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Abstract: Objectives: Blau syndrome is a distinct class of autoinflammatory syndrome presenting
with early-onset systemic granulomatosis. Blau syndrome-causing NOD2 mutations located in the
central nucleotide-oligomerization domain induce ligand-independent basal NF-κB activation in
an in vitro reporter assay. However, the precise role of this signaling on granuloma formation has
not yet been clarified. Methods: Blau syndrome-causing NOD2 mutations were introduced into
human monocytic THP-1 cells, and their morphological and molecular changes from parental cells
were analyzed. Identified molecules with altered expression were examined in the patient’s lesional
skin by immunostaining. Results: Although the production of proinflammatory cytokines was not
altered without stimulation, mutant NOD2-expressing THP-1 cells attached persistently to the culture
plate after stimulation with phorbol myristate acetate. Sustained surface ICAM-1 expression was
observed in association with this phenomenon, but neither persistent ICAM-1 mRNA expression nor
impaired ADAM17 mRNA expression was revealed. However, the transient induction of PDGF-B
mRNA expression was specifically observed in stimulated THP-1 derivatives. In the granulomatous
skin lesion of a Blau syndrome patient, ICAM-1 and PDGF-B were positively immunostained in
NOD2-expressing giant cells. Conclusions: Sustained surface ICAM-1 expression and transient
PDGF-B production by newly differentiating macrophages harboring mutant NOD2 might play a
role in granuloma formation in Blau syndrome.

Keywords: Blau syndrome; NOD2 mutation; ICAM-1; PDGF-B

1. Introduction

Autoinflammatory diseases constitute a group of genetic disorders whose main clini-
cal features are recurrent episodes of inflammatory lesions that can affect the skin, joints,
bones, eyes, gastrointestinal tract and nervous system, in association with signs of systemic
inflammation [1,2]. Blau syndrome is a distinct class of autoinflammatory syndrome show-
ing early-onset systemic granulomatosis [3–5]. In comparison to sarcoidosis, which is a
multi-organ granulomatous disease with unknown etiology, Blau syndrome is histologi-
cally undistinguishable but clinically distinguished by the triad of skin rash, uveitis and
arthritis without apparent lung involvement.

Blau syndrome has been shown to be caused by heterozygous missense mutations
in the NOD2/CARD15/NLRC2 gene [3,6]. NOD2 is a member of the NOD-like receptor
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(NLR) family of molecules and is composed of two amino-terminal caspase recruitment
domains (CARDs), a centrally located nucleotide-binding oligomerization domain (NOD)
and carboxy-terminal leucine-rich repeats (LRR). This molecule is expressed intracellularly
in antigen-presenting cells (APC) and recognizes muramyl dipeptide (MDP), the minimum
common component of bacterial cell wall peptidoglycan, to form a complex with CARD-
containing serine/threonine kinase, RICK, and to induce immune responses through
nuclear factor (NF)-κB activation [4,7]. NF-κB is one of the most important transcription
factors inducing the expression of various cytokines, growth factors and cell adhesion
molecules, and plays critical roles in developmental/survival and inflammatory pro-
cesses [8]. Thus, NOD2 functions as an intracellular sensor for bacterial invasion. While
mutations in the LRR impairing MDP-dependent NF-κB activation are reportedly associ-
ated with Crohn’s disease (CD), Blau syndrome-associated NOD2 variants are localized
in the NOD and show increased MDP-independent basal NF-κB activation, which is mea-
sured by an in vitro reporter assay using HEK293 cells [3,9–11]. By analysis of nine types
of NOD2 mutations collected from 20 Japanese Blau syndrome patients, the basal NF-
κB activity level, which was presented as a ratio of the NF-κB activity in the absence of
MDP to that in the presence of MDP, was shown to range from 0.3 for the E383G muta-
tion to 0.9 for the N670K mutation, compared to 0.05 for the wild-type [12]. Although
a clear correlation was reportedly absent between clinical severity and the basal NF-κB
activation level of the corresponding NOD2 mutation, a tendency was observed when the
subjects were limited to ocular complications in cases with frequent R334W and R334Q
mutations [12]. Furthermore, the therapeutic effect for Blau syndrome of thalidomide, a
potent immunomodulatory drug suppressing NF-κB activation, may also suggest the role
of NF-κB in the pathogenesis of this disease [13].

