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Query‑based‑learning 
mortality‑related decoders 
for the developed island economy
Chien‑Hung Yeh1,2*, Yining Wang1 & Fu‑Chun Yeh3*

Search volumes from Google Trends over clear‑defined temporal and spatial scales were reported 
beneficial in predicting influenza or disease outbreak. Recent studies showed Wiener Model shares 
merits of interpretability, implementation, and adaptation to nonlinear fluctuation in terms of real‑
time decoding. Previous work reported Google Trends effectively predicts death‑related trends for the 
continent economy, yet whether it applies to the island economy is unclear. To this end, a framework 
of the mortality‑related model for a developed island economy Taiwan was built based on potential 
death causes from Google Trends, aiming to provide new insights into death‑related online search 
behavior at a population level. Our results showed estimated trends based on the Wiener model 
significantly correlated to actual trends, outperformed those with multiple linear regression and 
seasonal autoregressive integrated moving average. Meanwhile, apart from that involved all possible 
features, two other sets of feature selecting strategies were proposed to optimize pre‑trained models, 
either by weights or waveform periodicity of features, resulting in estimated death‑related dynamics 
along with spectrums of risk factors. In general, high‑weight features were beneficial to both “die” 
and “death”, whereas features that possessed clear periodic patterns contributed more to “death”. Of 
note, normalization before modeling improved decoding performances.

The outbreak of potentially fatal diseases, especially those communicable, raised public high attention, particu-
larly whilst suffering from the prolonged coronavirus  epidemic1. A timely and accurate quantitative nowcast of 
disease-driven possible mortality supports the government to take preventive health steps against the outbreak of 
diseases, whilst a more comprehensive understanding of the regularities on the potentially fatal diseases supports 
formulating healthcare policies. For example, a recent multinational, prospective cohort study showed varying 
associations for the 14 potentially modifiable risk factors (e.g., behavioral, metabolic, socioeconomic, and psycho-
social factors, etc.) with mortality and cardiovascular disease over 150 thousand participants from 21  countries2. 
For a possible death trend nowcast technology to be developed for widespread use beyond sophisticated calibra-
tions, the decoder must remain stable over a long period, and the conversion of the inputs to the estimated trend 
must be robust, stable, and reliable. The amount of information captured depends on the number of states that 
can be decoded, the accuracy of decoding, and the speed and/or latency at which this decoding occurs.

Traditionally, estimation of mortality trend was performed per medical records, the hysteresis nature of 
medical records plus the immense workload in collections and analyses of statistical data both limit its practical 
use nevertheless. To investigate the hidden regularities of nature, big data mining has gradually broadened as a 
potential  approach3,4, of which the online trace reports facilitate surveillance for disease transmission in particu-
lar. At first, the wiki-based data-logs were utilized to predict disease spreads in some  countries5,6, nevertheless, 
the text-formatted data-logs confront the difficulties in revealing fine-scale temporal and spatial representa-
tions (i.e., less than a country), thus limiting the pursuit for a finer location and/or the exploration for a specific 
 period5. Later, search queries from Google include Google Dengue Trends and Google Flu Trends were accessed 
for infectious disease outbreak  forecasting7–9 yet terminated services in 2015; follow on this, keyword search 
volumes over temporal databases from Google Trends became publicly available. Google Trends, unlike the 
wiki-based data-logs, enables finer spatial segmentations with clearer-defined temporal scales, was successively 
implemented to predict seasonal influenza and/or dengue fever in several  countries10–12.

More researches based on Google Trends have been reported in the last  decade10–13, with its applications into 
a wide range of fields including tourism, elections, communications, business, and economics, especially in the 
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fields of health and  medicine14, e.g. recent studies have reported that Google queries effectively in monitoring 
the suicide  rates15,16. The emphasis of the related studies had gradually shifted from describing and diagnosing 
the trends toward predicting and nowcasting the occurrence of outbreaks, as well as forecasting seasonal dis-
eases’ prevalence. Recent studies employed Google data have displayed promising results in predicting various 
diseases and outbreaks, e.g.,  AIDS17, influenza-like  illness18, and suicide  risk15, etc. Methods include support 
vector  regression19, autoregressive-integrated moving average  model20, ensemble  methods21, phenomenologi-
cal  models22, and deep learning  algorithm23, etc., which may integrate with signal processing technique and/or 
optimization algorithm, were applied to trend predictions; e.g., Fahad Shabbir Ahmad et al. predicted mortality 
in paralytic ileus patients using electronic health records with a hybrid machine learning  framework24.

