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Abstract: The semaphorins, discovered over 20 years ago, are a large family of secreted or 

transmembrane and glycophosphatidylinositol -anchored proteins initially identified as axon 

guidance molecules crucial for the development of the nervous system. It has now been estab-

lished that they also play important roles in organ development and function, especially involving 

the immune, respiratory, and cardiovascular systems, and in pathological disorders, including 

cancer. During tumor progression, semaphorins can have both pro- and anti-tumor functions, 

and this has created complexities in our understanding of these systems. Semaphorins may 

affect tumor growth and metastases by directly targeting tumor cells, as well as indirectly by 

interacting with and influencing cells from the micro-environment and vasculature. Mechanisti-

cally, semaphorins, through binding to their receptors, neuropilins and plexins, affect pathways 

involved in cell adhesion, migration, invasion, proliferation, and survival. Importantly, neuro-

pilins also act as co-receptors for several growth factors and enhance their signaling activities, 

while class 3 semaphorins may interfere with this. In this review, we focus on the secreted class 

3 semaphorins and their neuropilin co-receptors in cancer, including aspects of their signaling 

that may be clinically relevant.
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Introduction
Cancers arise from normal cells through a series of genetic and epigenetic changes 

affecting the expression and function of driver oncogenes and tumor-suppressor genes. 

The pathways commonly altered in various neoplasms have proven to be crucial for 

regulation of cell-autonomous functions such as growth and cell cycle, cell survival and 

senescence, energy production, and immortality, as well as non-autonomous functions 

such as neo-angiogenesis and evasion of the immune response. Tumor progression 

is associated with invasive behavior and metastases as well as resistance to therapy. 

In addition, the recruitment of normal cells into the tumor microenvironment plays 

a major role by contributing to invasion and metastasis as well as to the proliferative 

potential of neoplastic cells. Semaphorins and their receptors impact many of these 

processes. Indeed, a recent review by Rehman and Tamagnone1 pointed out that the 

semaphorin/plexin/neuropilin (NRP) signaling axis influences at least seven of ten 

‘hallmarks’ of cancer proposed by Hanahan and Weinberg.2 Thus, the semaphorins, 

plexins and NRPs constitute a regulatory system deeply intertwined with multiple func-

tions critical to the pathology of tumors and, as such, present significant opportunities 

for novel therapeutic interventions.
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The semaphorin family contains ∼25 members 

grouped into eight classes based on structural  similarities. 

Semaphorins are secreted or anchored to the plasma 

membrane by either a glycophosphatidylinositol (GPI) 

modification at the C-terminus or a transmembrane domain. 

Initially described as collapsins, due to their influence on 

migrating neural growth cones, they all share a common 

and highly conserved 500 amino acid Sema domain. Aside 

from their function as guidance molecules in the central 

nervous system (CNS), semaphorins, NRPs, and plexins 

have been increasingly associated with both normal and 

pathological processes. Normal functions include organ 

development, tissue repair, immune responses, angiogen-

esis, and bone metabolism. The class 3 semaphorins are the 

only group of secreted soluble proteins in the semaphorin 

family, which, as described later, present many advantages 

from a therapeutic standpoint. In addition, they uniquely 

and specif ically interact with NRPs.  Consequently, 

semaphorin–NRP interaction prevents the binding of mul-

tiple growth factors to NRPs and blocks the activation of 

downstream signaling pathways, affecting, among other 

aspects, tumor growth, tumor-associated angiogenesis, and 

metastatic spread. This review specifically focuses on the 

role of class 3 semaphorins and NRPs in cancer as a major 

pathology associated with dysfunction of these pathways. 

In particular, we review the current knowledge about these 

two groups of molecules, along with potential therapeutic 

strategies to target them.

Structure, signaling, and function 
of class 3 semaphorins and their 
receptors
Structure
Class 3 semaphorins
The seven members of the class 3 semaphorins, SEMA3A 

through SEMA3G, are secreted, in contrast to all other classes 

that are either transmembranous or anchored to the membrane 

via GPI modification. Consequently, SEMA3s can have both 

autocrine and paracrine functions. They are defined by a 500 

amino acid Sema domain, which is common to semaphorins, 

plexins, and the oncogenic receptor tyrosine kinases, MET 

and RON (Figure 1A). The Sema domain, with its 7-bladed 

beta-propeller structure, is crucial for protein–protein interac-

tions and is conserved across species.3 Class 3 semaphorins 

are characterized by several additional conserved domains 

including the plexin, semaphorins, and integrin (PSI) domain, 

an immunoglobulin (Ig)-like and a C-terminal basic domain 

(BD).

Early studies revealed that dimerization is required for 

semaphorin function. The Sema domain, the Ig domain, 

and disulfide bridges established between the C-terminal 

BDs are essential for dimerization.4,5 Proteolytic cleavage 

of a C-terminal pro-peptide at RXXXR consensus sites by 

furin-like proteases is also necessary for class 3 semaphorin 

function. This cleavage is believed to result in the stabiliza-

tion of active semaphorin dimers, as well as the formation of 

a C-terminal basic motif that has high affinity for an acidic 

groove in the extracellular domains of NRP1 and NRP2.6 The 

resulting processed end sequence resembles the C-terminus 

of vascular endothelial growth factor (VEGF), as well as 

tuftsin, an NRP-binding peptide. The crystal structure of the 

PSI and Ig-like domains has recently been described, giving 

new insights into the mode of interaction between class 3 

semaphorins, NRPs, and plexins.7 Unlike other semaphorins, 

SEMA3s usually cannot directly bind to plexins, rather 

requiring NRPs to stabilize a heterotrimeric complex. Low-

resolution crystal structure of a semaphorin–NRP–plexin 

complex revealed that SEMA3 dimers bind to NRP dimers 

with plexins positioned on each side.7 Higher-order struc-

tures can also be formed through interactions involving the 

NRP C (MAM)-domains or transmembrane segments (see 

below for NRP structure). As a consequence, higher-order 

multimers and plexin clustering could form, possibly result-

ing in enhanced semaphorin signaling.

Neuropilins
NRP1 and 2 are 130 kDa type-1 transmembrane glyco-

proteins that share 44% sequence identity at the amino 

acid level (Figure 1B). Their extracellular domain contains 

an N-terminal signal peptide, two calcium-binding C1r/

C1s/Uegf/Bmp1 (CUB) domains (designated a1 and a2), 

two coagulation factor V/VIII-like discoidin domains (b1 

and b2), and a juxta-membrane meprin/A5-antigen/ptp-Mu 

(MAM or c) domain.8–10 The ‘a1a2’ region interacts with 

the Sema domain of SEMA3s,11 while the ‘b1’ domain 

interacts with the semaphorin PSI and Ig-like domains.12 

Of note, the affinity for NRP1 and 2 varies specifically 

from one SEMA3 to another; NRP1 preferentially interacts 

with SEMA3A, SEMA3B, and SEMA3E; NRP2 has higher 

affinity for SEMA3F and SEMA3G, while SEMA3C binds 

both NRPs with similar affinity.12–16 NRP ‘b1b2’ domains 

also interact with several growth factors containing hepa-

rin-binding domains,17 including VEGFA-D,18–20 placenta 

growth factor (PlGF)-2,21 fibroblast growth factor (FGF),22 

galectin,23 hepatocyte growth factor (HGF),22,24–26 platelet-

derived growth factor (PDGF),27–32 and transforming growth 
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factor (TGF)-β.33–36 In contrast, the ‘MAM/c’ domain of 

NRP1 and 2 is not required for ligand binding, but remains 

essential for signaling.37 The transmembrane helix contains 

a conserved GXXXG motif important for dimerization and 

NRP interaction with other co-receptors.38 The cytoplasmic 

domain is a short ∼40 amino acid sequence lacking recog-

nizable enzymatic functions. For this reason, NRPs are often 

thought to be devoid of direct signaling activity. Instead, 

plexins or other Sema3 co-receptors, such as L1-CAM or 

Nr-CAM, were viewed as the sole transducers of Sema3 

signaling.39,40 However, NRPs also possess a C-terminal 

SEA motif that binds to the PDZ domain of the scaffolding 

protein, GIPC/NIP/synectin.41–45 This domain may influence 

signaling through GIPC1-mediated endocytic trafficking 

of NRPs along with interacting co-receptors, even in the 

absence of plexins. However, the specific downstream sig-

naling pathways emanating from NRP-GIPC interaction 

remain undefined. Aside from their ability to bind Sema3-

specific co-receptors, NRPs also interact with various growth 

factor-specific receptors and do so independently of Sema3 

 signaling. In this context, integrins45–47 and growth factor 

receptors like VEGF receptor (VEGFR)1–3,48,49 TGFβ-R1 

and 2,34 c-Met,25 endothelial growth factor receptor (EGFR),50 

FGF receptor (FGFR),22 and PDGF receptor (PDGFR)28,29 

have all been reported to interact with NRPs. In general, 

NRPs appear to increase the affinity of each ligand for its 

cognate receptor and, consequently, to prolong the stimulation 

of downstream signaling.

