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Reference carbon cycle dataset 
for typical Chinese forests via 
colocated observations and data 
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Guoyi Zhou   5, Zongqiang Xie6, Silong Wang7, Huimin Wang1, Qibin Zhang6, Anzhi Wang7, 
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Guirui Yu   1,2,3 ✉

Chinese forests cover most of the representative forest types in the Northern Hemisphere and function 
as a large carbon (C) sink in the global C cycle. The availability of long-term C dynamics observations is 
key to evaluating and understanding C sequestration of these forests. The Chinese Ecosystem Research 
Network has conducted normalized and systematic monitoring of the soil-biology-atmosphere-
water cycle in Chinese forests since 2000. For the first time, a reference dataset of the decadal C cycle 
dynamics was produced for 10 typical Chinese forests after strict quality control, including biomass, 
leaf area index, litterfall, soil organic C, and the corresponding meteorological data. Based on these 
basic but time-discrete C-cycle elements, an assimilated dataset of key C cycle parameters and time-
continuous C sequestration functions was generated via model-data fusion, including C allocation, 
turnover, and soil, vegetation, and ecosystem C storage. These reference data could be used as a 
benchmark for model development, evaluation and C cycle research under global climate change for 
typical forests in the Northern Hemisphere.

Background & Summary
Forests contain up to 80% of the terrestrial aboveground carbon (C) and 40% of the below-ground C and thus 
play a critical role in the terrestrial C cycle1. A recent study reveals that forests now serve as a net C sink for atmos-
pheric CO2

2. However, whether the forest C sink will persist under climate change remains largely uncertain3,4.
Therefore, the availability of long-term and systematic observations of forest C dynamics is critical for improving 
the fundamental knowledge and understanding of forest C cycle processes and the robustness of forest C sink 
quantification and predictions.

The colocated network monitoring has developed over decades and provides a promising tool for obtain-
ing long-term, intersite, multiple C cycle data5,6. Examples of such networks include the Long-Term Ecological 
Research Network (LTER), UK Environmental Research Network (ECN), and the Chinese Ecosystem Research 
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Network (CERN). Among them, CERN has conducted systematic observations on the soil, atmosphere, biology, 
and water in accordance with unified monitoring standards since 20007,8, and it has accumulated large amounts 
of long-term data on Chinese forests. The eastern China monsoon region, in particular, has been revealed to be 
one of the most significant C sink regions worldwide due to its special monsoonal climate, high nitrogen depo-
sition, and relatively young age structure9. For this important forest, CERN can provide the only comprehensive 
dataset covering the typical forest types in this region in the Northern Hemisphere with few human activities, 
such as land use and cover change, destructive logging or sampling disturbances. This dataset can serve as an 
important benchmark for the analysis and assessment of regional and global C dynamics under global environ-
mental change, such as climate change, increasing CO2 concentration and nitrogen deposition. In contrast to 
the numerous studies assessing aspects of the forest C cycle based on long-term and open-access data collected 
by ECN and LTER10,11, the integration and reanalysis of CERN data are still at the early stages. Recently, some 
researchers began to collect CERN data to investigate C cycle states and processes in forests, e.g., biomass and 
soil C density12,13, biodiversity14, tree mortality15, C allocation16,17, and ecosystem C turnover time18,19. These C 
cycle processes, e.g., C allocation and turnover, with various climate sensitivities collectively regulate the rep-
resentation of how the forest C cycle responds to the climate4,20,21. At present, due to a lack of observations, even 
most state-of-the-art earth system models fail to accurately represent C allocation and turnover times22,23, which 
is largely responsible for the high uncertainty in the predictions of the forest C sink and its response to future 
climate change24–26. Therefore, it is critical and timely to 1) integrate and produce long-term, across-site, and sys-
tematic basic C cycle datasets based on CERN observations and 2) retrieve robust key C-cycle process parameters 
and time-continuous ecological function dataset (i.e., C sequestration) based on these basic reference data to 
better evaluate the spatiotemporal C dynamics of these important forests.

Here, we generated a time series and comprehensive dataset of the atmosphere, water, biological and soil 
C cycle based on CERN raw observations and statistical processing with strict collection criteria and quality 
control. On this basis, we also conducted a model-data fusion (MDF) framework to generate another assim-
ilated dataset, including C cycle process parameters and C sequestration function products, neither of which 
can be obtained solely from observations. Moreover, the MDF framework achieved temporal interpolation from 
the basic time-discrete C cycle data to the time-continuous C sequestration function product. Recently, simi-
lar MDF-based time-continuous product was developed as novel benchmark in the International Land Model 
Benchmarking (ILAMB) project on C cycle27,28.

In this paper, we systematically described the estimation of basic C cycle elements and the MDF method to 
assimilate the C cycle parameters and sequestration functions of the Chinese Forest Carbon Cycle Dynamics 
(CFCCD) database (Fig. 1). This paper presents an observation-based basic dataset comprising monthly and 
annual atmospheric data, water data, and biological and soil C data from ten typical Chinese forests, an assim-
ilated dataset of the C cycle parameters and time-continuous C sequestration (annual) from 2005 to 2015, and 
some flux data from the Chinese Terrestrial Ecosystem Flux Research Network (ChinaFLUX), which are used as 
auxiliary validation data in the MDF. This CFCCD database can provide as reference/benchmark for ecological 
modeling and C dynamics research under climate change for such typical forests in the Northern Hemisphere.

Methods
We selected 10 permanent plots with long-term observations from CERN to include typical forest types of various 
ages in the East China monsoon forest region, including tropical rainforests, subtropical evergreen coniferous 
and broad-leaved mixed forests, warm temperate deciduous broad-leaved forests and temperate coniferous and 
broad-leaved forests, with evident precipitation and temperature gradients from south to north (Fig. 1). The 
spatial representativeness of the selected 10 sites across the Chinese forest region was evaluated by calculating 
the Euclidean distance based on various environmental factors. The 10 sites performed well and represented 
more than 80% of the Chinese forest region (Fig. S1). Of these forests, the Xishuangbanna tropical seasonal 
rainforest (BNF), Dinghu Mountain subtropical evergreen coniferous and broad-leaved mixed forest (DHF), 
Ailao Mountain subtropical evergreen broad-leaved forest (ALF), and Changbai Mountain temperate decidu-
ous coniferous and broad-leaved mixed forest (CBF) are mature natural forests; the Shennongjia subtropical 
evergreen deciduous broad-leaved mixed forest (SNF) and Huitong subtropical evergreen broad-leaved forest 
(HTF) are natural secondary forests; and the other sites, i.e., the Beijing warm temperate deciduous broad-leaved 
mixed forest (BJF), Maoxian warm temperate deciduous coniferous mixed forest (MXF), Qianyanzhou subtrop-
ical evergreen artificial coniferous mixed forest (QYF), and Heshan subtropical evergreen broad-leaved forest 
(HSF), are plantations or middle- and young-age forests. All 10 sites are well protected and subject to minimal 
human activities, thus reflecting the C cycle dynamics under global environmental change, e.g., climate change, 
increasing CO2 and nitrogen deposition. The detailed characteristics of each plot can be found in their profiles in 
the CFCCD database.