Our previous findings revealed that both high-weight and annual periodic patterns contribute to the pre-
diction of death-related queries for the continent’s  economy11. However, whether or not similar models and/or 
features fit well to an island economy remained unclear. Taiwan, as a representative developed island economy 
with a relatively homogeneous healthcare system, serves as an ideal model to explore its mortality levels along 
with the changes of the death cause spectrum, of which the latter is essential to guide preventative response 
 strategies6. On the other side, concerning the traditional mortality surveillance system may require 1–2 weeks to 
aggregate and process the data, thus the up-to-date search queries volumes obtained from Google Trends enable 
the estimates to be consistently 1–2 weeks ahead of the government reports. To this end, we constructed and 
compared the mortality-related decoders based on the Wiener model, the linear regression model, as well as the 
Seasonal Autoregressive Integrated Moving Average model (SARIMA) in this work, of which the Wiener model, 
having merits in the aspects of interpretability and  implementation25, and can adapt to the nonlinear fluctuations 
by cascading the Wiener filter with a polynomial  nonlinearity26 was further used to develop models with various 
features selecting criteria. The pre-trained model was further optimized either through the eigenvalues or the 
periodicities of the possible features to guarantee a set of more promising and efficient decoders. The present 
work used the Wiener Model for the first time, to the best of our knowledge, to decode the death-related Google 
search queries that employed death-cause-related Google search queries in Taiwan, resulting in the estimated 
mortality-related dynamics along with a spectrum of risk factors. The present study systematically explored the 
relationship between the death-related Google search queries and the death-cause-related Google search queries 
in Taiwan, aiming to provide new insights into death-related online search behavior at a population level. Our 
results showed that the death-cause-related search queries are capable of decoding the death-related search 
queries, indicating the predicting potential of the death-cause-related Google search queries. We expected that 
this research may provide a basis for the possibility of using Google Trends to predict the upcoming death and 
causes for the developed island economies in the future. Of note, the present study did not engage with the real-
world mortality data directly to the decoding process.

The “Results” and “Discussion” sections compared and discussed the time–frequency analyses of the search 
queries, the performances of the estimated decoders, as well as the weights of each feature across time lags. The 
details of the collected datasets, the mathematical details of decoding models, as well as the various decoder’s 
evaluated measures were introduced in the “Materials and methods” section.

Results
Nineteen fatal search queries were applied as the candidate predictors to decode two other death-conceptual 
trends (see Table 1 shows a list of the applied queries and their translation in traditional Chinese), of note, all 
queries integrated search volumes sampled by weeks lasting for 5 years.

To associate the death-related queries with mortality, correlations between the real death number and the 
two search volumes (i.e., “die” and “death”) were shown in Fig. 1, wherein different rows of panels compared 
correlations with search volumes in different languages. The search volumes of the search term “die” were sig-
nificantly correlated to the real death number across all three sets of keyword search volumes, either in English 
(Fig. 1a), Chinese (Fig. 1c), or the combined use of the two languages (Fig. 1e); however, no or merely a trend 
toward significant correlations to the real death number were shown with the term “death” either for the English 
(Fig. 1b: rho = 0.1154, p = 0.0633) or the Chinese versions (Fig. 1d: rho = 0.0750, p = 0.2280), but still reached a 
significant correlation with the bilingual version (Fig. 1f: rho = 0.1442, p = 0.0200). In brief, both the terms “Die” 
(Fig. 1e: rho = 0.1284, p = 0.0386) and “Death” (Fig. 1f: rho = 0.1442, p = 0.0200) presented satisfied and significant 
correlations to the real death number with the combined use of the two languages. In light of that Taiwan pos-
sesses a well-developed Mandarin-English bilingual system and the significant correlations in Fig. 1e,f, bilingual 
keyword search volumes were applied in the additional analyses.