Granulomatous reaction is a distinct pathological pattern of chronic inflammation
forming granuloma, and is classified into several types: foreign body, suppurative, tuber-
culoid, palisaded, interstitial and sarcoidal [14]. Sarcoidal granuloma is considered to be
caused by a super-delayed hypersensitivity reaction directed at any unknown antigen.
The release of inflammatory mediators, especially interferon (IFN)-γ, from activated T
helper (Th) 1 cells is considered to be indispensable for the activation and accumulation
of macrophages and subsequent granuloma formation [15]. In the case of pulmonary
sarcoidosis, underlying latent infection with some distinct microorganism, such as Propioni-
bacterium acnes and Mycobacterium species, has been shown [16]. In addition, some foreign
substance such as silica can be found in the case of scar sarcoidosis [17]. These facts suggest
the role of infection and/or innate immunity in the development of sarcoidal granuloma.

As suggested by the results of in vitro experimental findings, constitutive NF-κB
activation in NOD2-expressing APC is considered responsible for granuloma formation in
Blau syndrome. However, the precise role of such NF-κB activation and subsequent changes
are still undefined. Therefore, to better understand these issues, NOD2 mutations caused
by Blau syndrome were introduced into human monocytic THP-1 cells to generate another
in vitro model resembling monocytes. Any alterations from parental cells were identified
by morphological and molecular analyses. Furthermore, the expression of identified
intercellular cell adhesion molecule (ICAM)-1 with a sustained surface expression and
platelet-derived growth factor (PDGF)-B with a transiently-induced production by phorbol
myristate acetate (PMA)-treated THP-1 derivatives was analyzed in the lesional skin of a
Blau syndrome patient by immunostaining.

2. Materials and Methods
2.1. Cell Culture

THP-1 cells were originally purchased from ATCC (American Type Culture Collection,
Manassas, VA, USA) and maintained in RPMI1640 supplemented with 10% fetal bovine
serum as previously described [18]. Transfected THP-1 derivatives were maintained in
the presence of 500 µg/mL G418 (Invitrogen, Carlbad, CA, USA) to avoid the excessive
proliferation of wild-type cells.
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2.2. Reagents and Antibodies

PMA was purchased from Sigma-Aldrich (St. Louis, MO, USA). Human recombinant
interleukin (IL)-4 and macrophage-colony stimulation factor (M-CSF) were purchased
from Peprotech (Rocky Hill, NJ, USA). Mouse anti-FLAG M2 (Sigma-Aldrich), ICAM-1
(Immunotech), tumor necrosis factor (TNF)α (Santa Cruz Biotechnology, Inc. Dallas, TX,
USA), NOD2 and interferon (IFN)γ (eBioscience) monoclonal antibodies (mAbs) were
purchased. Rabbit anti-cadherin-11 (Zymed), NOD2 (Sigma-Aldrich) and PDGF-B (Novus
Biologicals) polyclonal Abs were also purchased.

2.3. Transfection

The complementary DNAs (cDNAs) for wild-type (WT), R334W and N670K mutant
NOD2 were digested from the corresponding plasmids in the p3xFLAG-CMV vector, which
were previously used for the NF-κB reporter assay, and recloned into the pIRES2-EGFP
vector (Clontech) [3]. Each of these plasmids and the mock vector were linearized with AflII
(New England Biolabs, Ipswich, MA, USA) and introduced into THP-1 cells using Amaxa
Nucleofactor (Lonza Cologne GmbH, Cologne, Germany) according to the manufacturer’s
recommended protocol. The transfected cells were selected in the presence of 750 µg/mL
of G418.

