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Novel asymmetric representation 
method for solving the higher-order 
Ginzburg-Landau equation
Pring Wong1,2, Lihui Pang3, Ye Wu1,2, Ming Lei1,2 & Wenjun Liu1,2,3

In ultrafast optics, optical pulses are generated to be of shorter pulse duration, which has enormous 
significance to industrial applications and scientific research. The ultrashort pulse evolution in fiber 
lasers can be described by the higher-order Ginzburg-Landau (GL) equation. However, analytic soliton 
solutions for this equation have not been obtained by use of existing methods. In this paper, a novel 
method is proposed to deal with this equation. The analytic soliton solution is obtained for the first 
time, and is proved to be stable against amplitude perturbations. Through the split-step Fourier 
method, the bright soliton solution is studied numerically. The analytic results here may extend 
the integrable methods, and could be used to study soliton dynamics for some equations in other 
disciplines. It may also provide the other way to obtain two-soliton solutions for higher-order GL 
equations.

Investigations on solitons have been made great progress since the first report on inverse scattering transfor-
mation (IST) method for soliton solutions1. Among them, one of active subjects is the study on optical solitons 
in nonlinear optics governed by nonlinear Schrödinger (NLS) equations2,3. Optical solitons can maintain their 
shapes and velocities during their propagation under the balance between group-velocity dispersion (GVD) and 
Kerr nonlinearity4. By virtue of the advantage of shape preserving, optical solitons have been applied in the optical 
switching, phase shifter, amplifier, and information storage5–8.

On the other hand, soliton solutions have been obtained in such nonlinear partial differential equations as 
NLS equation, Sine-Gordon equation, Gross-Pitaevskii equation, Korteweg-de Vries equation, Burgers equation, 
Kadomtsev-Petviashvili equation and so on9–13. Recently, the integrable nonlocal NLS equation with parity-time 
(PT) symmetry has been introduced and solved by the IST method14. In addition to the IST method, there are 
some other integrable methods, such as Backlünd transformations, bilinear method, separation variable method 
and Darboux transformation, can be used to solve those equations15–17. Among all those methods, the bilinear 
method may be more direct and effective to solve integrable equations.

The evolution of ultrashort pulses in fiber lasers can be described by the higher-order GL equation in the 
following form18:
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Here, u(z, t) is the slowly varying envelope amplitude of the pulse envelop, z and t are the propagation distance 
and co-moving time, respectively. The physical parameters β2, g, Ω, β3, γ, α and TR correspond to the GVD, opti-
cal gain, gain bandwidth, third-order dispersion (TOD), Kerr nonlinearity, optical loss and intra-pulse Raman 
scattering, respectively. In contrast with the integrable equations mentioned above, the complex GL equation, 
which is non-integrable, can not be solved by the bilinear method. Owing to the modified bilinear method, 
one-soliton solutions for the standard form of the complex GL equation can be obtained19,20. However, for Eq. (1), 
the modified bilinear form of the third-order dispersion with the dependent variable transformation u(z, t) =  
 g(z, t)/f(z, t)1+ia is complicated, which has the following form:
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where g(z, t) is a complex differentiable function, f(z, t) is assumed to be real, and a is a modified parameter. The 
bilinear operator Dz

m and Dt
n are a trivial case of modified Hirota bilinear operators, which can be defined by19
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For some symbolic calculations, the term containing f 5+ia in bilinear form (2) can not be merged with other 
items in Eq. (1). Thus, Eq. (1) is difficult to be separated into several parts by the bilinear method, and has not 
been solved to obtain any analytic soliton solutions with any existing methods from the known literatures.

According to the above mentioned problems, we will propose a novel method to deal with the higher-order 
GL equation, such as Eq. (1). This method will be built on the asymmetry of the bilinear operator directly, and will 
offer more freedoms and possibilities for variation than the bilinear method. A bright soliton solution for Eq. (1) 
will be first obtained, which is stable against amplitude perturbations. Through the split-step Fourier method, the 
bright soliton will be studied numerically.

Results
Asymmetric representation. To introduce an asymmetric function with the asymmetric parameter a
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where k is an asymmetric degree. When the asymmetry is absent or the system is conservative, i.e. a =  0, the 
asymmetric function becomes factorial function = − −k k( , 0) ( 1) ( 1)!k . When the asymmetric degree is zero, 
we set = +a ia(0, ) 1  for the sake of simplicity of the asymmetric operator. When the asymmetric degree is 
unit, we set = +a ia(1, ) 1  to keep the continuity of the asymmetric function. The factorial form here could 
assure the channel representation of the trilinear operator, which will be discussed below. Furthermore, for the 
asymmetric situation, we can define an asymmetric operator through the bilinear operator and the corresponding 
modified version
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Here, Y is a state function of variable t. The asymmetric operator can be considered as an asymmetric remain-
der when the modified bilinear operator eliminates the regular bilinear operator.
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The linear asymmetric operators have a simple linear representation of differentiable functions. It indicates 
that the symmetry of the conventional bilinear method is not necessary for solvability, which attributes to the 
asymmetric operator represented by the conventional bilinear operators. The nonlinear asymmetric operator can 
be generalized to a bilinear form to transfer into an advanced linearity.