Figure 2a,b demonstrate time series along with their corresponding scalograms of the two estimated vari-
ables include “die” and “death”, respectively; of which the latter possessed both the annual and the semiannual 
periodic patterns (Fig. 2b), especially the semiannual one; whereas the former (Fig. 2a) presented intermittent 
annual pattern. On the other side, Fig. 2c shows a representative feature (i.e., diabetes) integrating a relative pure 
annual periodic oscillation with a monotonic rising trend, while Fig. 2d presents another one (i.e., lung cancer) 
in which the semiannual periodic pattern dominated the oscillation in contrast. Briefly, a remarkable periodic 
pattern inferred that the feature was cyclic repetitive either annually, semiannually, or seasonally, thereby might 
possess a high contribution in predicting the periodic trend. The emergences of periodic patterns of the 21 search 
queries in bilingual keyword search volumes with visual inspections were summarized in Table 2.

To nowcast the death-related dynamics, the multiple linear regression model was first applied to predict the 
raw bilingual keyword search volumes “die” and “death” from 2015 to 2019 with all 19 explanatory variables as 
predictors. In Fig. 3a, negative correlation (rho = −0.39, p < 0.0001; MSE = 73.92) was shown between the actual 
(black track) and the estimated trend (red track) for the search term “die”, inferring the severe phase slips and 
underestimation. On the other side, as shown in Fig. 3b, a weak positive correlation was revealed for the search 
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term “death” between the real (black) and the decoded trends (red) with its p-value beyond a significant level 
(rho = 0.06, p = 0.3151; MSE = 72.61).

Next, we implemented the SARIMA model, a well-known autoregressive approach for mortality and/or flu 
predictions, to estimate the 5th-year trend (2018–2019) in the search volumes of the bilingual queries “die” and 
“death” based on consecutive fourth year death-related terms per se (2014–2018). In Fig. 4, the red and black 
tracks correspond to the estimated trends based on the SARIMA model, as well as the actual trends of death-
related terms in the 5th year, whilst the gray tracks present the real trends of the death-related queries in the 
first four years. Unfortunately, neither the search term “die” (Fig. 4a: rho = 0.08, p = 0.5820; MSE = 62.54) nor 
the term “death” (Fig. 4b: rho = -0.03, p = 0.8219; MSE = 139.26) revealed significant correlations between the 
SARIMA and the actual trends.

Next, we introduced the Wiener Model, using all 19 raw bilingual keyword search volumes at time lags up to 
52 weeks as the predictors, to decode the search volumes of the death-related queries. The decoding performances 
with the correlations between the estimated (red tracks) and the actual (black tracks) trends of the search term 
“die” and “death” were presented in Fig. 5a,b, respectively, wherein the latter showed a significant and positive 
correlation for the term “death” (rho = 0.32, p < 0.0001; MSE = 62.35), while a negative correlation (rho = -0.18, 
p = 0.0085; MSE = 81.38) was revealed for the former (i.e., “die”). Considering data may be given by Google in 
relative terms, a z-score based on normal distribution was employed to the raw search volumes (Fig. 5a,b). With 
the normalization process (Fig. 5c,d), even higher significant correlation was reached (rho = 0.40, p < 0.0001; 
MSE = 0.88) for the search term “death” (Fig. 5d), as compared to that without (Fig. 5b). Our results supported 
the z-score process as a useful technique to eliminate the potential uncertainty in relative quantities as well as 
to improve the decoding performances with the Wiener Model. Unfortunately, it failed to reach a significant 
correlation for the search term “die”.

Comparisons of decoding performances among the three different methods (Wiener model, Multiple Linear 
Regression, and SARIMA) either with or without normalization were summarized in Table 3. The Wiener model 
showed the best fit for the data, especially for the search term “death”. With normalization to the time series, the 
Wiener model was the only method that presented significant positive correlations between the estimated and 
the actual trends for the term “death” (rho = 0.40, p < 0.0001). Similarly, the Wiener model also outperformed the 
rest two approaches (Multiple Linear Regression, and SARIMA) with the direct use of the raw search volumes, 
revealing positive correlations to the actual trends with the term “death” (rho = 0.32, p < 0.0001). Of note, the 
decoding performances with normalization were superior to those without in general.

Given the superiority of the Wiener model, two other feature selection strategies were proposed to optimize 
the models. Figure 6 shows the comparisons of decoding performances among the three different feature selection 
strategies based on the Wiener model. Figure 6a,b nowcast the search term “die” and “death” with all 19 explana-
tory variables in Table 1 set as the predictors, revealing significant correlations between the actual (black tracks) 
and the estimated trends (red tracks) for the search term “death” (Fig. 6b: rho = 0.40, p < 0.0001; MSE = 0.88); 
nevertheless, it failed to present a significant correlation for the search term “die” (Fig. 6a: rho = −0.05, p = 0.5137; 

Table 1.  Information of the 21 search queries, comprising 19 explanatory variables and two estimated 
variables. Exp explanatory variable, Est estimated variable.