2.4. RT-PCR Analysis

Total mRNA was extracted from THP-1 derivatives using Sepasol (Nakarai Tesque,
Kyoto, Japan), and 1 µg of the mRNA was applied for cDNA synthesis using the Superscript
first-strand synthesis kit including reverse transcriptase II and poly-T primer (Invitrogen).
PCR was performed using Ex-Taq (Takara Bio Inc., Otsu, Japan) and ABI2720 thermal cycler
(Thermo Fisher Scientific, Waltham, MA, USA) under the following conditions: 95 ◦C for
5 min followed by 35 cycles of 94 ◦C for 30 s, 57 ◦C for 30 s and 72 ◦C for 1 min, and finally
72 ◦C for 10 min. Specific primer pairs are listed in Table 1.

Table 1. Primer pairs used for RT-PCR analyses.

Forward Reverse

NOD2 AGACTCAGCTTCCCAAGGTCTG AGAACACGTAGCAGCACATGCC

IL-8 AAGGAATAGCATCAATAGTGAGTTTG GGACACAAGCTTAAACCCAGA

ICAM-1 CCTTCCTCACCGTGTACTGG AGCGTAGGGTAAGGTTCTTGC

ADAM17 CCTTTCTGCGAGAGGGAAC CACCTTGCAGGAGTTGTCAG

PDGF-B CCTTTGATGATCTCCAACGC GATCTTTCTCACCTGGACAG

HPRT AATTATGGACAGGACTGAACGTC CGTGGGGTCCTTTTCACCAGCAAG

2.5. Flow Cytometry

THP-1 derivatives were stained with primary antibody or the corresponding isotype
control and the subsequent appropriate secondary antibodies, and were provided for
analysis with FACSCaliber and BD CellQuestTM Pro software (BD Biosciences, San Jose,
CA, USA).

2.6. Immunohistochemistry

10-µm-thick sections of formaldehyde-fixed paraffin-embedded skin biopsy speci-
mens, which were obtained from a Blau syndrome patient with a R334W mutation, were
deparaffinized and subjected to staining with mouse monoclonal anti-ICAM-1, TNFα, IFNγ

or rabbit polyclonal anti-PDGF-B Abs or the control mouse IgG1 or rabbit immunoglobulin.
Positive staining was visualized using the VECTASTAIN Elite ABC Kit (Vector Laborato-
ries, Inc., Burlingame, CA, USA) and DAB substrate kit (Dako Denmark A/S, Glostrup,
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Denmark) according to the manufacturer’s protocol. The sections were counterstained
with hematoxylin.

2.7. Double Immunofluorescence Staining

The Blau syndrome patient’s skin specimen was applied for double immunofluo-
rescence staining with a set of rabbit polyclonal anti-NOD2 Abs and mouse monoclonal
anti-ICAM-1 Abs or a set of mouse monoclonal anti-NOD2 Abs and rabbit polyclonal
anti-PDGF-B Abs at 1:50 dilution. The specimen was then stained with Alexa Fluor 488-
conjugated anti-rabbit IgG, Alexa Fluor 555-conjugated anti-mouse IgG and Hoechst 33342.
Sections were mounted with Vectashield (Vector Laboratories, Inc.) and observed with
confocal microscopy (LSM780, Carl Zeiss Microscopy, Jena, Germany).

3. Results
3.1. No Altered mRNA Expression of Proinflammatory Cytokines in Mutant NOD2-Expressing
THP-1 Derivatives

THP-1 cells were transfected by electroporation with either mock, FLAG-tagged WT,
R334W or N670K mutant NOD2 cloned in the pIRES2-EGFP vector. Among colonies
developing in the presence of G418 at the manufacturer’s recommended concentration (750
µg/mL), those expressing EGFP and intracellular FLAG were selected by flow cytometry
and were subsequently analyzed with RT-PCR for NOD2 mRNA expression. Although
NOD2 mRNA expression was only faintly observed in mock-transfected THP-1 cells,
significant expression was observed in WT or mutant NOD2-transfected THP-1 derivatives.
For each derivative, one representative colony showing an almost equal expression of
NOD2 mRNA was selected and used for further analyses (Figure 1). The predominant
expression of the mutant NOD2 in the corresponding colony was confirmed by direct
sequencing of the RT-PCR product (data not shown). Without stimulation, the expression
of mRNA for proinflammatory cytokines such as TNFα and IL-8 was similar for WT and
mutant NOD2-expressing THP-1 derivatives (Figure 1).