Several alternatively spliced isoforms have been identi-

fied for NRP1 and NRP2.51–54 The secreted isoforms result 

from the inclusion of an intron containing a STOP codon 

between the b2 and c domains prior to the transmembrane 

segment. These secreted forms are endogenous inhibitors 

capable of trapping growth factors in the microenvironment 

and blocking interaction with their cognate receptors (see 

below). The functions of other isoforms remain largely 

uncharacterized. Furthermore, whether NRP1 and NRP2 

variants form homo- or heterodimers, and whether these vari-

ants interact preferentially with a specific subset of growth 

factors or their receptors, is unknown. NRPs are also modified 

by O- and N-linked glycosylation, and NRP2 is specifically 

modified by polysialylation.31,55–58 These post-translational 
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Figure 1 General domain architecture of class 3 semaphorins and their receptors, neuropilins, and plexins.
Notes: (A) Semaphorins are characterized by a 500 amino acid Sema domain. in addition, class 3 semaphorins contain a PSi, an immunoglobulin-like domain, and a C-terminal 
basic-rich domain that is unique to this class of semaphorins. (B) Neuropilins are single-pass transmembrane proteins. They contain two complement binding (CUB), or 
a1 and a2 domains, that interact with class 3 semaphorins. They also contain two Fv/Fviii coagulation factor-like domains (or b1 and b2 domains). Class 3 semaphorins 
bind b1 but not b2 domain, while growth factors containing a heparin-binding domain, such as veGF, interact with both. The ‘MAM’, or c domain, is thought to have a role 
in neuropilin dimerization and does not interact with semaphorins or growth factors. The intracellular sequence of some neuropilin isoforms contains a C-terminal SeA 
sequence that is thought to be the only motif capable of activating downstream signaling pathways. (C) Plexins are single-pass transmembrane proteins characterized by a 
500 amino acid Sema domain. in their extracellular domain, like semaphorins, they also contain PSi motifs and iPT/(G-P)-rich motifs that are involved in the interaction with 
semaphorins. The intracellular sequence is unique in that it contains a split GAP domain (C1 and C2) separated by a GTPase-binding domain.
Abbreviations: eXT, extracellular environment; GAP, GTPase-activating protein; G-P, glycine-proline; iNT, intracellular environment; iPT, immunoglobulin-plexin-
transcription; PSi, plexin, semaphorin, and integrin; veGF, vascular endothelial growth factor.
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modifications affect ligand binding, cell migration, and 

invasion. Furthermore, glycosylation of NRP1 also affects 

the tumor microenvironment and is required for the assembly 

and stiffness of the extracellular matrix.59 However, while 

these recent data suggest that changes in the glycosylation 

levels of NRPs could affect tumor growth and metastatic 

spread, the molecular mechanisms involved in this process 

and the exact consequences of altered glycosylation remain 

to be defined.

Plexins
Four families of plexins have been identified: plexinA1-4, 

B1-3, C1, and D1.60,61 Only a subset of these, including 

plexinA1-4, B2, and D1, are known to interact with class 3 

semaphorins.60,62–67 Like NRPs, plexins are also type 1 trans-

membrane proteins (Figure 1C), but the cytoplasmic region 

is far larger, containing protein–protein interaction sites 

and a split Ras-GTPase activating protein (GAP) domain. 

The extracellular region of plexins contains Sema, PSI, and 

Ig-plexin-transcription (IPT)/glycine-proline (G-P)-rich 

domains and interacts with the Sema domain of sema-

phorins. In addition, the extracellular domain of plexins 

shares sequence similarities with MET and RON receptor 

tyrosine kinases. The plexin cytoplasmic domain contains 

an R-Ras/M-Ras GAP domain, which is separated into two 

segments by a Rho GTPase-binding domain (RBD). The 

GAP domains interact with the R-Ras/M-Ras family of small 

G-proteins, while the RBD interacts with another family 

of small G proteins that includes Rnd1/Rac1/RhoD. These 

effectors are thought to be largely responsible for semaphorin 

signaling activities.

Signaling
Class 3 semaphorins interact through their Sema domain 

with both NRPs and plexins. Sema3A/NRP/plexin-A sig-

naling has been extensively studied for its effects on the 

cytoskeleton, frequently leading to axon repulsion, col-

lapse, or inhibition of cell migration in various cell types. 

While most studies suggest that plexins are the only 

molecules capable of triggering an intracellular signal, 

several reports indicate that NRPs can transduce a signal 

independently. Thus, NRPs appear to function as more 

than a simple stabilizing component for the Sema3/plexin 

complex.

Signaling pathways activated by NRPs
GIPC/NIP/synectin was the first NRP-binding adaptor 

described that mediates NRP signaling (Figure 2A).41 

The interaction of GIPC with the C-terminal SEA motif of 

NRP1 regulates vesicle trafficking and internalization of 

NRP1, VEGFR, and α5β1 integrin.41,43,45,68–73 One conse-

quence is that the NRP-GIPC interaction influences VEGF-

dependent inhibition of apoptosis in neural and endothelial 

cells. In cancer models, NRP1 interaction with GIPC and 

 c-Abl  promotes α5β1 integrin-dependent fibronectin fibril 

assembly in the tumor microenvironment. This mechanism 

increases the stiffness of the extracellular matrix and stimu-

lates tumor growth.59 In ischemic models, another effector, 

the cytoplasmic tyrosine kinase (TK) Fer, interacts with the 

cytoplasmic domain of NRP1 to induce neuronal apoptosis in 

response to Sema3A.74 Whether the GIPC-binding SEA motif 

is responsible, at least in part, for Fer interaction with NRP1 is 

unknown. However, the Fer-binding domain is located within 

the last 18 amino acids of the extreme C-terminus of NRP1 

and does not appear to bind NRP2. Since the SEA motif is 

completely conserved between NRP1 and 2, these observa-

tions suggest that SEA is not required for Fer  binding. Fer 

also interacts with a family of scaffolding proteins called col-

lapsin response mediator proteins (CRMPs).75 The increase of 

NRP1/Fer/CRMP2 in lipid rafts occurs early and transiently 

during ischemic injury in the brain, but the function of this 

complex and the molecular pathways activated are unknown. 

Importantly, while GIPC and Fer allow at least NRP1 to 

signal independently from other receptors, their function and 

importance in cancer remain understudied and obscure.

Signaling pathways activated by plexins
The intracellular domain of plexins interacts directly with 

the Rho and Ras families of small G proteins. This interac-

tion involves a less conserved spacer region (V1) wedged 

between two highly conserved segments (C1 and C2) that 

are homologous to GAPs (RasGAPs) responsible for stimu-

lating the intrinsic GTPase activity of small G proteins in 

the RAS superfamily.76 It has now been established that 

different plexins interact dynamically and preferentially 

with specific subsets of small GTPases. For example, in 

the quiescent state, plexin-A1 interacts with and sequesters 

FARP2, a Rac1 exchange factor (RacGEF) (Figure 2B).77 

However, when Sema3A binds NRP1/plexinA1, FARP2 

dissociates from the plexin C-terminus, increasing the 

activity of Rac1. Activation of Rac1 by FARP2 leads to 

the association of Rnd1, a Rho family GTPase 1 protein, 

with the cytoplasmic domain of plexin-A1. This associa-

tion increases plexin-A1-intrinsic GAP activity and leads 

to R-Ras inhibition and cell collapse. However, activated 

Rac1 also stimulates LIM-kinase-1, which phosphorylates 
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Figure 2 Main signal transduction pathways activated by class 3 semaphorin binding to neuropilins.
Notes: These pathways involve either neuropilin alone (A) or neuropilin/plexin receptor complexes (B–D). in the absence of plexins (A), semaphorins can signal through 
neuropilin interactions with Fer and GiPC, which regulate cell viability, matrix stiffness, and tumor growth. This latter mechanism involves integrin activation by the protein 
c-Abl. However, class 3 semaphorin function has been mainly described to involve plexins (B–D). in this context, cell migration (B) is regulated by the release and activation 
of the protein FARP2 from the plexin cytoplasmic domain, which leads to the activation of the small G-protein Rac1. in addition, R-Ras is inhibited by interacting with 
plexin GAP domain, and this inhibition prevents cell adhesion. The binding of the proteins MiCAL (C), Fes, and Fyn (D) to the cytoplasmic domain of plexins affects actin 
dynamics and induces cell collapse through molecular mechanisms involving CRMPs. Sema 3 binding to neuropilin-plexin complex is also known to promote cell repulsion (or 
chemorepulsion) (C). This mechanism involves the interaction of a p190RhoGAP-p120RasGAP-FAK complex with plexins and integrins, and inactivates the small G-protein 
RhoA. Finally, in neural cells (D), the protein L1-CAM has been shown to inhibit neurite outgrowth through a mechanism involving interactions of RanBPM with plexins and 
L1-CAM itself, and inhibition of the MAP kinases eRK1/2 by L1-CAM. Green arrows: activation; red bars: inhibitory mechanisms.
Abbreviations: CRAM, CRMP-associated molecule; CRMP, collapsin response mediator proteins; MAP, mitogen-activated protein; MiCAL, mono-oxygenase molecule 
interacting with CasL; NRP, neuropilin; veGFR, vascular endothelial growth factor receptor; oxid, oxidized.
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and inactivates cofilin, an actin-depolymerizing molecule.78 