No Search query Translation Variable

1 AIDS 艾滋病 Exp

2 Alzheimer 阿兹海默症 Exp

3 Breast cancer 乳癌 Exp

4 Cancer 癌症 Exp

5 Car accident 車禍 Exp

6 Cirrhosis 肝硬化 Exp

A Death 死亡 Est

7 Diabetes 糖尿病 Exp

8 Diarrhoeal 腹瀉 Exp

B Die 死 Est

9 Flu 流感 Exp

10 Heart disease 心臟病 Exp

11 Kidney cancer 腎癌 Exp

12 Lung cancer 肺癌 Exp

13 Malaria 瘧疾 Exp

14 Obstructive pulmonary 阻塞性肺病 Exp

15 Respiratory infection 呼吸道感染 Exp

16 Sick 生病 Exp

17 Stomach cancer 胃癌 Exp

18 Stroke 中風 Exp

19 Tuberculosis 肺結核 Exp
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MSE = 1.38). Next, we considered periodicities of all candidate predictors as the feature selection criterion, whilst 
including the ten features revealing remarkable periodic patterns, referenced to time series and scalogram of each 
search query (Fig. 2 and Table 2). Similar to the performances with all possible feature included, the correlation 
between the estimated (red tracks) and the actual (black tracks) trends for the search term “die” (Fig. 6c) was 
slightly improved (rho = 0.06, p = 0.3577; MSE = 1.54) compared to that with all features included (Fig. 6a), but 
still failed to reach a significant level; whilst the term “death” (Fig. 6d) maintained a comparable performance 
(rho = 0.41, p < 0.0001; MSE = 1.06) to that with all possible features (Fig. 6b). These results may suggest that 
periodicity is a feasible feature selection criterion.

The color plots (left panel for each subplot) in Fig. 7 present the contributions of all candidate features, at time 
lags up to 52 weeks with a step in one week, to decode the five-year long-term death-related search terms. To com-
pare and sort the contribution of each feature, the weight distribution of each candidate feature were integrated 
across all time lags, generating a bar plot (right panel for each subplot in Fig. 7) which shows the sum of weights 
of each feature; thereby the ranks of all candidate features in Table 1 could be determined by sorting this sum of 
weights with all possible features as the predictors for the search terms “die” (Fig. 7a) and “death” (Fig. 7b), respec-
tively. Table 4 displays the weight orders of the 19 explanatory variables for the two death-related queries “die” or 
“death”. Surprisingly, the correlation between the estimated (red tracks) and the actual (black tracks) trends for 
the search term “die” (Fig. 6e) was significantly improved (rho = 0.14, p = 0.0403; MSE = 1.45) compared to the 
other two feature selection criteria (Fig. 6a,c). Both the term “die” (Fig. 6e: rho = 0.14, p = 0.0403; MSE = 1.45) and 
the term “death” (Fig. 6f: rho = 0.41, p < 0.0001; MSE = 1.02) presented significant positive correlations, implying 

Figure 1.  Correlations between the real death number and the search volumes of “Die” (left panels) or “Death” 
(right panels) using the three different inclusion criteria of search queries. (a,b) Include only the English 
keyword search volumes, while (c,d) take the Chinese keyword search volumes as to the source of data. (e,f) On 
the other side, comprise both the English and the Chinese keyword search volumes.
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the sum of feature weights as a reliable criterion in minimizing the number of selected features, whilst reaching 
a satisfactory decoding performances.