3.2. Long-Term Attachment of Mutant NOD2-Expressing THP-1 Derivatives after PMA
Stimulation

Following PMA stimulation, THP-1 cells are known to differentiate along the mono-
cytic lineage and to acquire characteristics of mature macrophages, including a loss of
proliferation and an increased HLA-DR expression [19,20]. A large difference was mor-
phologically observed between WT and mutant NOD2-expressing THP-1 derivatives after
PMA stimulation. As shown in Figure 2, all THP-1 derivatives were attached to the culture
plate and spread pseudopods 24 h after PMA addition. However, on day 3, mock or
WT NOD2-expressing THP-1 derivatives floated into the medium again and proliferated,
whereas mutant NOD2-expressing THP-1 derivatives remained attached to the plate and
spread more and longer pseudopods. Such characteristic features were still apparent
on day 7, especially in the case of N670K mutant NOD2-expressing THP-1 derivatives,
as made clear after washing (bottom column of Figure 2). In contrast, R334W mutant
NOD2-expressing THP-1 derivatives floated into the medium again and proliferated on
day 7.
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Figure 1. No altered mRNA expression of proinflammatory cytokines in mutant NOD2-expressing
THP-1 derivatives. THP-1 cells were transfected with mock, WT, R334W or N670K mutant NOD2
cDNA-containing letroviral vector and were selected for study in the presence of G418. From the
surviving colonies, THP-1 derivatives with similar expression levels of NOD2 mRNA revealed by
RT-PCR were selected for further analyses (top row). Expression of TNFα or IL-8 mRNA in these
derivatives was then analyzed by RT-PCR without stimulation. Hypoxanthine phosphoribosyltrans-
ferase (HPRT) was analyzed as a control for ubiquitous expression (bottom row).
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Figure 2. Long-term attachment of mutant NOD2-expressing THP-1 derivatives after PMA stimula-
tion. THP-1 derivatives were stimulated with 10 mM of PMA, and photographs were taken under
bright field lightning at the indicated time points. On day 7 after PMA addition, photographs were
again taken after washing the floating cells (bottom row).
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3.3. Sustained Surface Expression of ICAM-1 on Mutant NOD2-Expressing THP-1 Derivatives

To explore the mechanism underlying the long-term attachment of mutant NOD2-
expressing THP-1 derivatives after PMA stimulation, the surface expression levels of
various adhesion molecules were analyzed by flow cytometry. As shown in Figure 3,
the surface expression of ICAM-1 was initially upregulated in all THP-1 derivatives on
day 2 and then decreased to almost the basal level in mock or WT NOD2-expressing
THP-1 derivatives on day 6. However, the expression remained higher for mutant NOD2-
expressing THP-1 derivatives at this time point, even when considering the significant
fluorescence alteration of the isotype control.
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3.4. No Remarkable Alteration of ICAM-1 or ADAM-17 mRNA Expression Underlies Sustained
Surface Expression of ICAM-1

By RT-PCR analysis, ICAM-1 mRNA expression in all THP-1 derivatives was initially
upregulated on day 2 and similarly decreased on day 6 after PMA addition, suggesting that
the sustained surface expression of ICAM-1 was not due to prolonged mRNA expression
(Figure 4a, left column). We then analyzed the mRNA expression of ADAM-17, which
reportedly mediates the cleavage of the ectodomain of ICAM-1 [21]. However, ADAM17
mRNA was similarly expressed in all unstimulated THP-1 derivatives, and no further
increase was observed in any of the derivatives after PMA addition, suggesting that a
defective ICAM-1 cleavage by ADAM-17 mRNA induction was not involved in sustained
surface ICAM-1 expression (Figure 4a, middle column).
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Figure 4. No altered ICAM-1 or ADAM-17 mRNA expression but a transient PDGF-B mRNA
expression in PMA-stimulated mutant NOD2-expressing THP-1 derivatives. The expression of (a)
ICAM-1 or ADAM-17 mRNA and (b) PDGF-B or IL-8 mRNA on THP-1 derivatives was analyzed
by RT-PCR using the cells shown in Figure 3 and was compared between WT and mutant NOD2-
expressing derivatives at each time point. No remarkable difference was observed in the expression
of ICAM-1, ADAM17 or IL-8.