How this mechanism leads to cell collapse is not well 

understood, but the involvement of a phosphatase that 

would activate cofilin has been suggested. Other small 

G proteins have been involved in Sema3 signaling. For 

example, RhoD binds plexin-A1 but antagonizes Rnd1,79 

and would counteract Sema3-mediated cell collapse. In the 

immune system and CNS, Rap1, another small G protein of 

the Ras family, is involved in Sema3A-mediated signaling 

that leads to blockade of T-cell activation and growth cone 

collapse, respectively.80,81

In endothelial cells, the RhoGAP protein, p190a, which 

locally converts GTP-bound RhoA into the inactive GDP-

bound form, is important for chemorepulsion induced 

by Sema3A and 3F (Figure 2C).82,83 Interestingly, p190a 

appears to be a convergence point for adhesion regulation 

by many pathways, including those involving α5β1 integrin, 

syndecan4,84 G(alpha)(13),85 and some kinases such as Brk, 

Src, protein kinase C (PKC), and AB12/ARG.83 P190a also 

associates with p120-RasGAP and focal adhesion proteins 

to regulate cell migration.86,87

An additional mechanism for semaphorin-mediated col-

lapse of actin filaments involves the mono-oxygenase mol-

ecule interacting with CasL (MICAL).88–93 MICAL is a flavin 

adenine dinucleotide (FAD)-dependent mono-oxygenase that 

interacts with the C-terminal C2 domain of A-type plexins 

(Figure 2C). When activated by semaphorin signaling, the 

MICAL mono-oxygenase converts two conserved methion-

ine residues of actin (M44; M47) to methionine sulfoxides. 

Since these methionines are crucial for actin polymerization, 

their conversion causes rapid depolymerization of filamen-

tous actin and prevents its re-polymerization. Remarkably, 

the oxidation reaction is reversible by methionine sulfoxide 

reductases (MSRB1–3), potentially resulting in fine control 

of filamentous actin polymerization – depolymerization. 

MICAL also generates hydrogen peroxide, which oxidizes 

CRMP2, leading to its dimerization, interaction with thiore-

doxin (TRX), phosphorylation by GSK-3β and microtubule 

collapse. Semaphorins control MICAL activity by releasing 

the auto-inhibition of mono-oxygenase activity mediated by 

the MICAL C-terminal domain.90 However, the exact mecha-

nism of this release has not been established, although it 

clearly involves interaction between the C2 region of plexinA 

and the MICAL auto-inhibitory C-terminal domain.

As noted previously, the semaphorin-NRP axis also 

interacts with Src family tyrosine kinases. For example, Fes/

Fsp (Fes) interacts with and mediates signaling  downstream 

of activated plexin-A1 (Figure 2D).94 In the presence of 

Sema3A/NRP1/plexA1 complex, the activation of Fes by 

plexin-A1 stimulates CRMP-associated molecule (CRAM), 

as well as CRMP1 and 2, leading to cell contraction and 

growth cone collapse.94,95 Another Src-tyrosine kinase, Fyn, 

regulates the phosphorylation of CRMP1, and, through a 

Sema3A- and plexinA2-dependent mechanism, activates 

Cdk5, leading to growth cone collapse (Figure 2D).63,96 

Similarly, in dorsal root ganglion cells, Sema3A induces 

phosphorylation of CRMP2 by GSK-3β after priming by 

Cdk5, which reduces the ability of CRMP2 to bind tubulin, 

thereby destabilizing microtubule structure and impair-

ing cell migration.97 Moreover, increased GSK-3β activ-

ity occurs as a result of Sema3A-mediated growth cone 

collapse. Mechanistically, this involves decreased phos-

phatidylinositol (3,4,5)-trisphosphate levels with inhibition 

of  phosphoinositide 3 kinase (PI3K) by R-Ras inhibition and 

phosphatase and tensin homolog (PTEN) activation.98–100

Additional scaffolding proteins mediate the effects of 

Sema3/NRP/plexin on the actin cytoskeleton and microtu-

bules (Figure 2). They include RanBPM (Figure 2D),101 as 

well as the Myeloid translocation gene 16b (MTG16b).102 In 

some circumstances, these proteins interact together,90,101 or 

with co-receptors such as β-integrin, Met, and L1-CAM103 

to prevent non-neuronal cell spreading and inhibit axon 

outgrowth.

While NRPs are typically necessary to stabilize the 

Sema3/plexin complex, it has been found that Sema3E 

interacts with plexin-D1 and controls vascular pattern-

ing independently of NRPs.65 Plexin-D1 expression is 

regulated by VEGF through a notch-mediated signaling 

pathway,104 and plexin-D1 antagonizes VEGF signaling by 

increasing the levels of the VEGF decoy receptor sFlit1.105 

The signaling cascade induced by Sema3E binding to 

plexin-D1 involves Rnd1 and Rnd2, which are required 

for the activation of plexin’s Ras-GAP function, although 

the mechanism of interaction is not clear.106 As with other 

class 3 semaphorins, Sema3E signaling results in an anti-

angiogenic effect on endothelial cells, which is medi-

ated by inhibition of R-Ras and disassembly of adhesive 

structures involving integrins.107 Furthermore, Sema3E 

stimulates PI(4)P-5 kinase activity, increasing the levels of 

phosphatidylinositol 4,5-bisphosphate, and activates the 

Arf6 exchange factor protein, GEP100/Brag2, leading to 

Arf6 activation, β1-integrin internalization, and reduced 

cell adhesion.108

It is important to note that while Sema3s often cause 

depolymerization of actin filaments and microtubules, lead-

ing to repulsion of growth cones, this can be reversed into an 
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attractive effect by activating adenosine 3′,5′-cyclic mono-

phosphate (cAMP) and cyclic guanosine monophosphate 

(cGMP) pathways.109 Other factors have also been shown 

to reverse the effects of Sema3s. For example, in the CNS, 

soluble L1-CAM converts an NRP1-dependent repulsive 

guidance response to an attractive one by activation of the 

nitric oxide (NO)/cGMP pathway.39 The cis and trans inter-

action of L1-CAM with the NRP1/SEMA3A complex also 

controls its endocytosis, a mechanism that is mandatory for 

SEMA3A-mediated cell contraction.110 Interestingly, p53-

dependent expression of cGMP-dependent protein kinase 

type I (cGKI) is required to enable cGMP to counteract 

Sema3A-induced growth cone collapse.111

Function during development and injury
Class 3 semaphorins were first identified as guidance 

molecules in the CNS, regulating cell migration, and axon 

and dendrite elongation and guidance during development 

or after injury.112–115 During neural development, SEMA3s 

generally act as repulsive cues that block neural growth 

cones from progressing toward the semaphorin source. This 

results in the turning of axons into new directions, such as 

crossing the commissure. More recently, the developmental 

role of SEMA3s has been expanded to include angiogen-

esis/lymphangiogenesis,116 and organ morphogenesis dur-

ing development of bone,117–119 lung,120–123 teeth,124–126 and 

kidney.127 Like SEMA3s, NRPs and plexins are expressed 

in a wide variety of cell types and tissues, including 

endothelial cells, neurons, pancreatic islet cells, T-cells, 

hepatocytes, melanocytes, and osteoblasts, and in epithelial 

cells of the skin, breast, prostate, gastrointestinal tract, lung, 

kidney, and bladder.128–131 NRP1 is also expressed in the 

immune system by thymocytes,132–135 plasmacytoid dendritic 

cells (pDCs),136,137 and activated regulatory T-cells (Tr or 

T
reg

 cells).33,138–141 At the cellular level, class 3 semaphorins 

regulate signaling pathways that control not only cell adhe-

sion, cytoskeletal dynamics, and migration/invasion, but 

also cell survival and proliferation.142,143

In the adult CNS and after tissue injury, semaphorins 

and their receptors generally function as an impediment to 

nerve regrowth. Sema3A, in particular, has been associated 

with neural cell apoptosis, and class 3 semaphorins are 

often induced in neural and glial scars.144 Both Sema3A and 

Sema3F seem to favor re-myelination by attracting oligoden-

drocyte precursors to the injured area in a model of multiple 

sclerosis.145 Conversely, SEMA3A secreted by ischemic 

neurons prevents neovascularization of the injured area.146 

Sema3A, plexin-A1 and plexin-A2, and CRMP2 can form 

a complex that affects Cdk5 and GSK-3β phosphorylation 

in Alzheimer patients and mouse models.97,147 Sema3A and 

CRMP4 are up-regulated in motor neurons during pre-

symptomatic stages in a model of familial amyotrophic 

lateral sclerosis.148,149 Mutations of Sema3D and plexin-A2 

are associated with the development of schizophrenia and 

heightened anxiety in mice.150–152 Mutation of SEMA3E is 

associated with the CHARGE syndrome, a non-random pat-

tern of multiple congenital anomalies usually associated with 

deafness/blindness that occurs in 1:10,000 births worldwide. 