There are three main steps to create the observation-based basic dataset and assimilated dataset of typical 
Chinese forests C cycle dynamics:

	 1.	 Observation-based basic data acquisition. An ensemble of daily atmospheric and water data at ten CERN 
sites were used as forcing datasets for MDF and future scientific analysis; biological and soil data were 
also collected from CERN and processed by quality control and statistical calculation as benchmark to 
constrain the model.

	 2.	 Implementation of a multiple data-model fusion framework. The Markov Chain Monte Carlo (MCMC) 
that integrated the Data Assimilation Linked Ecosystem Carbon (DALEC) model with multiple and dynam-
ic observational data was used to retrieve C-cycle process parameters in a realistic disequilibrium state.
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	 3.	 Key process parameters and C function data assimilation. The key parameters of the process-based C 
cycle model (DALEC) were determined via the model-data fusion method; then the ecosystem C seques-
tration datasets were simulated by forward running the DALEC model with optimized parameters and 
then validated based on observational data and other previous studies.

Each step is explained in more detail below.

Observation-based basic data acquisition.  Atmospheric and water data.  In situ observations of daily 
air temperature (Ta), photosynthetically active radiation (PAR), relative humidity (RH), precipitation (Precip), 
and soil moisture (Sw) at the 10 sites from 2005 to 2015 were obtained from the CERN scientific and technologi-
cal resources service system (http://www.cnern.org.cn/). These atmospheric and water data were mostly observed 
by an automatic meteorological station at each site. Among them, the PAR was estimated by a LI-COR LI-190SZ 

Fig. 1  Schematic overview of the methodology and data products via the colocated CERN observations and 
long-term data assimilation. The flow diagram shows the methodological steps (left) and the data product 
systems (right) for the observation-based and assimilated databases. The bottom panel shows the general view 
of the data structure of the Chinese Forest Carbon Cycle Dynamics (CFCCD) database.
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Quantum Sensor; Ta and RH were measured by a QMT110 sensor; Sw was estimated by a soil moisture neutron 
probe or the Time-Domain Reflectometry (TDR) soil moisture probe; the associated saturated soil water capac-
ity (Sc) was measured by the cutting ring method to sample soil in each field campaign and the oven-drying 
method to measure saturated moisture content after the soil was soaked in water for 48 h; and Precip was artifi-
cially observed by CERN staff using an SM1-1 rain gauge. These monitoring data were collected in keeping with 
CERN’s protocols of observation and quality control29,30.

There were occasional missing data in time-continuous meteorological observations; therefore, the data were 
processed by standardized gap filling31. Specifically, for Ta, PAR, and RH, which were applied as model driver, 
we used a linear interpolation method to interpolate continuous missing data with less than three observations; 
otherwise, we established a regression model using the CERN observations and other observations from adjacent 
stations of the China Meteorology Administration (756 meteorological stations; http://data.cma.cn/en) to inter-
polate continuous missing data with more than three observations.

Biological data.  Biomass. At each site, the diameters at breast height (DBHs) and tree heights were measured 
for each tree in a regular inventory performed at least once every five years. The allometric equations of the DBH 
and/or tree heights with the biomasses of different plant tissues (i.e., leaves, branches, stems and roots) were 
developed at each site for various species based on the felled standard trees in the destructive plot. Then, we 
calculated the biomasses for the ten ecosystems using these allometric equations (FA02 table downloaded from 
http://www.cnern.org.cn/), which all passed the significance test (0.01 level) and have the R2 most above 0.9 when 
its estimation compare to observations from standard trees. For some unfelled species under protection, the allo-
metric equations were obtained from Luo et al.32, which were developed based on national inventories and meta 
analyses from the published literature.

Litterfall. The aboveground litterfall biomass was measured monthly by ten replicates with 1 m × 1 m baskets 
during the growing season or once during the nongrowing season. All collected litter was dried at 70 °C for 24 h 
in the laboratory and then weighed. To avoid the effects of wind on the measurement of litterfall biomass within 
an individual month, annual litterfall biomass data were finally adopted for each site.

LAI. The leaf area index (LAI) at each site was measured optically with an LAI-2000 plant canopy analyzer 
(LI-COR, Lincoln, NE, USA) at least quarterly every year.

Soil data.  Soil organic matter (SOM) was measured by the potassium dichromate oxidation titrimetric method. 
Soil bulk density (SBD) was measured by the cutting ring method in each field campaign at 10 forest sites. Soil 
particle size (i.e., soil mechanical composition) was measure by the laser particle analyzer. At least three samples 
were collected from each of the five soil layers (0–10, 10–20, 20–40, 40–60, and 60–100 cm) once every five years.
SOC. The soil organic C (SOC) content was calculated from SOM, SBD, and volume percentage of gravel with 
particle size >2 mm at 10 forest sites as follows33:

∑= . × × × × − θ ×=SOC H B O0 58 (1 ) 100 (1)i
n

i i i1

where SOC is the soil organic C density (g C/m2) of all n layers, Hi is the soil thickness (cm), Bi is the soil bulk den-
sity (g/cm3), Oi is the SOM content of the ith layer (%), and θ is the volume percentage (%) of gravel with particle 
size >2 mm. In the absence of soil bulk density or soil organic matter content measurements in some layers, the 
missing soil measurements corresponding to specific soil depths of theses forest ecosystems were supplemented 
according to the empirical formulas of the relationships between SOM/soil bulk density and soil depth in different 
layers, which were developed based on the long-term and across-site CERN soil observations34.

All these raw atmospheric, biological, and soil data mentioned above can be directly download from CERN 
scientific and technological resources service system (http://www.cnern.org.cn/data/initDRsearch) or obtained 
after online application via protocol sharing.

Auxiliary flux data.  Net ecosystem exchange (NEE). These data were obtained from ChinaFLUX (http://www.
chinaflux.org/), covering CBF, QYF, and BNF. The data were aggregated to the daily time step from half-hourly 
CO2 flux data measured by the eddy covariance technique and processed with quality control and gap filling 
procedures35.