The ten highest-weight features, as reported in Table 4, included “Alzheimer”, “Car Accident”, “Diabetes”, 
“Heart Disease”, “Lung Cancer”, “Malaria”, “Obstructive Pulmonary Disease”, “Respiratory Infection”, “Sick”, 
and “Stomach Cancer” (No. 1 to No. 10 in Fig. 7e,f); whereas the ten features possessed the most remarkable 
periodic patterns, as reported in Table 2, included “AIDS”, “Alzheimer”, “Breast Cancer”, “Cirrhosis”, “Diabetes” 
(Fig. 2c), “Diarrhoeal”, “Heart Disease”, “Malaria”, “Obstructive Pulmonary Disease”, and “Stroke” (No. 1 to No. 10 
in Fig. 7c,d), which mainly characterized by either annual, semiannual or seasonal periodic patterns. As shown 
in Fig. 7c, the three features showing the highest sum of weights to forecast “die” were “Obstructive Pulmonary 
Disease”, “Stroke”, and “Malaria” in order; in contrast, “Breast Cancer”, “Heart Disease” and “Alzheimer” were 
the top three to decode the trend for “death” (Fig. 7d). The ten candidate features for Fig. 7e,f were determined 
by the sorted sum of weights from Fig. 7a,b. With the ten highest-weight features’ selecting strategy, the three 
most contributed features in predicting the search term “die” were “Obstructive Pulmonary Disease”, “Sick”, and 
“Car Accident” (Fig. 7e), while “Respiratory Infection”, “Heart Disease”, and “Alzheimer” contributed more to the 
search term “death” (Fig. 7f). Table 5 summarizes all statistical results (i.e., MSE, and rho along with its p-value) 
in predicting the death-related terms (i.e., “die” or “death”) with predictors determined by the three different 
feature selection criteria (i.e., all features, periodicity, and weight), either with or without normalization process. 
Briefly, a z-score prior to the Wiener Model improved the decoding performance overall, whilst both feature 
selection strategies including “ten most periodic features” and “ten highest-weight features” presented comparable 
performances to that with all possible features for the term “death” in general. With the normalization process, 
selecting predictors according to the weight orders of the 19 explanatory variables outperformed that based on 

Figure 2.  Time series and scalogram of search queries include (a) “Die”, (b) “Death”, (c) “Diabetes”, and (d) 
“Lung Cancer”, all based on the bilingual keyword search volumes.
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Table 2.  Periodicities of the 21 search queries in bilingual keyword search volumes. Ann annual, Semi 
semiannual, Sea seasonal, na not applicable.

No Search query Variable Periodicity Sort

1 AIDS + 艾滋病 Exp Semi 2

2 Alzheimer + 阿兹海默症 Exp Semi 3

3 Breast cancer + 乳癌 Exp Ann 6

4 Cancer + 癌症 Exp na 19

5 Car accident + 車禍 Exp na 18

6 Cirrhosis + 肝硬化 Exp Ann 9

A Death + 死亡 Est Semi na

7 Diabetes + 糖尿病 Exp Ann 1

8 Diarrhoeal + 腹瀉 Exp Ann 7

B Die + 死 Est Ann na

9 Flu + 流感 Exp na 17

10 Heart disease + 心臟病 Exp Sea 10

11 Kidney cancer + 腎癌 Exp na 16

12 Lung cancer + 肺癌 Exp Semi 11

13 Malaria + 瘧疾 Exp Ann 5

14 Obstructive pulmonary + 阻塞性肺病 Exp Semi 4

15 Respiratory infection + 呼吸道感染 Exp Sea 14

16 Sick + 生病 Exp Ann 12

17 Stomach cancer + 胃癌 Exp Ann 15

18 Stroke + 中風 Exp Ann 8

19 Tuberculosis + 肺結核 Exp Semi 13

Figure 3.  The performances of the multiple linear regression model using all 19 explanatory variables as 
predictors. Of note, raw bilingual keyword search volumes were applied. Spearman correlations and mean 
square error between the estimated (red tracks) and the actual (black tracks) trends of the two search terms (a) 
“die” or (b) “death” were shown.

Figure 4.  The performances of the SARIMA model. Spearman correlations and mean square error between the 
SARIMA trends (red tracks) and the actual trends (black tracks) of the two search terms (a) “die” or (b) “death” 
were shown.
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the oscillatory periodicity for the term “die”, whereas the features selecting strategy with oscillatory periodicity 
favored the nowcast for the term “death”.