To generalize the nonlinear asymmetric operator, we construct a new multiplication rule
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Here, ′D t a
k k
,
,1 2 is a double-channel bilinear asymmetric (DCBA) operator. G and F are state functions. The sym-

metry in the bilinear method is broken. The new bilinear forms are more free and generalized, and contain the 
symmetric situation. The asymmetric degrees of two states can be exchanged. According to the Eq. (7), the 
third-order differential function can be written as
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Moreover, if the state function Y(t) can be considered as the probability of two independent states, then it is 
equal to the product of two states’ probabilities. Let us denote as Y =  GF. Then we can get a single-channel bilinear 
asymmetric (SCBA) operator ′ ⋅D G Ft a

k
,  easily from Eq. (5) under linear cases. In nonlinear cases, we should 

define the right part of Eq. (5) without the reciprocal variable Y. For the simple case as the asymmetric degree 
equaling to 2, we can obtain the relation between SCBA and DCBA operators:
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Multilinear operators. Now we consider the asymmetric representation of the conventional bilinear opera-
tor through SCBA and DCBA operators. In general, we define a series of multilinear operators as
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For the case of Γt a,
3 , it is so complex due to the nonlinear expression of Yttt. The low-order operators including 

0, 1 and 2 order fit to the traditional bilinear method. However, the trilinear operator can not be written as a bilin-
ear symmetric representation, but as the asymmetric case. The third-order dispersion term is usually presented in 
the dissipative situation.

So far, the bilinear asymmetric representation is more general than the symmetric representation. It can deal 
with the dissipative case as well as the conservative one. In the following, we will present a solvable theorem to 
find some interesting structures in the bilinear asymmetric equations.

Solvable Theorem. The following low-order real coefficient equation has one-soliton solution under some 
appropriate conditions
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bilinear method, G(t) and F(t) can be written as G(t) =  εG1(t) and F(t) =  1 +  ε2F2(t). ε is a formal expansion 
parameter. As a bright stationary soliton solution, the form of G(t) can be set as G(t) =  ewt+θ. Here, w and θ are real 
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, the soliton is in the sech form. Otherwise, the soliton is asymmetric. Even more, if the equation 

contains another variable, it will be more free to obtain one-soliton solution. The structure of the equation has 
soliton solutions without the bilinear symmetric representation, which extends the integrable structures. For the 
special values of parameters, we can show the soliton profiles in Fig. 1.

Analytic one-soliton solution for the higher-order GL equation. With the general dependent varia-
ble transformation u =  G/F1+ia discussed in section 1, we substitute it into Eq. (1), and expand them directly. Based 
on different powers of F, the equation can be separated into four parts. According to the method of section 2,  
the asymmetric representation of Eq. (1) can be derived as
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with auxiliary complex functions R(z, t) and S(z, t). The auxiliary functions here can hold part information of the 
equation. In the conventional bilinear method, the equation is separated into several parts irrelevantly, thus the 
whole information is lost without the connected auxiliary functions. In addition, the asymmetric representation 
can not be written as a symmetric bilinear representation.

Furthermore, a classic bright soliton solution can be assumed in the following forms,

= θ θ+ + + + +G z t e( , ) , (29)k ik z w iw t i( ) ( ) ( )1 2 1 2 1 2

Figure 1. Soliton profiles of different cases. (a) w =  1, ε =  1, C1 =  2, C2 =  0, B1/B2 =  − 2; (b) w =  1, ε =  1, 
C1 =  2, C2 =  2, B1/B2 =  − 2; (c) w =  1, ε =  1, C1 =  2, C2 =  0, B1/B2 =  − 3.5.
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η= + .θ+ +F z t e( , ) 1 (30)k z w t2 2 21 1 1