Implementation of MDF method.  The assimilated data were retrieved from a multiple data-model 
fusion method (Fig. 2). Specifically, the long-term and dynamic observations of biomass, litterfall, LAI and SOC 
were used as the model constraint data; Ta, PAR, and RH were used as the meteorological driving data; and the 
metropolis simulated annealing algorithm, a variation in the MCMC technique36,37, was applied to retrieve the C 
cycle parameters (e.g., C allocation and C turnover times) against the observations and prior knowledge. Then, we 
forward-simulated the model to produce the dynamic and time-continuous changes in ecosystem C sequestration 
function.

Since the dynamic C cycle observations provided an effective solution to constrain the C cycle states without 
the steady state assumption (SSA), the novelty of our MDF framework involves estimating these C cycle dynamics 
in better agreement with the actual dynamic disequilibrium state38. Therefore, the uncertainty in allocation and 
turnover parameters and in C pool states have largely been reduced based on the time-series observations under 
the non-SSA (NSSA)21,39,40, thereby significantly enhancing the model’s ability to predict the C sequestration 
function19,41,42.
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Carbon cycle process model description.  DALEC is a box model of C pools connected via fluxes running at a daily 
time step and has been applied extensively to the MDF research21,43. Its main structure (i.e., C cycle, C alloca-
tion, and turnover process) is generally consistent with state-of-the-art process-based models (Fig. S2; Table S1), 
with five pools (i.e., foliage (Cf), fine root (Cr), woody (Cw, including branches, stems, and coarse roots), litter 
(Clit) and SOM (Csom)) for evergreen forests and an additional labile pool (Clab) of stored C that supports leaf 
flushing for deciduous forests. The C cycle was initiated with the canopy C influx: gross primary productivity 
(GPP), which was predicted by the Aggregated Canopy Model (ACM)44 (Appendix S1). After GPP is consumed 
by autotrophic respiration (Ra), the remaining photosynthate (NPP) is allocated to plant tissue pools (Cf, Cr, or 
Cw). The C exiting from all C reservoirs was based on a first order differential equation with various turnover 
rates, with temperature and moisture dependency on the turnover from the litter and soil pools. In contrast to the 
original DALEC model only with temperature scalar fTa, here we added a new function fSw to express soil moisture 
pressure on litter and soil decomposition processes (Appendix S1). In general, the C pools and fluxes in DALEC 
were iteratively calculated at a daily time step and determined as a function of the key turnover and allocation 
parameters. A detailed model description can be found in Williams et al.45 and Fox et al.46.

Multiple data-model fusion at the nonsteady state.  In a realistic disequilibrium state, C pools are time-variant, 
i.e., the C efflux is not equal to the C influx ≠( )0dC

dt
; thus, the MDF was run via the dynamic and long-term 

CERN observations to constrain the DALEC model at the non-steady state (Eq. 2). Here, to avoid the uncertainty 
arising from the spin-up process under SSA, we determined the initial state of the C pools by the initial observa-
tions of C stocks or by optimization (i.e., Clab, which cannot be directly observed). Then, the turnover and allo-
cation parameters were retrieved under the disequilibrium state with dynamic environmental forcing. This 
method avoids the considerable uncertainties when invoking the SSA to estimate the initial state of C pools and 
the C cycle parameters(e.g., allocation coefficients and turnover rates)39,40,47, which could lead to obvious biases 
in C sequestration19.
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where Ci, Ii, and ki represent the size, input and turnover rate of the ith C reservoir, respectively; Ci0 represents 
the initial state of the ith C reservoir; t represents the specific model-running time step (daily step); and ΔCi 
represents the ith C pool change between t day and t +1 day when applicable into actual calculation. According 
to the Bayesian theory, the posterior distributions of the parameters are calculated by maximizing the likelihood 
function (Eq. 3).
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Fig. 2  Flowchart of the generation of assimilated datasets in a multiple- and long-term data assimilation 
framework.
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where L is the integrated likelihood function; m is the number of multiple data types; n is the number of data 
points categorized by the jth data type; xj,i is the measured value composed of dynamic C cycle observations; μj,i(P) 
represents the modeled fluxes and stocks based on parameters under the NSSA (P); and σj is the standard devia-
tion of each data point classified by the jth data type. Moreover, we imposed a sequence of ecological and dynamic 
constraints on the model parameter inter-relationships and pool dynamics (Appendix S2), which can significantly 
reduce uncertainty in model parameters and simulations48. The more detailed disequilibrium method can be 
found in our latest study19.

Key C-cycle process parameters and C sequestration data assimilation.  Key process parameter 
estimation.  Here, we mainly focus on how the C input (i.e., the net primary productivity) partitioned into vari-
ous plant pools (i.e., foliar, wood, and fine roots), i.e., allocation coefficients, which could be directly determined 
from the optimized parameters (Fig. S3) of the DALEC model after the step 2: MDF method. Another key process 
parameter, C turnover time, needs further simple statistical calculation based on the model simulations with opti-
mized parameters. Turnover time is commonly estimated by the equation “τ = stock/flux”20,49. Since the C influx 
is not equal to the C efflux in the realistic dynamic disequilibrium state, the turnover time should be defined as 
the ratio between the mass of a C pool and its outgoing flux50. Note that with few natural and anthropogenic dis-
turbances in these well-protected CERN sites12,18, the C efflux is approximately equivalent to the Rh from soil and 
litterfall (mortality) and Ra (growth) from vegetation. Hence, the turnover time for vegetation, soil, and whole 
ecosystem can be derived as follows:
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where τveɡ, τsoil, and τeco refer to the biomass, soil and whole-ecosystem turnover times, respectively; Clive, Cdead 
and Ceco refer to the live biomass C pool size (Cf, Cr, and Cw,), dead organic C pool size (Csoil and Clitter), and the 
whole-ecosystem C pool size, respectively; Ilive, Idead and Ieco refer to the C input into the live biomass C pool, dead 
organic C pool, and whole ecosystem C pool, respectively; ΔClive, ΔCdead and ΔCeco refer to the changes in the live 
biomass C pool, dead organic C pool size, and whole-ecosystem C pool size, respectively; and Ra, Rh and litterfall 
refer to the autotrophic and heterotrophic respiration, and turnover from all live C pools (i.e., foliage, fine root 
and woody pools),respectively, as calculated from the DALEC output driven with the estimated parameters dur-
ing 2005–2015. Since the C reservoirs, fluxes, and turnover times are instantaneous values, we used the averages 
of the fluxes and reservoirs over multiple years to reflect the average turnover time during a specific period (i.e., 
2005–2015).