The lack of expression of Sema3A, Sema3C, Sema3F, and 

NRP2 causes a predisposition to epileptic seizures and could 

be related to autism.153–157 Sema3A repulses nerve growth 

factor (NGF)-expressing C-fibers, which extend abnormally 

in the epidermis of patients affected by atopic dermatitis.158 

Sema3A levels decrease in the epidermis of patients affected 

by this disease. The intracutaneous or topical application of 

recombinant Sema3A reduced the density of C-fibers pres-

ent in the epidermis and decreased the symptoms associated 

with this pathology.159–163

Class 3 semaphorins and their receptors affect bone as 

well as cartilage development and reconstruction. Sema3A 

knockout causes abnormal bone and cartilage formation.164 

In fact, Sema3A inhibits osteoclastic bone resorption and 

increases osteoblastic bone formation.118,165 Conversely, 

Sema3B promotes osteoclastogenesis and osteopenia in a 

mouse model.117 Plexin-A2 polymorphisms have been associ-

ated with increased fracture risk and bone mineral density in 

a postmenopausal population.166

The role of NRPs and semaphorins in the immune system 

has been recently reviewed.167 Sema3A/NRP1 and Sema3E/

plexin-D1 complexes regulate the migration of thymocytes 

and their interaction with thymic epithelial cells.133,168 

Sema3A/NRP1/plexin-A4 also inhibits monocyte and T-cell 

migration and negatively affects the immune response by 

impairing T-cell activation and cytokine secretion.169,170 

In addition, Sema3A produced by lymphatic vessels binds 

plexin-A1 at the surface of dendritic cells (DCs) and pro-

motes actin-myosin and cell contraction to facilitate the 

transmigration of DCs through the lymphatic wall.171 NRP1 

is a marker of T
reg

 cells,138 and recent work by Delgoffe et al172 

has shown that Nrp1 is required for T
reg

-mediated inhibition 

of anti-tumor immune responses and the ability of these cells 

to limit or eliminate inflammatory colitis in an experimental 

mouse model. However, Nrp1 was not required for limiting 

autoimmunity or for immune homeostasis. Nrp1 effects 

were mediated by binding to Pten, which reduced protein 

kinase B (Akt) activity and led to nuclear localization of 
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FoxO3a and expression of survival and quiescence factors. 

Curiously, these investigators found that this axis required 

Sema4A, which is not known to bind Nrp1. However, 

whether Sema4a receptors, plexinB1, B2, or D1 are required 

was not reported.

Class 3 semaphorins and cancer
Because Sema3s are diffusible factors, they can affect the 

overall growth of tumors by direct mechanisms that influ-

ence tumor cell physiology, and/or by indirect mechanisms 

affecting the tumor microenvironment (TME). Some 

class 3 semaphorins appear to function almost entirely in 

an anti-tumor manner (SEMA3-D, -F, and -G); conversely, 

SEMA3-C is primarily pro-tumorigenic. In addition, several 

(SEMA3-A, B and E) can have both positive and negative 

influences on tumor growth and metastases, depending 

on the tissue-specific context, stage of development of 

the tumor, the receptors expressed at the surface of the 

cytoplasmic membrane, the panel of growth factors with 

which it competes, or its ability to be cleaved by furins or 

proteases. Furthermore, as described in this section and 

discussed in the conclusion (see also Table 1), several 

class 3 semaphorins affect the same type of cancers, sug-

gesting overlapping functions and raising questions about 

their interchangeability.

Pro-tumoral functions of class 3 semaphorins
SEMA3A, NRP1, and plexinA1 messenger RNAs (mRNAs) 

are highly expressed in metastases from patients with pancre-

atic cancer, and their levels correlate with a poor outcome.173 

In addition, SEMA3A in pancreatic cells activates multiple 

pathways, including Rac1, extracellular signal-regulated 

kinase (ERK)-1/2, and GSK-3β. SEMA3A is also expressed 

by many tumor cells and inhibits anti-neoplastic immune 

response by blocking T-cell proliferation, cytokine produc-

tion, induction of cytotoxic activity, and T-cell adhesion to 

tumor cells.80 Mechanistically, Sema3A inhibits cluster of dif-

ferentiation (CD)-3/CD28-mediated Ras/mitogen-activated 

protein kinase (MAPK) activation in T-cells. This antagonistic 

effect of Sema3A involves the activation of a small GTPase, 

Rap1, which interacts with Raf-1.  Sequestration of Raf-1 

away from Ras is suspected to cause Ras/MAPK inhibition. 

In colon cancer cells, SEMA3A induces cell invasion 

through a Rho-independent mechanism that involves MAPK 

signaling and Rac1 activation.174 Rac1 is also involved in a 

mechanism leading to Sema3A infiltration in glioblastoma 

models.175 Interestingly, in this model, it was reported that 

the Sema3A effects could switch from chemorepulsive 

to chemoattractive by affecting the ratio between NRP1 

and NRP2.176 Casazza et al177 recently demonstrated that the 

SEMA3A/NRP1 signaling axis was responsible for recruit-

ment of tumor-associated macrophages (TAMs) into hypoxic 

regions of tumors. Using macrophage-specific NRP1 knock-

out mice, these investigators found that NRP1 was essential 

for recruiting TAMs into hypoxic regions. This recruitment 

was dependent upon SEMA3A, plexinA1/A4, and the VEGF 

receptor, VEGFR-1.  Remarkably, after entry into hypoxic 

areas, NRP1 expression was suppressed by hypoxia-inducible 

factor (HIF)2α-driven nuclear factor (NF)-κB activity. 

This suppression, in combination with induced expression 

of SEMA3A and VEGFR-1, prevented further migration, 

trapping the TAMs in hypoxic  environments. Under these 

conditions, the TAMs shifted their phenotype away from the 

pro-immune, anti-tumor ‘M1’ differentiation toward the ‘M2’ 

immune-suppressive and pro-angiogenic differentiation state. 

Thus, the SEMA3A/NRP1 signaling axis in TAMs controls 

entry and retention in hypoxic domains of the tumor and 

ultimately controls immune response, neo-angiogenesis, 

and metastasis.

SEMA3B is overexpressed in several metastatic cell 

lines.178 This is consistent with observations that its expres-

sion increases metastatic spread, despite the ability to inhibit 

primary tumor growth. These effects involve binding to 

NRP1, with activation of p38-MAPK and interleukin (IL)-8 

secretion. In this context, SEMA3B leads to increases in 

tumor-associated macrophages and promotes tumor cell 

dissemination.

SEMA3C has pro-migratory and pro-adhesive proper-

ties on cancer cells in vitro and promotes tumor growth, 

angiogenesis, and metastasis in vivo.179–183 SEMA3C cleav-

age by a metalloproteinase, ADMTS1, allows its release 

from the extracellular matrix and promotes the migration 

of breast cancer cells.181 Recently, SEMA3C expression 

was associated with an increased risk of recurrence in 

prostate cancer patients.184 Its overexpression was accom-

panied by reduced levels of E-cadherin and β-catenin, and 

by increased levels of α-integrins at the cell membrane.179 

Interestingly, SEMA3C is up-regulated by the oncogene 

ERBB2, which is amplified or overexpressed in many breast 

tumors and other cancers.185 The SEMA3C gene contains 

a binding motif for Sox4, a transcription factor involved 

in metastatic spread in hepatocellular carcinoma and other 

cancers.180 Thus, SEMA3C expression may be a component 

of the pro-tumorigenic program induced by SOX4. The 

promoter region of SEMA3C also contains a conserved 

E-box element that can bind Twist1, a transcription factor 
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Table 1 Summary of class 3 semaphorin functions in cancer models and in cell types that influence tumor growth

Class 3  
semaphorin

Organ/tissue/cell type Levels in patient samples  
and/or function

References

SeMA3A Pancreatic cancer induces cell scattering, invasion 
High levels associated with poor outcome

173

Colon cancer Increases invasion and tissue infiltration 174
Glioblastoma Increases invasion and tissue infiltration 175
T-lymphocytes inhibits anti-neoplastic immune response 80
Tumor-associated macrophages Stimulates recruitment to the tumor and differentiation  

into immune-suppressive and pro-angiogenic ‘M2’ state
177

Breast cancer Levels correlate positively with sensitivity  
to chemotherapy and decrease with stage 
inhibits adhesion, motility, and cell invasion

192,193,196,198,200

Tongue cancer Levels correlate positively with patient survival and  
negatively with lymph node metastases

194

Prostate cancer inhibits motility and cell invasion 179,182
Multiple myeloma inhibits neo-angiogenesis 

Prevents excessive proliferation induced by  
growth factors

197

Mesothelioma Prevents excessive proliferation induced  
by growth factors

199

Melanoma inhibits tumor growth and metastases 
Sensitizes cells to anti-tumor agents

201

Pancreatic cancer Reduces invasion and metastases induced by the  
resistance to sunitinib

202

Cervical cancer  Reduces invasion and metastases induced by the  
resistance to sunitinib

202

SeMA3B Breast cancer increases metastasis 178
Lung cancer increases metastasis 178
Ovarian cancer Reduced levels in tumors 

inhibits tumor growth, colony formation, adhesion,  
invasion, and cell viability

204,214,217

Lung cancer Reduced levels in tumors 
inhibits cell and tumor growth, induces apoptosis