Discussion
The usefulness of search query. Search engine query data such as Google Trends has been applied as a 
potential data source to detect influenza activities. For example, Ginsberg et al. selected 45 search queries data 
to detect influenza-like illness activity in the United  States7. Later, Araz et al. showed that the additional use of 
Google Trends search query data improved the performance of the linear regression models by comparing the 
root means square errors (RMSEs)10. Recently, Mavragani et al. used search query data from Google Trends, 
forecasting AIDS prevalence in the United States with the AIDS-related search terms, which supported the 
conclusion of past findings that Google Trends data are valid and valuable for the analysis and forecasting of 
human behavior towards health  topics17. In another study, Lu et al. predicted the occurrence of epidemic avian 
influenza using Google Trends data with the multiple linear regression model, indicating a hybrid set of predic-
tors containing information from Google Trends will be a  plus27. This paper attempts to show the relationship 
between the death-cause-related search queries and the death-related search queries (i.e., “die” and “death”), 
providing a deeper insight into users’ online search behavior about mortality at a population level. Whilst this 
study did not validate the real-world mortality decoder, it did partially examine the feasibility and reliability of 
the use of Google Trends in predicting mortality, by checking if the search query data resemble that of the official 
mortality records. Our results, as shown in Fig. 1, proved that the bilingual death-related search query volumes 
obtained from Google Trends (i.e., “die” and “death”) significantly correlated to the real death number, prevailing 

Figure 5.  Wiener model decoding performances either without (a,b) or with (c,d) normalization. The left and 
right panels correspond to the decoding performances associated with the search terms “die” (a,c) and “death” 
(b,d), respectively.

Table 3.  Decoding performances among the three different methods either with or without normalization. 
Bold fonts indicate p-value < 0.05.

Normalization Method Estimated variable rho p-value MSE

No

Wiener model
Die + 死 −0.18 0.0085 81.38

Death + 死亡 0.32  < 0.0001 62.35

Multiple linear regression
Die + 死 −0.39  < 0.0001 73.92

Death + 死亡 0.06 0.3151 72.61

SARIMA
Die + 死 0.08 0.5820 62.54

Death + 死亡 −0.03 0.8219 139.26

Yes

Wiener model
Die + 死 −0.05 0.5137 1.38

Death + 死亡 0.40  < 0.0001 0.88

Multiple linear regression
Die + 死 −0.38  < 0.0001 1.38

Death + 死亡 0.06 0.3183 1.08

SARIMA
Die + 死 0.08 0.5820 1.17

Death + 死亡 −0.03 0.8219 2.08
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across the English and Chinese search queries, thus supporting the search query data from Googles might have 
potential in predicting the real mortality.

Candidate keywords selection. To effectively predict the possible death, we first included candidate fea-
tures according to the main death causes in Taiwan, referenced to the common death causes reported by the 
World Health Organization. Sixteens out of nineteen potential death cause included in this work were deter-
mined by this criterion. On the other side, four out of nineteen candidate features (i.e., cancer, car accident, flu, 
and sick) were determined based on the general habitual uses in Google searching (e.g., “sick”) or the extended 
concepts of the former sixteen features (e.g., “cancer”). Criteria for selecting these four death causes were lied 
on several general habitual uses in Google searching that may potentially link to the possible death, e.g., “car 
accident” is well-known as one of the critical causes of death in Taiwan, “flu” may serve as an antecedent or 
contributory cause of death, while “sick” and “cancer” are the more general frequent usages to show the illness 
thus might be useful in prediction. Of note, these 19 features may either be categorized as the immediate, the 
antecedent, or the contributory causes of death.

Search query occurrence. The periodic pattern of certain Google search queries (Table 2) may be associ-
ated with the seasonal effects of these diseases. For example, some diseases are directly influenced by seasons, 
such as  malaria28,  cirrhosis29,  diarrhoeal30,  stroke31, and heart  disease32. Other diseases, although may not be 
season-driven diseases per se, presents seasonal patterns for various reasons. For example, breast cancer inci-
dence has seasonal patterns that seem to vary among global  populations33. The associated symptoms of diabetes 
are influenced by seasonality, as reported in the past study that the Gestational Diabetes Mellitus prevalence 
in Taiwan revealed seasonal variation, with the highest risk occurring in spring and summer due to the post-
glucose load level  variations34, thus may also contribute to the periodicity of the online search volumes. It has 
also been reported that season has a clinically significant influence over the cognition function in older adults 
either with or without Alzheimer’s diseases, suggesting the associated symptoms of Alzheimer’s diseases are 
more likely to be pronounced in the winter and early  spring35. The discussions mentioned above may provide a 

Figure 6.  Wiener model decoding performances under the three different features selecting strategies. All 
bilingual keyword search volumes were normalized. Spearman correlations and mean square error between the 
estimated (red tracks) and the actual (black tracks) trends of the two search terms “die” (left panels) or “death” 
(right panels) were presented. (a,b) The estimated trends with all possible features included. Two other feature 
selection criteria were applied to optimize the models. (c,d) The performances with the ten remarkable periodic 
features. (e,f) The performances with the ten highest-weight features according to (a,b).
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Figure 7.  Features importance to decode the death-related terms with normalization in search queries. (a,b) 
The weight distribution across all time lags and the integrated weight of all features for the search term “die” and 
“death”, respectively. Two other feature selection criteria were applied to optimize the models. (c,d) The results 
with the ten most remarkable periodic features. (e,f) The performances with ten highest-weight features from 
(a,b).