Time-continuous C sequestration estimation.  The optimized parameter values under the NSSA along with the 
initial observations of the corresponding C pool sizes were used in forward modeling driven by dynamic environ-
mental variables from 2005 to 2015 to obtain the time-continuous soil and vegetation C storage51. The difference 
between the ecosystem C influx (GPP) and ecosystem respiration (Ra+Rh) is used to examine the ecosystem C 
sequestration, i.e., net ecosystem productivity (NEP). Similarly, the difference between the ecosystem C influx 
(GPP) and ecosystem autotrophic respiration (Ra) is used to examine the net primary ecosystem productivity 
(NPP).

Data Records
The CFCCD database consists of three dataset types (Fig. 1) that were recorded in a series of Microsoft Excel files, 
which can be found on the Figshare repository at (https://doi.org/10.6084/m9.figshare.12331400.v2)52. Among 
them, the ‘profile file’ (CFCCD Profile.xlsx) includes site and observation information, such as site code; site 
name; site plot area; site coordinates (longitude and latitude); site characteristics; site disturbance information; 
sampling method, frequency and sampling period associated with each atmospheric, water, biological, and soil 
variable. The ‘readme file’ (CFCCD Readme.xlsx) explains the abbreviations used in the ‘data file’ and ‘profile file’ 
and provides the units of all variables included. The ‘data file’ provides 3 datasets: (a) the observation-based basic 
element dataset, i.e., monthly/yearly observation-based basic C cycle elements with quality control and statistical 
calculation, including six atmospheric and water datasets as meteorological drivers (i.e., Ta, Precip, PAR, RH, Sw, 
and Sc), three biological C dynamic datasets (i.e., biomass; litterfall; and LAI), four soil C dynamic datasets (i.e., 
SOC, SOM, SBD, and soil texture), and one C flux dataset at some of the sites (NEE at CBF, QYF, and BNF); (b) 
the model input dataset, i.e., all the time-continuous meteorological drivers at model-running time step (daily 
step) used in model simulation and assimilation; (c) the assimilation dataset, including the assimilated parameter 
dataset based on the MDF method, i.e., allocation coefficients and turnover times retrieved specifically for each 
site; and the assimilated annual time-continuous ecosystem C sequestration functions consisting of vegetation C 
stock, soil C stock, and ecosystem productivity as well as respiration (Table 1).

Specifically, the CFCCD ‘data folder’ includes records of 10 forest sites. The data time series at most of the sites 
cover the period from 2005 to the latest available year (2015), but those of the SNF, which were later incorporated 
into CERN, are from 2008 to 2015. The average C stock of the ten typical ecosystems is 21.6 kg C m−2. From north 
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to south, with the increase in temperature and precipitation, the vegetation and soil stocks show a significant 
increase, indicating that the C stocks of the forest ecosystems in warmer and humid regions are higher than those 
in cold and dry regions (Table 2). Among the different C pools in the ecosystem, the soil C stock is the largest, 
accounting for 53.2% of the total C stock of the ecosystem; as the temperature and precipitation increase, the pro-
portion of C stocks distributed in the soil gradually decreases, while the proportion of C stocks distributed in the 
vegetation gradually increases. In the past 10 years, all ten forest ecosystems function as C sinks, indicating a large 
C sequestration capacity in eastern China monsoon forests under climate change. Based the observation-based 
basic C cycle dataset, the optimized C cycle parameters, and the C sequestration function product, we can obtain 
a clear and transparent map showing how the C flows in different forest ecosystems (Fig. 3).

Technical Validation
Observation-based validation.  In terms of the observation-based dataset, the data at all CERN sites were 
obtained via internationally, widely used field samplers (e.g., rain gauge used for meteorological data), quantifi-
cation methods (e.g., the allometric method used for biomass data), and laboratory analysis methods (e.g., the 
potassium dichromate oxidation titrimetric method used for SOM data). In addition, all measurements were 
subject to standard uniformity procedures from sampling to storage methods, which were undertaken by trained 
personnel at each CERN station. The CERN also presents detailed information on the protocols for standard 
observation, measurement, and laboratory analysis methods for the users to evaluate for themselves29,30,53,54.

Moreover, CERN has a three-level data quality control and validation system consisting of each station, sub-
centers (e.g., atmosphere, biology, soil, and water subcenters) and comprehensive center. To further improve the 
data quality, we also established a collaborative quality control framework among data users at the co-located 

Observation-based 
basic elements

Atmospheric element

air temperature (Ta)

photosynthetically active radiation (PAR)

relative humidity (RH)

Water element

soil moisture (Sw)

soil saturated moisture capacity (Sc)

precipitation (Precip)

Biological element

litterfall

leaf area index (LAI)

biomass for different plant tissues

Soil element

soil organic carbon (SOC) density

soil organic matter content (SOM)

soil bulk density (SBD)

soil texture (soil mechanical composition)

Auxiliary carbon flux NEE

Model input Time-continuous meteorological drivers at model-running time step

Assimilation dataset

Assimilated process parameters
carbon allocation coefficients

vegetation, soil and ecosystem turnover times

Assimilated C storage functions
soil, vegetation, and ecosystem carbon stocks

ecosystem productivity, respiration and carbon sink

Table 1.  Element-parameter-function system for the data file in the Chinese Forest Carbon Cycle Dynamics 
(CFCCD) database.

Site_
code

Biomass_C (g 
C m−2)

SOC (g C 
m−2)

Total_C (g C 
m−2)

NEP (g C 
m−2 yr−1)

CBF 4489 ± 618 8891 ± 765 13380 ± 1371 314 ± 37

BJF 5930 ± 552 4231 ± 329 10160 ± 879 266 ± 62

MXF 3214 ± 345 14795 ± 933 18009 ± 1269 371 ± 114

SNF 10381 ± 852 13377 ± 72 23758 ± 924 351 ± 37

HTF 12917 ± 525 7806 ± 324 20722 ± 848 231 ± 56

QYF 6542 ± 1233 6721 ± 572 13263 ± 1792 467 ± 118

ALF 24155 ± 612 29383 ± 452 53538 ± 1063 302 ± 65

DHF 13501 ± 894 9527 ± 268 23028 ± 631 232 ± 27

HSF 5339 ± 516 9068 ± 625 14407 ± 1138 301 ± 81

BNF 16141 ± 758 9896 ± 179 26037 ± 936 266 ± 72

Table 2.  Summary statistics (mean ± standard deviation of mean) for the assimilated dataset of biomass 
(Biomass_C), soil (SOC), ecosystem carbon stocks (Total_C), and net ecosystem productivity (NEP) during the 
2005–2015 period at the ten forest sites.