203,206,213,215,216

Gallbladder cancer Reduced levels in tumors 205
Liver cancer Reduced levels in malignant tumors 207
Breast cancer Reduced levels 

inhibits cell growth and induces apoptosis
193,215,216

Gastric cancer Reduced levels in tumors 209
Neuroblastoma Reduced levels in tumors 208

SeMA3C Prostate cancer Predictive marker for biochemical recurrence 
increases cell adhesion and invasion

179,182,184

Hepatocellular cancer increases cell invasion 180
Breast cancer increases cell migration 181
Gastric cancer Highly expressed in tumors 

increases tumor growth and metastasis, reduces  
apoptosis, and increases proliferation in tumors 
increases tumor-associated angiogenesis

183

SeMA3D Breast cancer inhibits tumor growth 218
Glioblastoma-multiforme inhibits tumor growth 

inhibits tumor-associated angiogenesis 
inhibits cell survival

219

SeMA3e Ovarian endometrioid carcinoma Levels correlates with high-grade tumors 189
Melanoma expressed in invasive tumors 190
Cervical cancer increases cell migration
Lung inhibits primary tumor growth 

Promotes metastasis 
increases cell migration and invasion

190,191

(Continued)
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Table 1 (Continued)

Class 3  
semaphorin

Organ/tissue/cell type Levels in patient samples  
and/or function

References

Breast inhibits primary tumor growth by reducing vessel density 
enhances tumor cell survival and extravasation  
and promotes metastasis 
increases cell migration and invasion

188,190

Colon inhibits primary tumor growth, reduces vessel  
density, and increases tumor cell apoptosis 
increases cell migration

190

Prostate cancer inhibits migration and invasion 182
Glioblastoma inhibits tumor growth 219
Melanoma Absent in metastases 

inhibits metastases
220

SeMA3F Lung cancer Reduced levels or loss of expression in tumors 
inhibits tumor growth and angiogenesis 
Reduces colony formation, cell growth

213,223–225,227,229, 
230,236,239,240,246

Kidney cancer Reduced levels in tumors 
inhibits tumor growth and angiogenesis

227,235

Cervical cancer Reduced levels in tumors 226
Ovarian cancer Reduced expression in carcinoma and cancer cell lines 

inhibits colony formation, cell adhesion,  
cell invasion, and endothelial tube formation

204,217

Breast cancer Reduced expression in invasive tumors 
Reduces tumor growth and tumor invasion 
inhibits tumor angiogenesis 
inhibits cell–cell contacts, cell spreading,  
cell adhesion, and has chemorepulsive activity

193,218,227,233,237, 
243

Prostate cancer Single polymorphism associated with increased  
cancer risk and poor prognosis

228

endometrial cancer Reduced levels in tumors 
inhibits cell growth, colony formation, and cell invasion

231

Glioma/glioblastoma induces cell collapse, inhibits cell proliferation,  
migration, and invasion 
inhibits tumor growth

83,219,241

Melanoma Reduced levels in metastatic cell lines 
inhibits tumor angiogenesis and metastasis 
inhibits cell adhesion, migration, invasion,  
and proliferation

234,238,241

Colorectal cancer inhibits tumor growth and metastases 242
Schwannomas induces vessel normalization in the tumors 244

SeMA3G Malignant mesothelioma Loss of expression 247
Glioma expression correlates with patient survival 248
Glioblastoma-multiforme inhibits tumor growth and angiogenesis 

inhibits migration and invasion
219,250

involved in the epithelial to mesenchymal transition (EMT); 

in the heart, Twist1 was shown to up-regulate Sema3C 

expression.186 Therefore, by facilitating mesenchymal 

transformation, Sema3C could promote tumor cell invasion 

and metastasis.

Sema3E was identified as a gene commonly expressed 

in murine mammary adenocarcinoma cell lines capable of 

spreading to the lung and bones, but only rarely expressed in 

non-metastatic cells.187,188 In addition, SEMA3E levels cor-

relate with high-grade ovarian endometrioid carcinoma.189 

While SEMA3E has anti-angiogenic properties and inhibits 

tumor growth, its overexpression in several cancer mod-

els promotes transendothelial migration and metastatic 

spread.190 This depends on plexinD1-associated human 

epidermal growth factor receptor (HER)-2/Neu (ERBB2) 

oncogenic kinase activity. Moreover, the furin-cleaved 61 

kDa form of Sema3E converts its repulsive activity into 

a pro-migratory/invasive function in tumor cell lines.191 

Supporting a pro-invasive function for SEMA3E, a recent 

study showed that this semaphorin induces EMT,189 an 
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effect that depends on PI3K and ERK/MAPK-mediated 

Snail1 translocation to the nucleus. SEMA3E also pro-

motes tumor cell survival. In the absence of Sema3E, 

plexin-D1 interacts with the nuclear receptor NR4A1 and 

triggers a mitochondrial-dependent death pathway leading 

to Caspase 9 activation.188 Conversely, in the presence of 

Sema3E, the plexin-D1-NR4A1 complex is disrupted, 

which prevents tumor cell apoptosis.  Supporting these 

results, a peptide consisting of the Sema domain of plex-

in-D1 was shown to promote plexin-D1-mediated apoptosis 

in vitro, and inhibit tumor growth and metastasis in vivo, 

by trapping Sema3E.

Tumor-suppressive functions of class 3 semaphorins
SEMA3A expression correlates positively with increased 

sensitivity to radiation therapy in cancers, and SEMA3A 

levels decrease in breast cancer tumors with the transi-

tion from in situ to invasive carcinoma.192,193 SEMA3A is 

also down-regulated in cancers of the tongue, and levels 

correlate positively with patient survival and negatively 

with lymph node metastases.194 In several cancer cell lines, 

SEMA3A is down-regulated by the chromatin-associated and 

pro-tumoral factor, high mobility group box 1 (HMGB1), 

which promotes heterochromatin formation and decreased 

occupancy of acetylated histones at the SEMA3A genetic 

locus.195 Functionally, SEMA3A inhibits the migration 

and invasion of breast and prostate cancer cells, as well 

as the ability of multiple myeloma cells to induce neo-

 angiogenesis in vitro.179,182,196–198 In normal mesothelial cells, 

Sema3A inhibits VEGF-mediated upregulation of cyclin D1 

and induction of cell proliferation.199 Intriguingly, Sema3A is  

itself upregulated by VEGF in mesothelial and endothelial 

cells.197,199 However, in malignant mesothelioma and multiple 

myeloma, this pathway is disrupted, leading to increased cell 

proliferation. Therefore, it has been suggested that, in normal 

cells, SEMA3A signaling serves as a negative feedback loop 

to prevent excessive proliferative effects induced by growth 

factors. In breast cancer models, SEMA3A inhibits adhesion 

and migration of tumor cells by increasing integrin α2β1 

levels and promoting RhoA translation through a mechanism 

involving eIF4E.198,200 SEMA3A also sensitizes tumor cells to 

anti-tumor agents such as curcumin and dacarbazine, while 

curcumin was shown to promote apoptosis and poly ADP 

ribose polymerase (PARP) cleavage induced by SEMA3A.201 

In models of drug resistance induced by either chronic expo-

sure to sunitinib, a prototypical small-molecule TK inhibitor, 

or DC101, a VEGFR-2-blocking antibody, Sema3A prevented 

tumor invasion and metastasis.202 This effect  correlated with 

increased tumor perfusion and oxygenation, together with a 

prolonged vascular normalization window. As a consequence, 

Sema3A inhibited sunitinib-induced hypoxia and NF-κB 

activity, reducing HIF-1α levels to baseline.

SEMA3B was originally cloned from 3p21.3, a chromo-

somal region affected by homozygous deletions and frequent 

loss of heterozygosity (LOH) in lung, ovarian, and gallblad-

der cancers.203–205 Reduced SEMA3B mRNA levels correlate 

with frequent promoter hypermethylation in neuroblastoma, 

lung, liver, breast, gastric, and gallbladder cancers.193,205–209 In 

vitro, SEMA3B expression is up-regulated by direct binding 

of p53 to its promoter region and is downregulated by pro-

moter methylation.210–212 SEMA3B inhibits tumor cell growth 

and induces apoptosis in vitro and in vivo. 213–215 The anti-

proliferative and pro-apoptotic effects of SEMA3B involve 

inhibition of the Akt signaling pathway in lung and breast 

cancer cells.216 Although the mechanism of AKT inhibition 

by SEMA3B has not been established, it may involve PTEN 

binding to NRP1.172 In ovarian cancers, SEMA3B expression 

is restored by follicle-stimulating hormone and estrogens, 

and its expression inhibits colony formation, cell adhesion, 

invasion, and cell viability.217

SEMA3D function in cancer is largely unknown, but data 

support some anti-tumor activity. To date, SEMA3D has 

been shown to inhibit breast and glioblastoma-multiforme 

(GBM) tumor growth, to reduce tumor-angiogenesis, and 

to prolong the survival of mice bearing orthotopic GBM 

xenografts.218,219 However, the signaling pathways mediat-

ing these effects of Sema3D have not been identified. In 

addition, further work must be done to establish whether 

SEMA3D differentially affects the several molecular sub-

types that characterize both breast cancers and GBMs.