3.5. Transient PDGF-B mRNA Expression in PMA-Stimulated Mutant NOD2-Expressing THP-1
Derivatives

To explore the mRNA specifically induced in PMA-stimulated NOD2-expressing THP-
1 cells, RT-PCR was performed for various cytokines and growth factors. Among them,
mRNA expression of PDGF-B, which was undetectable in all unstimulated THP-1 deriva-
tives, was strongly induced in mutant NOD2-expressing THP-1 derivatives, especially in
the case of the N670K mutant, but only weakly induced in mock or WT NOD2-expressing
cells on day 2 after PMA addition (Figure 4b, left column). PDGF-B is an essential growth
factor involved in wound healing and might play a pivotal role in granuloma formation
through activation of the surrounding fibroblasts. Notably, the induced PDGF-B mRNA
expression was not sustained and decreased to the basal level in all THP-1 derivatives on
day 6 after PMA addition (Figure 4b, left column). In contrast, IL-8 mRNA expression was
induced to a similar extent on day 2 and was sustained on day 6 after PMA addition in all
THP-1 derivatives, as shown in the right column of Figure 4b.

3.6. ICAM-1 and PDGF-B Protein Expression in NOD2-Expressing Giant Cells in the Lesional
Skin of a Blau Syndrome Patient

To explore the site of ICAM-1 and PDGF-B expression and its relationship with NOD2
expression in Blau syndrome lesions, ICAM-1 and PDGF-B protein expression in the
lesional skin specimen of a Blau syndrome patient harboring the NOD2 R334W mutation
was examined immunohistochemically and by double-immunofluorescence staining with
NOD2. By immunohistochemistry, ICAM-1 expression was observed linearly just beneath
the surface of multinucleated giant cells (MGCs), while PDGF-B expression was observed
diffusely within (cytoplamic or perinuclear) granuloma-forming epithelioid cells and
MGCs, as shown in Figure 5a. In contrast, no expression of TNFα or IFNγ was detected
in the lesional skin (Figure 5a). By double-immunofluorescence staining, ICAM-1 and
PDGF-B were weakly stained in MGCs and were both well co-localized with NOD2, which
was clearly stained in the perinuclear region of MGCs (Figure 5b,c).
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Figure 5. (a) Expression of ICAM-1, PDGF-B, TNFα or IFNγ in the lesional skin of a Blau syndrome
patient with a NOD2 R334W mutation was analyzed by immunohistochemistry. (Original magnifi-
cation: ×100). (b,c) ICAM-1 and PDGF-B protein expression in NOD2-expressing giant cells in the
lesional skin of a Blau syndrome patient. Expression of NOD2 (green) with ICAM-1 (red) or of NOD2
(red) with PDGF-B (green) was analyzed by double immunofluorescence and observed by confocal
microscopy. Nuclei were stained by Hoechst 33342 and shown in blue. (Original magnification:
×200).