https://doi.org/10.1038/s41597-021-00826-w


8Scientific Data |            (2021) 8:42  | https://doi.org/10.1038/s41597-021-00826-w

www.nature.com/scientificdatawww.nature.com/scientificdata/

network level and producers at the site level, focusing on the integrity, consistency, and reliability of the long-term, 
multisite and multielement observations during the production of the CFCCD database (Fig. S4). Specifically, we 
carried out data integrity analysis, consistency checks, and outlier elimination through time-series comparison, 
multisite comparison, multifactor comparison, and comparison with published literature, and then interpolated 
the missing data:

(1) Integrity check
Here, we mainly verified whether the observation frequency and sample information are complete, whether the 
metadata information of the data is missing, and preliminarily confirmed the degree of the missing data.
(2) Consistency check
The time consistency, spatial consistency, terminology consistency and element correlation of the observed data 
were systematically checked to determine, for example, whether the plant names were consistent in the inter-year 
community surveys, whether the names of the sample plots and the spatial sample areas were consistent in var-
ious sampling years, and whether the trend in the temporal variation in the elements followed relevant prior 
ecological knowledge.
(3) Detection of outliers
Statistical methods (such as the 3-σ criterion) are used to eliminate the abnormal values for the soil, biological, 
atmospheric and water elements. At the same time, the remaining existing observation values are compared with 
the results in the literature to validate and eliminate the abnormal values. Communication and confirmation are 
made with the staff at each station in terms of the input of the raw data, the calibration of the measuring instru-
ments, the consistency of statistical calculation methods and the correction methods for the raw measurement.
Finally, after this strict quality control, the missing data were interpolated in accordance with different methods 
for different types of data, as described in detail in the Methods sections 2.1.1, 2.1.2, and 2.1.3.

Assimilated dataset validation using in-situ measurements.  For the assimilated dataset, we vali-
dated the performance by comparing the simulated vegetation and the soil C stocks and fluxes with the corre-
sponding observations. The results showed good agreement, with the scatter points following the 1:1 line (Fig. 4). 
The taylor diagram showed that five stock-related variables had high correlation and low bias relative to obser-
vations. Specifically, the determination coefficients (R2) for the C stock-related variables varied between 0.91 
and 0.95, and the root-mean-square errors (RMSEs) were small relative to their magnitudes. In addition to the 
biomass data, litterfall and SOC, we also added two datasets of C fluxes to validate the MDF performance, includ-
ing the net ecosystem exchange (NEE) from ChinaFlUX, including CBF, QYF, and BNF, and soil respiration (Rs) 
data measured using static chamber-gas chromatography techniques at CBF, QYF, DHF, HSF, and BNF55. In 
contrast, the R2 values for C fluxes (NEE and Rs) were slightly lower (0.55−0.63), but the RMSEs were only 0.81 
and 0.39 g C m−2 d−1, respectively, which fell well within the range of the C flux validation in MDF studies on 
eastern China forest ecosystems (e.g., Zhang et al.18). Moreover, we compared the directly observed pool-based 

Fig. 3  General map of how carbon flows in an ecosystem based on the Chinese Forest Carbon Cycle Dynamics 
(CFCCD) database, taking the Changbai Mountain temperate deciduous coniferous and broad-leaved mixed 
forest (CBF) as an example. The statistic values refer to the mean and the standard deviation of mean for various 
variables.
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increment (i.e., NEP = ΔBiomass + ΔSOC) to the modelled NEP via MDF; the result also showed a high con-
sistency between the pool-based observation and model simulations based MDF (Fig. S5; R2 = 0.74, p < 0.01).

Assimilated dataset validation using previous studies.  Moreover, the observation-based constraint 
datasets and assimilated datasets were reviewed by international peers; several papers associated with this data-
base have been published/submitted13–15,18,19. The optimized parameters (i.e., plant allocation, and the estima-
tions of 𝜏veg, 𝜏soil, and 𝜏eco) under dynamic disequilibrium all showed high consistency with the existing empirical 
research based on field observations or experiments20,25,56–61 (Fig. 5). This indicated the reliability and robustness 
of our assimilated parameters under the realistic disequilibrium state.

Uncertainties.  Model-data fusion is a powerful method for the generation of improved simulation results via 
the combination of models with various data streams62,63. Model structure, model parameters, model assumption 
and observation data were the main sources of the uncertainties63.

The DALEC model is widely applied in various ecosystem across global scales with good performance21, and 
the model formulation bore similarities with the state-of-the-art process-based models45,46. Although we assumed 
that soils are a single homogeneous pool, which disregards the reality that soils consist of C that turnovers at dif-
ferent rates ranging from fractions of a year to centuries64, it has been challenging among earth system models to 
separate soils into different pools and quantify each pool’s turnover time due to lack of corresponded observed 
data65. DALEC assumes a single homogeneous soil pool thus to better assimilate with available observed infor-
mation from CERN. Besides, our study mainly used the mean turnover time for whole vegetation or soil pool. 
Therefore, the single-soil-pool structure should not have significant on the estimation of mean soil turnover 
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Fig. 4  Comparisons between observed (in the x-axis) and modeled values (in the y-axis) at all sites under 
the data assimilation framework. The Taylor diagram (bottom panel) presents statistical tests (i.e., correlation 
coefficient, standard deviation, and root-mean-square deviation (RMSD)) for key fluxes and state variables as a 
summary of quality of fit.
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time and its further analysis. Besides, some forests are aggrading, and we conducted the MDF under the realis-
tic dynamic disequilibrium assumption. Although the forest age was not directly considered in the model, the 
non-steady state estimation in this study based on long-term observational data (stock increments in aggrading 
forests) implicitly incorporated the age-structure-related effect on C cycle dynamics19,42, thus providing a proper 
estimation on carbon allocation or turnover process, as well as the C sequestration function.

We further conducted a sensitivity analysis to quantify the uncertainty sensitivity to input model parameters. 
The response variables for the sensitivity analysis are total annual NEE, GPP, Reco, and mean annual C pools. By 
modifying each parameter ± 10%, we calculated the percentage change in the response variables (VR) and the 
sensitivity index (β, ratio of the % change in response variable to % change in a parameter)66. Sensitivity analysis 
indicated that carbon fluxes and pools experienced similar sensitivity patterns (Table S2) considerably affected by 
parameters related to photosynthesis and C allocation. They were less affected by turnover as well as coefficient 
of correction. Since we collected field observations of LCMA, this measure was set as constant so that the model 
uncertainty over key photosynthesis parameters could be decreased, allowing emphasis on analyzing variation in 
allocation coefficients. Here the model allocation was well constrained by the time-series LAI and biomass of var-
ious plant tissues (Fig. S3), and thereby the allocation coefficients (especially allocation to wood and autotrophic 
respiration) showed high consistency with the empirical studies (Fig. 5).