SEMA3E is the only class 3 semaphorin known to interact 

with a plexin independently of NRPs. Thus, expression of 

the SEMA3E receptor, plexinD1, is crucial for responses to 

this ligand. In melanoma, SEMA3E overexpression has anti-

metastatic effects, while plexinD1 levels correlate positively 

with tumor progression and metastasis. Moreover, SEMA3E 

levels are inversely correlated with plexinD1.219,220 SEMA3E 

inhibits prostate cancer cell adhesion/migration, as well 

as glioblastoma tumor growth in an orthotopic model.182 

In endothelial cells, SEMA3E binding to plexinD1 exerts 

an anti-angiogenic effect by inhibiting R-Ras and activat-

ing a pathway involving PIP5KIβ, GEP100/Brag2, and 

Arf6, leading to the inactivation of integrins and disassembly 

of adhesive structures.108,221 In contrast to the pro-tumoral 

effects of furin-processed p61 SEMA3E, this anti-angiogenic 

effect is mediated by a furin-resistant mutant that also  inhibits 
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tumor growth and prevents metastases in several tumor 

models.190,219,222

SEMA3F, like SEMAB, was cloned from the 3p21.3 

homozygous deletion region identified in some small cell 

lung cancer (SCLC) cell lines.223–225 This region is also 

affected by frequent LOH in renal, lung, cervical, ovarian, 

and breast cancers.204,226,227 In prostate cancer, polymorphisms 

in the SEMA3F gene correlate with a poor prognosis in 

Hispanic and non-Hispanic White men.228 In normal lung, we 

showed that SEMA3F localizes at the cell surface, while in 

tumors, the presence of SEMA3F in the cytoplasm correlates 

with the presence of VEGF at the membrane of tumor cells, 

consistent with an antagonistic relationship between these 

ligands.229,230 In addition, SEMA3F levels are frequently 

reduced and inversely correlated with tumor stage in lung, 

endometrial, and ductal breast cancers.193,229–231 SEMA3F 

has potent tumor suppressor activity that inhibits adhesion, 

migration, colony formation, and occasionally proliferation 

in vitro. In several in vivo cancer models, SEMA3F inhibits 

tumor growth and neo-angiogenesis, as well as metastatic 

spread.83,213,217–219,231–244 Expression of SEMA3F is induced 

by p53,240 the transcription factor E47,241 and the transcrip-

tional regulator, retinoid orphan nuclear receptor (ROR)-α.243 

Conversely, SEMA3F expression can be inhibited by multiple 

mechanisms including methylation of the promoter,245 by the 

EMT-induced transcription factor, ZEB-1,246 and the inhibitor 

of E47, Id2.241 SEMA3F induces retraction of lamellipodia, 

loss of cell–cell contacts accompanied by a delocalization of 

E-cadherin and β-catenin, and delocalization of Rac1-GTP at 

the base of the receding lamellipodia.233,237 Mechanistically, 

SEMA3F inhibits kinase pathways involving integrin-linked 

kinase (ILK), ERK1/2, AKT, signal transducer and activator 

of transcription (STAT)-3, and focal adhesion kinase (FAK), 

as well as integrin β1 and αVβ3 activation and expression. 

It also reduces levels of matrix metalloproteinase (MMP)-9, 

MMP2, HIF-1α, and VEGF.217,234,236,239,242 In a glioma model, 

SEMA3F was further shown to induce cell collapse by pre-

venting stress fiber formation through a mechanism involving 

NRP2-plexinA1, along with the inactivation of ABL2/ARG, 

p190RhoGAP and RhoA and cofilin (Figure 2B).83

SEMA3G is the most recently identified class 3 sema-

phorin, and its function and mechanism of action in cancer 

remains largely obscure. Data currently available indicate 

that SEMA3G has primarily a tumor suppressive function. 

The SEMA3G gene is located in 3p21.1, a region like 

3p21.3 that is affected by frequent LOH in malignant meso-

thelioma.247 Its expression correlates with increased overall 

survival in patients with glioma.248 In addition, SEMA3G 

is expressed by endothelial cells and has a destabilizing 

effect on endothelial cell–smooth muscle cell interactions.249 

SEMA3G also prevents migration and invasion in an auto-

crine and paracrine fashion by inhibiting the activity of 

MMP2 in vitro, and inhibits tumor growth in an orthotopic 

model of GBM.219,250

Role of NRPs and interacting pro-
tumorigenic growth factors in cancer
NRPs are frequently overexpressed in cancer, and their 

levels have been correlated with more aggressive disease 

in several tumor types, including, for example, melano-

mas and carcinomas of the breast and lung.251 NRPs are 

expressed by endothelial cells lining blood and lymphatic 

vessels, where they enhance VEGFR signaling during tumor 

angiogenesis.234,235 Moreover, several studies have shown 

that both NRPs are expressed on the plasma membrane 

of malignant cells. In this context, NRPs usually enhance 

tumor cell survival and growth while promoting migration 

and invasion into local and distant tissues. In lung cancers, 

we showed that levels of NRP1 and NRP2 increase in the 

progression from dysplasia to micro-invasive carcinoma and 

are correlated with VEGF levels.230 NRPs are expressed in 

a high proportion of resected lung tumors, and their levels 

correlate with advanced stages, mesenchymal transforma-

tion,  invasion, and poor prognosis.129,130,252,253 NRPs promote 

tumor growth and invasion in cancers derived from other 

tissues, including colon,36 gastrointestinal tract,254 kidney,255 

skin,256 prostate,257 breast,258 pancreas,25,46 and brain,259,260 

among others. Mechanistically, reduced levels (or loss) 

of tumor-suppressive class 3 semaphorins combined with 

increased growth factor receptor levels contribute to the pro-

tumoral function of NRPs. However, the exact molecular 

pathways affected by NRPs in each case are difficult to 

define because 1) NRPs interact with multiple pro-tumoral 

ligands and their cognate receptors, and 2) NRPs are 

expressed by many cell types, both in the tumor and in the 

tumor microenvironment. The role of NRPs in response to 

growth factors during tumor progression is summarized 

and discussed below. It should be noted that most studies 

have focused on NRP1, with relatively few addressing the 

role of NRP2. While their strong sequence homology sup-

ports the concept that NRP2 functions are redundant with 

NRP1, experimental data supporting this are rather thin, 

and there are several examples of clearly distinct roles for 

the two NRPs.

Of all the non-semaphorin ligands for NRPs, VEGF 

and the VEGF-signaling pathway is the most thoroughly 
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explored and the best understood (Figure 3). Indeed, NRPs 

are expressed at the surface of endothelial cells in both the 

arterial/venous (NRP1) and lymphatic (NRP2) systems, 

and their expression contributes to tumor-angiogenesis and 

lymphangiogenesis, respectively. Initial studies showed that 

VEGF-A binding to VEGFR-2/NRP1 or NRP2 receptor  

complexes promoted endothelial cell proliferation, migra-

tion, and tube formation in vitro as well as angiogenesis 

in vivo.234,235,261,262 In endothelial cells, NRPs enhance the bind-

ing of VEGF-A
165

 to its receptor and increase ERK1/2 MAPK 

activation.263 The VEGF-A/NRP1/proline-rich TK2 (PYK2/

PTK2B)/p130Cas (BCAR1) axis is also required for endothe-

lial cell chemotaxis.32 NRP2 promotes lymphangiogenesis 

through a mechanism involving VEGF-C and VEGFR-3.20 

Blocking the VEGF-C binding site with an NRP2-blocking 

antibody inhibits tumor lymphangiogenesis and metastatic 

spread to local lymph nodes and distant sites.264 In addition 

to its effects on angiogenesis, VEGF-A
165

 promotes tumor 

cell survival through an NRP- and PI3K/AKT-dependent 

mechanism.265–267 VEGF-A
165

 also promotes physical interac-

tion between NRP1 and c-MET, facilitates c-MET, Src kinase, 

and STAT3 activation, and leads to the upregulation of the 

pro-survival factor, MLC-1.268 VEGF-C binding to NRP2 

prevents oxidative stress and promotes cancer cell survival 

and autophagy.269,270 While the mechanism is unknown, the 

VEGF-C/NRP2 axis inhibits mammalian target of rapamycin 

complex (mTORC)-1 activity, relieving its suppression of 

autophagy and thus contributing to tumor cell survival under 

stress. Tumor cell proliferation is induced by VEGF-A binding 

to NRP1 through a Ras-dependent mechanism.271 Adhesion 

to extracellular matrix and therefore motility and invasive 

capabilities are also affected by VEGF/NRP pathways. For 

example, VEGF-A/NRP2 activates PKC to promote integrin 

α6β1-dependent adhesion to laminin, a mechanism that also 

involves integrin α6β1-mediated activation of FAK and Src.272 

Tumor cell invasion is induced by VEGF-A/NRP1-dependent 

induction of chemokine receptor (CXCR)-4.258 VEGF-A/

NRP1 also stimulates the EMT using a mechanism that 

involves GSK-3β inhibition and Snail translocation to the 

nucleus.273,274 Osteopontin, a ligand for integrins and CD44 

that has pro-metastatic functions, was shown to promote tumor 

growth and angiogenesis by inducing VEGF-A expression. 275 

Mechanistically, osteopontin promotes Brk/NF-κB–inducing 

kinase (NIK)-dependent NF-κB activation, which translocates 

ATF4 into the nucleus, inducing the expression of VEGF-A. 

