the
mechanism involved in tumorigenic and metastatic potentials
enhanced by allergic inflammation.

Exosomes can mediate cellular interactions during allergic
inflammation (7). It is known that enhanced secretion of
exosomes by epithelial cells contributes to the pathogenesis of
asthma in an IL-13-dependent manner (66). Mast cells can
secrete exosomes upon FcϵRI engagement (67). Mast cell-
derived exosomes can induce epithelial mesenchymal transition
in epithelial cells (68). Exosomes are known to mediate cellular
Frontiers in Immunology | www.frontiersin.org 16
interactions of cancer cells, macrophages, and mast cells in the
tumor microenvironment (69). We found that exosomes of
antigen-stimulated RBL2H3 cells enhanced the invasion of
B16F1 melanoma cells and induced M2 macrophages
polarization in an IL-27-dependent manner. We also found the
presence of IL-27 in exosomes of antigen-stimulated RBL2H3
cells. Exosomes of PSA-activated mast cells and macrophages
might contain IL-27. Thus, exosomes of PSA-activated mast cells
and macrophages may enhance tumorigenic and metastatic
potential of cancer cells. Further studies are needed to identify
targets of these exosomes. Identification of more exosomal
molecules can lead to better understanding of the cellular
interactions during allergic inflammation.

RNA sequencing analysis showed that expression levels of
CCL1, CCL3, and CCL7 were increased by antigen stimulation
in RBL2H3 cells (data not shown). FcϵRI activation in mast
cells can increase expression levels of chemokines such as
CCL1, CCL3, and CCL7 (70)). Increased CCL1 expression is
necessary for the activation of mast cells (71). Egr2 is necessary
for the increased expression of CCL1 induced by allergens
(71). Human mast cells can release CCL2 via MAPK
and NF-kB in response to IL-33 (72). Thus, CCL1 and CCL2
might mediate allergic inflammation. CCL7 mediates OVA-
induced ocular anaphylaxis and mast cell activation in vitro
(73). Further studies are needed to check whether EGR3-
HDAC6-IL-27 axis could regulate expression levels of
these chemokines.

In summary, this study showed novel roles of EGR3-HDAC6-
IL-27 axis in cellular interactions that are necessary for allergic
inflammation and tumorigenic and metastatic potentials
enhanced by allergic inflammation (Figure S9). The EGR3-
HDAC6-IL-27 axis can be employed as a target for developing
anti-allergy therapeutics.
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