The challenge of acquiring long-term and multiple observations covering different C cycle process is one of the 
inherent limitations in process-based model data fusion40. Here we mainly collected the biomass and SOC obser-
vations. Since CERN sites do not conduct the DOC fluxes observation, which is a small proportion of SOC67, the 
DOC fluxes were not produced in the model-data fusion analysis. This would bring uncertainty to carbon sink 
estimation in forests suffered soil erosion or land use change such as deforestation. Fortunately, the permanent 
plots at CERN sites are all protected well, but we still expect improved representations of carbon-water interaction 
process (e.g., DOC) into calibrated process-based models, to further help reduce the biases for the C balance of 
ecosystems regionally and globally.

Despite these inevitable uncertainties, the optimized key parameters and simulated C sequestration result are 
consistent with the site observational data and close to that of previous studies using different approaches (Figs. 4, 5 
and S5). Overall, the CFCCD database provides high-quality open-access information on decadal C cycle dynam-
ics in typical forests in China. The CFCCD database is the most comprehensive and up-to-date database cover-
ing decadal C cycle dynamics over the most representative forests in China and the Northern Hemisphere using 
measurement-based colocated networks; MDF-retrieved C cycle parameters, which are difficult to solely obtain 
from observations; and time-continuous C storage functions for long-term C cycle state evaluation under climate 
change. This reference dataset can be used to investigate the long-term trends in ecological C cycle dynamics, to 
identify the forest C sink distribution in soil and vegetation and their association with C-cycle process parameters, 

Fig. 5  Comparison of assimilated parameters with those derived from other empirical studies.
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and to evaluate and improve the ability of C cycle process models as benchmarks. Such knowledge will have strong 
implications improving our ability to evaluate and understand forest C cycle responses to global change and will be 
important in the implementation of C sequestration and mitigation by policy makers.

Code availability
The DALEC model and the model-data fusion code used to generate the assimilated data products can be 
obtained through the GitHub repository at (https://github.com/ultradove/model-data-fusion). Further questions 
can be directed towards: Rong Ge (ge7218@163.com).

Received: 4 June 2020; Accepted: 18 December 2020;
Published: xx xx xxxx

References
	 1.	 Dixon, R. K. et al. Carbon Pools and Flux of Global Forest Ecosystems. Science 263, 185–190 (1994).
	 2.	 Pan, Y. et al. A Large and Persistent Carbon Sink in the World’s Forests. Science 333, 988–993 (2011).
	 3.	 Goodale, C. L. et al. Forest carbon sinks in the northern hemisphere. Ecol. Appl. 12, 891–899 (2002).
	 4.	 Friedlingstein, P. et al. Uncertainties in CMIP5 Climate Projections due to Carbon Cycle Feedbacks. J. Climate 27, 511–526 (2014).
	 5.	 Hampton, S. E. et al. Big data and the future of ecology. Front. Ecol. Environ. 11, 156–162 (2013).
	 6.	 Jonathan, T. O. et al. Special online collection:dealing with data[J]. Science 331(6018), 639–806 (2011).
	 7.	 Huang, T. Q. & Dong, N. CHINESE ECOSYSTEM RESEARCH NETWORK (CERN)—Basic Information, Achievements and 

Perspectives. Adv. Earth. Sci. 20 (2005).
	 8.	 Fu, B. et al. Chinese ecosystem research network: Progress and perspectives. Ecol. Complex. 7, P.225–233 (2010).
	 9.	 Yu, G. et al. High carbon dioxide uptake by subtropical forest ecosystems in the East Asian monsoon region. P. Natl. Acad. Sci. USA 

111, 4910–4915 (2014).
	10.	 Sier, A. R. J. & Monteith, D. T. The UK Environmental Change Network after twenty years of integrated ecosystem assessment: Key 

findings and future perspectives. Ecol. Indic. 68, 1–12 (2016).
	11.	 Peters, D. et al. Long‐Term Trends In Ecological Systems: A Basis For Understanding Responses To Global Change. (USDA Agricultural 

Research Service, Washington, DC, 2012).
	12.	 Zhou, G. et al. Old-growth forests can accumulate carbon in soils. Science 314, 1417–1417 (2006).
	13.	 Bin, W. & Xiaosheng, Y. Comparison of carbon content and carbon density of four typical zonal forest ecosystems. J. Hunan Agri. 

Univ. 36, 464–469 (2010).
	14.	 Wu et al. Biogeographic patterns and influencing factors of the species diversity of tree layer community in typical forest ecosystems 

in China. Acta Ecol. Sin. 38, 7727–7738 (2018).
	15.	 Zhou, G. et al. A climate change-induced threat to the ecological resilience of a subtropical monsoon evergreen broad-leaved forest 

in Southern China. Global Change Biol. 19, 1197–1210 (2013).
	16.	 Song, X., Zeng, X. & Tian, D. Allocation of forest net primary production varies by forest age and air temperature. Ecol. Evol. 8, 

12163–12172 (2018).
	17.	 Luo, Y. et al. Ecosystem Carbon Allocation of a Temperate Mixed Forest and a Subtropical Evergreen Forest in China. J. Res. Ecol. 9, 

642–653 (2018).
	18.	 Zhang, L., Luo, Y., Yu, G. & Zhang, L. Estimated carbon residence times in three forest ecosystems of eastern China: Applications of 

probabilistic inversion. J. Geophys. Res. 115, 137–147 (2010).
	19.	 Ge, R. et al. Underestimated ecosystem carbon turnover time and sequestration under the steady state assumption: A perspective 

from long‐term data assimilation. Global Change Biol. 25, 938–953 (2018).
	20.	 Carvalhais, N. et al. Global covariation of carbon turnover times with climate in terrestrial ecosystems. Nature 514, 213–217 (2014).
	21.	 Bloom, A. A. & Exbrayat, J. Der Velde, I. R. V., Feng, L. & Williams, M. The decadal state of the terrestrial carbon cycle: Global 

retrievals of terrestrial carbon allocation, pools, and residence times. P. Natl. Acad. Sci. USA 113, 1285–1290 (2016).
	22.	 De Kauwe, M. G. et al. Where does the carbon go? A model-data intercomparison of vegetation carbon allocation and turnover 

processes at two temperate forest free-air CO2 enrichment sites. New. Phytol. 203, 883–899 (2014).
	23.	 Negrón-juárez, R. I., Koven, C. D., Riley, W. J., Knox, R. G. & Chambers, J. Q. Observed allocations of productivity and biomass, and 

turnover times in tropical forests are not accurately represented in CMIP5 Earth system models. Environ. Res. Lett. 10, 064017 
(2015).