Consequently, VEGF binding to NRP1 at the surface of tumor 
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and endothelial cells increases their motility. In two studies, 

VEGF-A was shown to directly increase, through NRP1, the 

pool of cancer stem cells (CSC) in skin cancer and GBM, 

and to promote CSC proliferation and tumor growth.256,276 

Recently, in a breast cancer initiation model, VEGF/NRP2 

was shown to activate the α6β1 integrin signaling pathway, 

leading to FAK and downstream RAS/MEK activation. This 

led to activated Gli1 through a non-canonical pathway that 

did not involve the hedgehog components, SMO and sup-

pressor of fused (SUFU). Gli1 was shown to induce BMI-1, 

a key stem cell factor and component of the polycomb 

complex 1. Interestingly, this pathway involves an autocrine 

loop, since Gli1 also induces VEGF and NRP2.277 However, 

most of these studies have not clearly established whether 

the tumor cell function of NRP was completely independent  

of VEGFR-1, -2, or -3 or required interaction with these 

canonical receptors.

PlGF-2, a VEGF family member, was the second growth 

factor identified to physically interact with NRPs.262,278 

However, while the expression of PlGF and NRP has been 

correlated with poor prognosis in cancer,279,280 very little is 

known about either the pathways activated by PlGF/NRP 

interaction or their cellular function(s). Nevertheless, a recent 

study showed that inhibition of the PlGF/NRP1 pathway has 

anti-tumor and anti-metastatic effects on medulloblastoma 

(Figure 4).281 Interestingly, PlGF expression is induced by 

sonic hedgehog (Shh) in the stroma and regulates the sur-

vival of NRP1-expressing tumor cells (Figure 4). Of note, 

in another model, NRP1 transcription was induced by Shh, 

and NRP1 overexpression stimulated Shh signaling, support-

ing the hypothesis of a positive feedback loop.282 In renal 

cancer, NRP1-driven Shh signaling activation promotes 

an undifferentiated phenotype.255 However, whether these 

pathways depend upon or modulate the response to PlGF 

is unknown.

Galectin-1 has recently been identified as an NRP ligand. 

Galectins comprise a large family of β-galactoside-binding 

proteins characterized by one or two carbohydrate-binding 

domains.283 Galectins are found in both the cytoplasm and the 

extracellular milieu, where they can link glycoproteins with 

N- or O-linked glycan moieties by dimerization. Galectins 

have been linked to angiogenesis, tumor cell migration, and 

adhesion. Galectin-1 is highly expressed in tumor-associated 

endothelial cells, and its binding to NRP1 induces VEGFR-2 

phosphorylation, stress-activated protein kinase (SAPK1)/

Jun amino-terminal kinase (JNK) activation, and promotes 

cell proliferation and adhesion (Figure 4).23 Interestingly, 

galectin-1 is highly expressed by mesenchymal stem cells 
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(MSCs) and inhibits the proliferation of NRP1-expressing 

T-cells.284 This latter activity suggests that galectin-1 could 

have a suppressive effect on the immune system and create 

an environment favorable for tumor development.

While it is not proven that NRPs directly bind HGF, sev-

eral studies indicate that NRPs interact with c-Met, leading to 

increased HGF/c-Met signaling. NRP1 promotes glioma pro-

gression by increasing tumor cell survival and proliferation 

in an HGF/c-Met-dependent manner (Figure 4).24 In prostate 

cancer cells, VEGF increases physical interaction between 

NRP1 and c-MET and stimulates c-MET phosphorylation 

(Figure 3). This leads to Src and STAT3 activation, and results 

in increased tumor cell survival.268 Whether this mechanism 

involves HGF is unknown. However, in pancreatic cancer 

cells, invasion is mediated by HGF and is also increased by 

NRP1 expression.285 This response is mediated through the 

activation of p38, Src, and AKT.

PDGF has been shown to physically interact with NRP1.27 

In breast cancer cell models, PDGF secreted by tumor cells 

promotes the migration of NRP1-expressing vascular smooth 

muscle cells (SMCs) (Figure 4). In addition, PDGF-B inter-

acts with NRP1 and promotes the differentiation of MSCs 

into pericytes.30 However, the pathways regulating these two 

functions have not been defined.

Very recently, both NRP1 and 2 have been identified as 

co-receptors for the latent and active forms of TGFβ, a key 

factor that drives the EMT.33,34 TGFβ exerts its effects by 

interacting with a receptor complex that transduces the 

signal through TGFβRI. In canonical signaling, TGFβRI 

phosphorylates R-Smads (Smad2 and 3), which interact 

with Smad 4 and translocate to the nucleus.286 Alternatively, 

TGFβ can also signal through non-canonical pathways, such 

as ERK1/2, PI3K/Akt, JNK/p38, and Rho-like GTPases.287 

NRPs interact with TGFβRI and RII, affecting TGFβ 

canonical signaling and EMT induction, as well as cell phe-

notype, migration, and invasion (Figure 4).34–36 However, in 

a prostate cancer model, NRP1 was shown to be indirectly 

targeted by TGFβ.274 Indeed, Mak et al274 showed that TGFβ 

induces hypoxia and HIF-1α expression by inhibiting estro-

gen receptor (ER)-β. As a consequence, levels of VEGF-A 

increased and, through an NRP1-dependent mechanism, 

induced GSK-3β inhibition and Snail translocation to the 

nucleus, leading to the loss of E-cadherin, and increased 

migration/invasion (Figure 4). Of note, none of these previ-

ously described studies reported an effect of TGFβ stimula-

tion on NRP expression. In contrast, we recently observed 

that TGFβ1 up-regulates NRP2  expression in lung cancer 

models (Figure 4).252 A similar induction of NRP2 had been 

found in a model of renal fibrogenesis.288 In fact, TGFβ 

stimulates NRP2 translation but has at most a moderate 

effect on its transcription. This mechanism involves TGFβ 

non-canonical pathways, including ERK1/2 and AKT, and, 

to some extent, ZEB-1, a transcription factor involved in 

EMT. In turn, NRP2 expression also stimulates ERK1/2, 

inhibits epithelial gene expression, promotes mesenchymal 

gene expression, and increases migration and invasion 

in vitro and in vivo.

Strategies developed to target 
semaphorin signaling
Three main avenues have been pursued to develop anti-

tumor therapeutic strategies targeting semaphorin signaling: 

1) restoring the tumor-suppressive effects of SEMA3s; 

2) inhibiting the pro-tumoral effects of other SEMA3s; 

3) blocking the pro-tumoral effects of growth factors that 

also bind NRP by inhibiting NRP function.

Restoring Sema3-mediated tumor-suppressive effects
Strategies used to restore the expression of anti-tumoral 

class 3 semaphorins either involved compounds that restore 

expression in tumor cells or vectors and genetically modi-

fied delivery systems that specifically target tumor cells. An 

alternative approach does not restore anti-tumor SEMA3 

expression, but exploits peptides derived from the sema-

phorin sequence as a system to deliver toxic agents to cancer 

cells and prevent tumor progression.

Compounds that can restore SEMA3 expression in 

tumors include steroid hormones. For example, in endome-

trial cancer, low levels of SEMA3B and SEMA3F increase 

in response to progesterone (P4) and 1,25-dihydroxyvitamin 

D(3) (1,25(OH)(2)D(3)), two molecules that reduce tumor 

growth by increasing apoptosis.231 Conversely, the down-

regulation of these two semaphorins attenuates the growth 

inhibition mediated by these two drugs, highlighting the 

important role of both semaphorins in this response. In 

pancreatic cancer, (-)-epigallocatechin-3-gallate (EGCG), 

a bioactive agent found in green tea, inhibits tumor growth, 

in part by up-regulating SEMA3F and down-regulating 

VEGF and NRP expression.289 EGCG blocks the EMT 

process by inhibiting the ERK1/2 and PI3K/AKT pathways, 

and by increasing E-cadherin and decreasing N-cadherin, as 

well as ZEB1 expression. Interestingly, we recently showed 

that NRP2 expression is induced by TGFβ1-mediated 

activation of ERK1/2, AKT, and, at least in part, ZEB1, 

in lung cancer.252 This suggests that EMT and SEMA3F/

NRP2 pathways could antagonize each other in a broad 
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spectrum of cancers and that EGCG could have a potential 

therapeutic effect in SEMA3F-negative tumor cells that 

express NRP2.

The second strategy consists of increasing the concen-

tration of SEMA3s in the tumor using cell-based delivery 

systems. This has recently been achieved using transformed 

tumor-infiltrating Tie2 monocytes to deliver SEMA3A.290 

SEMA3A released from these monocytes affects tumor vascu-

lature and vessel functionality, reducing the growth of primary 

tumors and the amount of metastases found in the lungs.

A third strategy uses a peptide sequence matching a 

portion of a SEMA3 as a ‘drug-delivery system’ to carry a 

linked toxin into cancer cells in order to inhibit tumor growth. 