4. Discussion

Blau syndrome is a rare but genetically and histologically distinct disease, character-
ized by a gain-of-function NOD2 mutation and noncaseating epithelioid cell granuloma.
Since monocytic cells with a NOD2 mutation are considered to play an essential role in
granuloma formation in Blau syndrome, THP-1 cells of a human monocytic lineage were
selected for a cellular model to analyze the pathogenesis of this disease. Therefore, it
was unexpected that THP-1 cells expressing R334W or N670K-mutant NOD2 showed no
upregulated production of TNFα or IL-8 (Figure 1). However, these results are consistent
with a previous report showing normal or less responsiveness of Blau syndrome patients’
peripheral blood mononuclear cells to various PAMP molecules [22]. Subsequently, we
tried PMA, a strong NF-κB activator, to activate THP-1 cells. PMA is also known to induce
the differentiation of THP-1 cells into macrophage-like cells [19,20]. Indeed, all THP-1
derivatives changed their shape in a similar way immediately after PMA addition and
differentiated into macrophage-like attaching cells. However, very surprisingly, mutant
NOD2-expressing THP-1 derivatives further extended their pseudopods and remained
attached to the plate at subsequent observations, whereas control THP-1 cells began to
float in the medium again and started to proliferate (Figure 2). These results suggest that
the activating stimulus created by PMA is transient and induces regulatory pathways
in the later stage. Since the surface expression of ICAM-1 on THP-1 derivatives seems
to be correlated with their differentiation stage into macrophage-like cells (as shown in
Figure 3), the downregulation of the surface ICAM-1 expression might be associated with
the PMA-induced regulatory pathway. Further, this PMA-induced regulatory pathway
might be abrogated by the Blau syndrome-causing NOD2 mutation. Although the alter-
ation of mRNA expression due to NF-κB activation was expected, neither the mRNA of
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ICAM-1 itself or of its shedding enzyme ADAM-17 was significantly changed, as shown
in Figure 4a. Notably, the putative correlation of the surface ICAM-1 expression and its
mRNA expression remains to be elucidated more quantitatively. As the level of soluble
ICAM-1 in bronchoalveolar lavage is reportedly correlated with the severity of sarcoidosis,
ICAM-1 expression in monocytic cells seems to have some association with granuloma
formation [23].

Another interesting point is the induction of PDGF-B, but not IL-8, mRNA in mutant
NOD2-expressing THP-1 cells after PMA activation (Figure 4b). Although an exhaustive
study would be required to clarify the specificity of PDGF-B induction, the specific expres-
sion of PDGF-B was also observed immunohistochemically in the lesional skin of a Blau
syndrome patient, as shown in Figure 5a. Since NF-κB is reportedly capable of inducing
both PDGF-B and IL-8 mRNA expressions, some regulatory mechanism or other specific
transcription factor might be involved [24,25]. PDGF-B is a strong activator of fibroblasts
and plays an important role in tissue repair. Interestingly, PDGF-B expression was detected
as early as day 1 and persisted for at least 14 days in the cutaneous tuberculin reaction
as an in vivo human model of T cell-mediated delayed hypersensitivity [26]. As is the
case with sarcoidosis, which can finally cause lung fibrosis, overexpression of PDGF-B in
mouse lungs reportedly induced a complex phenotype that encompassed both features
of emphysema and fibrosis [27]. Although the role of PDGF-B in granuloma formation is
unclear, it might work on preparing the fibrous network surrounding granulomas.

To generate MGCs, various PAMP molecules or uric acid crystals were added to
the PMA-stimulated THP-1 derivatives. However, no fusion of the attached cells was
observed (data not shown). Although it was reported that exposure of Blau syndrome
patients’ peripheral blood monocytes to IL-4 plus M-CSF caused their morphologic change
into fibroblastic/dendritic cells with Langhans-type MGCs, neither fibroblastic/dendritic
change nor MGC formation was induced in our THP-1 variants by this method [13].

Diffuse ICAM-1 expression along the surface of MGC and PDGF-B expression within
granuloma-forming epithelioid cells and MGC formation in a Blau syndrome patient’s
skin specimen seem compatible with their predicted functions (Figure 5a). In contrast, no
expression of TNFα or IFNγ in the lesional skin was unexpected. Although the expression
of both TNFα and IFNγ in the lesional skin of a Blau syndrome patient was previously
reported, the genetic background of the patient was not clarified [28]. This suggests a
distinct mechanism for granuloma formation in Blau syndrome, possibly independent of
T cells. To examine this possibility, the mutant NOD2-expressing THP-1 variants were
injected subcutaneously into athymic (nu/nu) mice with or without PMA. However, they
never formed epithelioid cell granulomas with MGCs in vivo (data not shown). The co-
localization of ICAM-1 and PDGF-B with NOD2 seems consistent with our experimental
results (Figure 5b,c). However, it remains to be elucidated whether the expressed NOD2
mRNA in MGCs is mutated because the patient is heterozygous to the mutation.

Collectively, these observations suggest that sustained surface ICAM-1 expression
on and transient PDGF-B production in newly differentiating macrophages that harbor a
mutant NOD2 and respond to some stimuli might play a role in granuloma formation in
Blau syndrome patients.
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