	24.	 Friend, A. D. et al. Carbon residence time dominates uncertainty in terrestrial vegetation responses to future climate and 
atmospheric CO2. P. Natl. Acad. Sci. USA 111, 3280–3285 (2014).

	25.	 Yan, Y., Zhou, X., Jiang, L. & Luo, Y. Effects of carbon turnover time on terrestrial ecosystem carbon storage. Biogeosciences 14, 
5441–5454 (2017).

	26.	 Xia, J., Yuan, W., Wang, Y. & Zhang, Q. Adaptive Carbon Allocation by Plants Enhances the Terrestrial Carbon Sink. Sci. Rep-UK. 7, 
3341 (2017).

	27.	 Slevin, D., Tett, S. F. B., Exbrayat, J., Bloom, A. A. & Williams, M. Global evaluation of gross primary productivity in the JULES land 
surface model v3.4.1. Geosci. Model Dev. 10, 2651–2670 (2016).

	28.	 López-Blanco, E. et al. Evaluation of terrestrial pan-Arctic carbon cycling using a data-assimilation system. Earth Syst. Dynam. 10, 
233–255 (2019).

	29.	 Liu, G. R. et al. Protocols For Standard Atmosphere Environmental Observation And Measurement In Terrestrial Ecosystems. (China 
Environmental Science Press, Beijing, 2007).

	30.	 Yuan, G., Tang, D., & Sun, X. Protocols For Standard Water Observation And Measurement In Terrestrial Ecosystems. (China 
Environmental Science Press, Beijing, 2007).

	31.	 Liu, H. et al. Photosynthetically active radiation dataset in Chinese Ecosystem Research Network (2005–2015). China Scientific Data 
2, 1–10 (2017).

	32.	 Luo, Y. J., Wang, X. K., and Lu F. Comprehensive Database Of Biomass Regressions For China’S Tree Species. (Beijing: China Forestry 
Publishing House, 2015).

	33.	 Post, W. M., Pastor, J., Zinke, P. J. & Stangenberger, A. G. Global patterns of soil nitrogen storage. Nature 317, 613–616 (1985).
	34.	 Chai, H. et al. Vertical distribution of soil carbon, nitrogen, and phosphorus in typical Chinese terrestrial ecosystems. Chinese Geogr. 

Sci. 25, 549–560 (2015).
	35.	 Li, C., He, H. L., Liu, M., Su, W. & Yu, G. R. The design and application of CO2 flux data processing system at ChinaFLUX. Geo 

Information Science 10, 557–565 (2008).
	36.	 Hurtt, G. C. & Armstrong, R. A pelagic ecosystem model calibrated with BATS data. Deep-Sea Res. Pt. II 43, 653–683 (1996).
	37.	 Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. & Teller, E. Equation of state calculations by fast computing 

machines. J. Chem. Phys. 21, 1087–1092 (1953).
	38.	 Luo, Y. & Weng, E. Dynamic disequilibrium of the terrestrial carbon cycle under global change. Trends Ecol. Evol. 26, 96–104 (2011).

https://doi.org/10.1038/s41597-021-00826-w
https://github.com/ultradove/model-data-fusion


1 2Scientific Data |            (2021) 8:42  | https://doi.org/10.1038/s41597-021-00826-w

www.nature.com/scientificdatawww.nature.com/scientificdata/

	39.	 Carvalhais, N. et al. Implications of the carbon cycle steady state assumption for biogeochemical modeling performance and inverse 
parameter retrieval. Global Biogeochem. Cy. 22, 1081–1085 (2008).

	40.	 Zhou, T., Shi, P., Jia, G. & Luo, Y. Nonsteady state carbon sequestration in forest ecosystems of China estimated by data assimilation. 
J. Geophys. Res-Biogeo. 118, 1369–1384 (2013).

	41.	 Safta, C. et al. Global sensitivity analysis, probabilistic calibration, and predictive assessment for the data assimilation linked 
ecosystem carbon model. Geosci. Model Dev. 8, 1899–1918 (2014).

	42.	 Smallman, T. L., Exbrayat, J., Mencuccini, M., Bloom, A. A. & Williams, M. Assimilation of repeated woody biomass observations 
constrains decadal ecosystem carbon cycle uncertainty in aggrading forests. J. Geophys. Res. 122, 528–545 (2017).

	43.	 Richardson, A. D. et al. Estimating parameters of a forest ecosystem C model with measurements of stocks and fluxes as joint 
constraints. Oecologia 164, 25–40 (2010).

	44.	 Williams, M. et al. Predicting gross primary productivity in terrestrial ecosystems. Ecol. Appl. 7, 882–894 (1997).
	45.	 Williams, M., Schwarz, P. A., Law, B. E., Irvine, J. & Kurpius, M. R. An improved analysis of forest carbon dynamics using data 

assimilation. Global Change Biol. 11, 89–105 (2005).
	46.	 Fox, A. M. et al. The REFLEX project: Comparing different algorithms and implementations for the inversion of a terrestrial 

ecosystem model against eddy covariance data. Agr. Forest Meteorol. 149, 1597–1615 (2009).
	47.	 Carvalhais, N. et al. Identification of vegetation and soil carbon pools out of equilibrium in a process model via eddy covariance and 

biometric constraints. Global Change Biol. 16, 2813–2829 (2010).
	48.	 Bloom, A. A. & Williams, M. Constraining ecosystem carbon dynamics in a data-limited world: integrating ecological “common 

sense” in a model–data fusion framework. Biogeosciences 12, 1299–1315 (2014).
	49.	 Koven, C. D. et al. Controls on terrestrial carbon feedbacks by productivity versus turnover in the CMIP5 Earth System Models. 

Biogeosciences 12, 5211–5228 (2015).
	50.	 Schwartz, S. E. Residence times in reservoirs under non-steady-state conditions: application to atmospheric SO2 and aerosol sulfate”. 