For example, a peptide derived from the SEMA domain of 

SEMA3A was fused to a cytotoxic lytic peptide containing D- 

and L-cationic-rich amino acids.291 This amino acid sequence 

forms amphipathic partial α-helices that specifically disrupt 

the cancer cell membrane. The ‘SEMA-lytic’ hybrid proved 

to have a potent apoptotic effect on cancer cells expressing 

NRP1. Importantly, no cytotoxic effect was observed on nor-

mal cells, in vitro. However, the effects of this ‘SEMA-lytic’ 

hybrid peptide have not yet been reported in vivo.

Blocking the pro-tumoral effects of SeMA3s
A preclinical study was recently reported in which a 

plexin-D1-derived polypeptide was used as a ligand trap 

to inhibit SEMA3E tumor-promoting effects.188 The poly-

peptide contained the SEMA domain and two flanking PSI 

domains of plexin-D1. The authors showed that repeated 

intra-peritoneal injections of this polypeptide were able to 

inhibit tumor growth and reduce metastatic spread in two 

breast cancer models. Indeed, in the absence of the ligand, 

plexin-D1 binds to the nuclear receptor NR4A1 and medi-

ates apoptosis.

SEMA3A immuno-suppressive and pro-tumoral functions 

in glioblastoma and colon cancers could be inhibited by a 

selective inhibitor, SM-216289, that interferes with SEMA3A 

binding to NRP1.292 Similar results were obtained with an 

antibody, YW107.4.87, directed specifically against the 

semaphorin-binding domain of NRP1.293 Indeed, the inhibitor 

counteracted SEMA3A negative effects on axon regeneration 

and neuron survival in a spinal cord injury model and the 

antibody blocked SEMA3A-induced neuron collapse.

Blocking the pro-tumoral function of NRP
Administration of natural soluble variants of Nrp1 (sNRP1) 

can inhibit the tumor-promoting effects of NRP by acting 

as a trap for multiple ligands. While it is known that NRP1 

interacts with several growth factors, the strategy was ini-

tially developed to trap VEGF and this showed some tumor-

inhibiting effects.51,294 Other strategies consist of inhibiting 

NRP expression by short hairpin RNA (shRNA) or small 

interfering RNA (siRNA) or blocking their function with 

peptides or antibodies. Several studies describe peptides 

and small-molecule inhibitors that have been developed 

to inhibit NRP function.38,253,267,295–308 Most of these studies 

were originally designed to identify peptides that would 

prevent VEGF binding to NRP1 and, therefore, would 

inhibit downstream VEGF signaling and function. From 

these studies, a minimal consensus amino acid sequence, 

R/KXXR/K, present in the C-terminal sequence of VEGF-A, 

has been identified that is crucial for VEGF binding to the 

‘b1’ domain of NRP1. Peptides derived from this so-called 

C-end Rule (CendR) sequence prevented NRP1/VEGFR-2 

complex formation, inhibited VEGF signaling, and pro-

moted receptor internalization. A recent report showed that 

NRP2 can also internalize CendR peptides.306 In addition, 

dimeric and tetrameric forms of these peptides have even 

higher affinity for NRPs than does the monomeric form.296 

CendR peptides induce apoptosis and inhibit migration of 

tumor and endothelial cells, in vitro. Furthermore, they 

inhibit tumor growth, metastases, and tumor-associated 

angiogenesis, in vivo, in several cancer models including 

breast, lung, leukemia, and lymphoma. In some stud-

ies, CendR peptides have been modified and attached to 

therapeutic peptides305,307 or co-injected with other drugs 

such as abraxane, doxorubicin, paclitaxel, cisplatin, and 

trastuzumab.299,300,302,304 In all these studies, the combination 

with CendR peptides increased the efficacy of the drugs by 

improving their internalization in the cells as well as the 

depth of their penetration in the tumor tissue. While these 

results are encouraging, the specificity, efficacy, and safety of 

CendR peptides in cancer therapy remains to be established. 

Another strategy consisted of targeting the transmembrane 

domain of NRP1 to prevent homo- and hetero-dimer forma-

tion.38,301 A peptide derived from a GXXXG motif present 

in the transmembrane segment of NRP1 inhibited human 

and murine glioma cell proliferation and migration in vitro 

as well as tumor-associated angiogenesis and tumor growth 

in vivo.301 Geretti et al267 generated a mutated and soluble 

peptide similar in sequence to the B-domain of NRP2 (mutB-

NRP2). Using it as an alternative ligand trap for VEGF, the 

authors showed that, compared with Avastin (bevacizumab), 

an anti-VEGF antibody, mutB-NRP2 prevented the binding 
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of VEGF to NRP1 and NRP2. As a consequence, the combi-

nation of MutB-NRP2 and Avastin improved the efficacy of 

each treatment and inhibited tumor growth in a melanoma 

model. Following the same idea, a small-molecule inhibitor, 

EG00229, designed to target the ‘b1’ domain appeared to 

affect VEGF-A binding to NRP1 and the viability of A549 

lung carcinoma cells.302 Interestingly, it also increased the 

potency of paclitaxel and 5-fluorouracil (5-FU).

Antibodies against NRP1 (anti-Nrp1A and anti-Nrp1B) 

and NRP2 (anti-NRP2 B) have been developed by Genen-

tech.264,293 The ‘A’ antibodies were designed to target the 

semaphorin-binding domains, while the ‘B’ antibodies were 

designed to target the VEGF-binding domains of NRP1.309 

 Surprisingly, both anti-NRP1 antibodies had a negative effect 

on primary tumor growth by reducing angiogenesis and 

vascular  remodeling. However, while it was speculated that 

the binding of the antibodies could result in the internaliza-

tion of the receptor complex, a more recent study revealed 

that sNRP1 plasma levels increased with the dose of anti-

Nrp1B antibody injected.310 Therefore, one could speculate 

that soluble ecto-domains resulting from the shedding of 

transmembranous NRP1 from the cell surface could act as a 

trap for growth factors in the tumor microenvironment. The 

antibody generated to block NRP2 offers some different pos-

sibilities compared with the anti-NRP1 antibodies in terms 

of therapeutic potential. Indeed, while treatment with the 

anti-NRP2 antibody had no effect on primary tumor growth, 

it inhibited tumor-associated lymphangiogenesis and lung 

metastases.264 This suggests that the two antibodies could 

have additive effects or could be used sequentially to prevent 

tumor growth and invasion in some cancers.

Recent advances indicate that cancer stem cells are the 

leading cause of drug resistance in cancer treatment. In 

breast cancer, tranilast, a drug that inhibits cancer stem cells, 

suppressed NRP1 and NF-κB expression.311 Moreover, 

NRP1 down-regulation prevented mammosphere formation 

and inhibited constitutive NF-κB. Therefore, while the role 

of NRPs and the pathways involving NRPs during the devel-

opment of drug resistance remain obscure, therapies aimed 

at targeting NRPs could, in theory, delay the development 

of resistance mechanisms in several cancers.

Conclusion and future perspectives
During the past decade, an impressive effort has been 

devoted to understanding the role of class 3 semaphorins 

and their receptors during tumor growth and metastatic 

spread. It is now evident that these molecules control 

various cellular functions, including viability, apoptosis, 

 proliferation,  adhesion, migration, and invasion. More 

importantly, SEMA3s and NRPs influence both the tumor 

compartment and its micro-environment and can either 

promote or inhibit tumor growth. This duality of response 

raises the question as to which effect will be dominant in 

any given context. In addition, several studies show that 

different class 3 semaphorins can affect similar cancer 

models. This raises the possibility of an overlap in their 

function. Accordingly, NRPs have often been shown to be 

expressed in the same cell types and frequently described 

as having similar functions. Yet, in some specific contexts 

it has been proven that the expression of only one or two 

semaphorins is lost in cancer and that NRP expression 

can vary in an opposite manner. Therefore, while class 3 

semaphorins and NRPs share common functions, it is clear 

that each of them may have a specific role during key steps 

of tumor progression and metastatic spread. However, 

this question remains poorly addressed in current cancer 

models and will need further investigation to determine 

whether a universal ‘semaphorin–NRP-based therapy’ is 

possible or if therapies targeting these molecules need to 

be more specific. All in all, the complexity inherent in the 

SEMA/NRP signaling axis suggests that it will be difficult 

to predict a priori the outcome of any therapeutic strategy 

and that only careful testing can establish circumstances 

that maximize efficacy. Because SEMA3s and NRPs are 

expressed in several organs, an important future challenge 

will be to target their function specifically in the tumors to 

limit important side effects. Also, while important aspects 

of SEMA3 and NRP function are understood, others remain 

obscure. For example, the role of some SEMA3s remains 

elusive. In several cancer models, it is also frequently 

unclear whether NRP1 and NRP2 share overlapping or 

separate functions and whether they are differentially 

expressed during important phases of tumor progression. 

Both NRPs are glycosylated, and a few studies have shown 

that their level of glycosylation can influence the ability 

to bind certain ligands or the ability of cells to migrate. 

Whether changes in the glycosylation status of NRP occur 

during tumor progression is therefore an important ques-

tion to address. Another important aspect is the role of each 

NRP isoform, which is virtually unknown and has been 

almost completely overlooked in cancer studies. Future 

work will hopefully address these questions in order to 

develop therapies that will specifically target tumor cells 

and improve patient outcomes.
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