Here, k1 and k2 are parameters of the complex wave vector. w1 and w2 are complex frequencies. θ1 and θ2 are 
initial phases. Through substituting these assumptions into Eq. (25), we can solve the representation of function 
R(z, t) as follows,
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Furthermore, we can obtain the representation of function S(z, t) by solving Eq. (26) when R(z, t) has been 
solved. The solution of S(z, t) can be written as,
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We substitute all above relations into Eq. (27), and extract the coefficients of different exponent functions. The 
coefficient extractions should be equal to zero to satisfy Eq. (27). At first, we extract the constant coefficients, and 
set it to zero. Then, we can solve the intrapulse Raman scattering coefficient,
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Moreover, we extract the coefficients of θ + +e k z tw2( )1 1 1 , and separate it into two individual equations according 
to the real and imaginary parts. We can obtain the relations between the group velocity dispersion and third-order 
dispersion as follows,
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Through extracting the coefficients of θ + +e k z tw4( )1 1 1 , we can separate it into two equations based on real and 
imaginary parts. Thus, the gain width and modified parameter are solved as follows,
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Here, the asymmetric parameter a is equal to 1. Finally, we can extract the coefficients of Eq. (28) to obtain the 
wave vector, parameter η and imaginary frequency. For θ θ+ + + + +e i k z ik z tw itw1 2 1 2 1 2, we can solve the wave vector 
according to real and imaginary parts,
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For θ θ θ+ + + + + + + +e i k z tw k z ik z tw itw2( )1 2 1 1 1 1 2 1 2, we can solve the imaginary frequency and parameter η as follows,
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Although the form of F is more free to set, it is assumed to fit the bright soliton solution here. Note that the 
soliton solution is etric profile due to the form of F. The free parameters are w1, Ω, α and γ. The existence condi-
tions for a bright soliton are η >  0 and g >  0, which require that Ω > w7

3 1 . Using above constraints, the bright 
soliton solution can be written as
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We select a series of physical parameters as TR =  20.83 fs, β3 =  21.15 fs3/mm, β2 =  − 0.34 fs2/mm, 
γ =  0.0018 W−1/mm, g =  0.0018 dB/mm, α =  0.0016 dB/mm, and Ω =  60μm. Other parameters satisfy 
w1 =  − 0.4  Ω, θ1 =  0 and θ2 =  0. The bright soliton evolution is exhibited as shown in Fig. 2. Besides, some 
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ordinary phenomena, e.g. phase shift, amplification and compression, can be realized by modulating the related 
parameters21.

Numerical simulations. Through the split-step Fourier method4, we can numerically stimulate the bright 
soliton evolution as shown in Fig. 3. The soliton drift is due to the interaction between the third-order dispersion 
(TOD) and intrapulse Raman scattering. While the amplitude is perturbed by 10%, the soliton is stable still.

Conclusion
The asymmetric representation method has been put forward to handle the analytic bright soliton solution of 
higher-order GL equation (1). The intrinsic structures of equations have been asymmetric, which are more gen-
eral than the symmetric cases. A series concepts and methods of asymmetric representation theory have been 
represented. An asymmetric function has been proposed, and asymmetric operators have been constructed. 
Some linear operators have been presented. Furthermore, the double-channel operator has been defined, and 
used to make the representation of the single-channel operator. The conventional bilinear operators have been 
generalized to more cases, and represented by the channel operators. A solvable theorem about the structure of 
the asymmetric operator equation has been proved, and we have found an asymmetric structure. Through the 
novel asymmetric bilinear method, we have obtained a bright soliton solution for Eq. (1). Using the split-step 
Fourier method, the bright soliton has been numerically studied. The results in this paper extend the integrable 
methods, and the asymmetric representation method can be used to solve other equations in different physi-
cal systems so as to study the soliton dynamics. In addition, the method here may provide a new idea to study 
two-soliton solutions for the GL equation in the future research, which is still an unsolvable problem.

Methods
Split-step fourier transform method. In the numerical simulation of the propagation of a bright soliton, 
the split-step transform method is used to integrate the higher-order GL equation [Eq. (1)]. The main thought of 

Figure 2. Bright soliton evolution. The appropriate parameters are chosen to be TR =  20.83 fs, 
β3 =  21.15 fs3/mm, β2 =  − 0.34 fs2/mm, γ =  0.0018 W−1/mm, g =  0.0018 dB/mm, α =  0.0016 dB/mm, Ω =  60μm, 
w1 =  − 0.4  Ω, θ1 =  0, and θ2 =  0.

Figure 3. Numerical simulation of the bright soliton. The appropriate parameters are chosen to be the same 
as Fig. 2.
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this method is to separate the simultaneous interaction between dispersive and linear effects into series with small 
steps. It is useful to write Eq. (1) formally in the form

∂
∂
= +ˆ ˆu

z
D N u( ) ,

(41)

where D̂ is a differential operator that accounts for dispersion and losses, and N̂  is a nonlinear operator that gov-
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