Tellus 31, 530–547, https://doi.org/10.3402/tellusa.v31i6.10471 (2016).
	51.	 Zhou, T. & Luo, Y. Spatial patterns of ecosystem carbon residence time and NPP‐driven carbon uptake in the conterminous United 

States. Global Biogeochem. Cy. 22, 3411–3434 (2008).
	52.	 He, H., Ge, R., Yu, G. Reference carbon cycle dataset for typical Chinese forests via colocated observations and data assimilation. 

figshare https://doi.org/10.6084/m9.figshare.12331400.v2 (2020).
	53.	 Sun, B., Shi, J. & Yang, L. Protocols For Standard Soil Observation And Measurement In Terrestrial Ecosystems. (China Environmental 

Science Press, Beijing, 2007).
	54.	 Wu, D. X., Wei, W., & Zhang, S. Protocols For Standard Biological Observation And Measurement In Terrestrial Ecosystems. (China 

Environmental Science Press, Beijing, 2007).
	55.	 Zheng, Z. M. et al. Spatio-temporal variability of soil respiration of forest ecosystems in China: influencing factors and evaluation 

model. Environ. Manage. 46, 633–642, https://doi.org/10.1007/s00267-010-9509-z (2010).
	56.	 Zhou, T., Shi, P., Jia, G., Li, X. & Luo, Y. Spatial patterns of ecosystem carbon residence time in Chinese forests. Science China Earth 

Sciences 53, 1229–1240 (2010).
	57.	 Wang, J. et al. Soil and vegetation carbon turnover times from tropical to boreal forests. Funct. Ecol. 32, 71–82 (2018).
	58.	 Piao, S. et al. Forest annual carbon cost: a global-scale analysis of autotrophic respiration. Ecology 91, 652–661 (2010).
	59.	 Chen, G., Yang, Y. & Robinson, D. Allocation of gross primary production in forest ecosystems: allometric constraints and 

environmental responses. New Phytol. 200, 1176–1186 (2013).
	60.	 Malhi, Y., Doughty, C. & Galbraith, D. The allocation of ecosystem net primary productivity in tropical forests. Philos. T. R. Soc. B 

366, 3225–45 (2011).
	61.	 Wolf, A., Field, C. B. & Berry, J. A. Allometric growth and allocation in forests: a perspective from FLUXNET. Ecol. Appl. 21, 

1546–1556 (2011).
	62.	 Wang-Erlandsson, L., van der Ent, R. J., Gordon, L. J. & Savenije, H. H. G. Contrasting roles of interception and transpiration in the 

hydrological cycle &ndash; Part 1: Temporal characteristics over land. Earth Syst. Dynam. 5, 441–469 (2014).
	63.	 Keenan, T. F., Carbone, M. S., Reichstein, M. & Richardson, A. D. The model-data fusion pitfall: assuming certainty in an uncertain 

world. Oecologia 167, 587–597 (2011).
	64.	 Davidson, E. & Janssens, I. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440, 

165–173 (2006).
	65.	 Luo, Y. et al. Toward more realistic projections of soil carbon dynamics by earth system models. Global Biogeochem. Cy. 30, 40–56 

(2016).
	66.	 Larocque, G., Bhatti, J., Boutin, R. & Chertov, O. Uncertainty analysis in carbon cycle models of forest ecosystems: Research needs 

and development of a theoretical framework to estimate error propagation. Ecol. Model. 219, 400–412 (2008).
	67.	 Marinari, S., Liburdi, K., Fliessbach, A. & Kalbitz, K. Effects of organic management on water-extractable organic matter and c 

mineralization in european arable soils. Soil Till. Res. 106, 211–217 (2010).

Acknowledgements
We thank the CERN staff for their dedication to observation and data processing. This study was supported by 
the National Key Research and Development Program of China (grant no. 2016YFC0500204) and the Strategic 
Priority Research Program of the Chinese Academy of Sciences (grant no. XDA19020301).

Author contributions
H.H., R.G. and G.Y. designed the database; G.Y., Z.X., S.W., H.W., G.Z., Q.Z., A.W., Z.F., Y.Z., W.S., H.Y. and L.L. 
collected the data from CERN; H.H., R.G., X.R., L.Z., Q.C. and Q.X. complied and generated the observation-
based and assimilated dataset; M.W. developed the DALEC model and EDC concept. H.H., R.G., and X.R. 
established the data assimilation framework; and H.H. and R.G. wrote the paper with contributions from all 
co-authors.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material available at https://doi.
org/10.1038/s41597-021-00826-w.
Correspondence and requests for materials should be addressed to G.Y.

https://doi.org/10.1038/s41597-021-00826-w
https://doi.org/10.3402/tellusa.v31i6.10471
https://doi.org/10.6084/m9.figshare.12331400.v2
https://doi.org/10.1007/s00267-010-9509-z
https://doi.org/10.1038/s41597-021-00826-w
https://doi.org/10.1038/s41597-021-00826-w


13Scientific Data |            (2021) 8:42  | https://doi.org/10.1038/s41597-021-00826-w

www.nature.com/scientificdatawww.nature.com/scientificdata/

Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

The Creative Commons Public Domain Dedication waiver http://creativecommons.org/publicdomain/zero/1.0/ 
applies to the metadata files associated with this article.
 
© The Author(s) 2021

https://doi.org/10.1038/s41597-021-00826-w
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

	Reference carbon cycle dataset for typical Chinese forests via colocated observations and data assimilation

	Background & Summary

	Methods

	Observation-based basic data acquisition. 
	Atmospheric and water data. 
	Biological data. 
	Soil data. 
	Auxiliary flux data. 

	Implementation of MDF method. 
	Carbon cycle process model description. 
	Multiple data-model fusion at the nonsteady state. 

	Key C-cycle process parameters and C sequestration data assimilation. 
	Key process parameter estimation. 
	Time-continuous C sequestration estimation. 


	Data Records

	Technical Validation

	Observation-based validation. 
	Assimilated dataset validation using in-situ measurements. 
	Assimilated dataset validation using previous studies. 
	Uncertainties. 

	Acknowledgements

	Fig. 1 Schematic overview of the methodology and data products via the colocated CERN observations and long-term data assimilation.
	Fig. 2 Flowchart of the generation of assimilated datasets in a multiple- and long-term data assimilation framework.
	Fig. 3 General map of how carbon flows in an ecosystem based on the Chinese Forest Carbon Cycle Dynamics (CFCCD) database, taking the Changbai Mountain temperate deciduous coniferous and broad-leaved mixed forest (CBF) as an example.
	Fig. 4 Comparisons between observed (in the x-axis) and modeled values (in the y-axis) at all sites under the data assimilation framework.
	Fig. 5 Comparison of assimilated parameters with those derived from other empirical studies.
	Table 1 Element-parameter-function system for the data file in the Chinese Forest Carbon Cycle Dynamics (CFCCD) database.
	Table 2 Summary statistics (mean ± standard deviation of mean) for the assimilated dataset of biomass (Biomass_C), soil (SOC), ecosystem carbon stocks (Total_C), and net ecosystem productivity (NEP) during the 2005–2015 period at the ten forest sites.