Table 4.  Weight orders of the 19 explanatory variables for the two death-related queries “die” or “death”.

No Search query Wdie Wdeath

1 AIDS + 艾滋病 10 12

2 Alzheimer + 阿兹海默症 15 5

3 Breast cancer + 乳癌 18 4

4 Cancer + 癌症 19 3

5 Car accident + 車禍 3 6

6 Cirrhosis + 肝硬化 14 16

7 Diabetes + 糖尿病 9 7

8 Diarrhoeal + 腹瀉 11 18

9 Flu + 流感 16 19

10 Heart disease + 心臟病 8 2

11 Kidney cancer + 腎癌 17 14

12 Lung cancer + 肺癌 6 13

13 Malaria + 瘧疾 7 11

14 Obstructive pulmonary + 阻塞性肺病 1 10

15 Respiratory infection + 呼吸道感染 13 1

16 Sick + 生病 2 8

17 Stomach cancer + 胃癌 4 9

18 Stroke + 中風 5 17

19 Tuberculosis + 肺結核 12 15
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possible explanation for the emerging periodicity of the search query, however, the exact reason underlying these 
trends required further validation with the specific death-cause-related mortality records.

Decoding performances of the three models. In comparisons of the mortality-related decoding per-
formances between the three potential models (i.e., Wiener model, Multiple Linear Regression, and SARIMA), 
the Wiener Model outperformed the other two in general, as shown in Table 3, .e., the estimated search queries 
“death” presented positive significant correlations to the actual trends, especially prominent for those with nor-
malization. Given the mechanism of the multiple linear regression model, a possible reason for the unsatisfied 
decoding performances might be the insufficient number of predictors, and the lack of an effective optimization 
process. On the other side, the predicting performances for the SARIMA models failed to fit the actual trends 
(see Fig.  4), which may be resulted from the nonlinear nature of the pattern, ambiguous seasonality of the 
data, as well as the insufficient length of the inputs for the autoregressive analysis. Of note, the SARIMA model 
requires preliminary analysis to determine the parameters of the model, thus complicating the analysis. The 
Wiener Model, an extension to the traditional multiple linear regression model, adopts different features at vari-
ous time lags as the predictors. The implementation of the Wiener–Hopf equation to optimize the correspond-
ing weights, along with a ridge regression to overcome the overfitting problem, all support the Weiner model 
presented more accurate estimates than the traditional linear regression model. Meanwhile, the Wiener–Hopf 
equation further facilitates and benefits the computation efficiency for the weights of features as well, plus the 
availability for the Wiener Model in dealing with the nonlinear oscillations, both support its superiority over 
that of the SARIMA model.

Importance of normalization process. Considering Google Trends normalizes data by the total search 
volumes over a scale from 0 to 100, then represents and visualizes as the weekly relative search volumes, it is 
a necessity to correct results for population size and makes it fair to compare data across different keywords. 
Taking into account the baseline for estimation varies over time, a standard transformation z-score method was 
employed to normalize the relative search volumes from Googles based on the normal distribution.

The algorithm of z-score normalization is formulated as z = (x − u)/σ, where u is the mean and σ denotes 
the standard deviation of the input. Our results showed that the z-score normalization eliminated the varying 
baseline of search volumes across different queries, improving the decoding performances overall with Wiener 
models (Table 3), with its benefits prevailing across all three different feature selecting strategies (Table 5), both 
manifesting the importance of normalization in processing the data from Google Trends.

Feature selecting strategies. The last concern of this work goes to the timing of the use with the different 
feature selecting strategies. Our results, as summarized in Table 5, indicated either periodicities or weights of 
predictors were critical for the estimations, manifesting certain overlaps may occur between the selecting strate-
gies with the ten most periodic features and the ten highest-weight features (five out of ten), i.e., partial peri-
odic alternating search queries shared high weights thus could serve as the general predictors in practical use, 
including “Alzheimer”, “Diabetes”, “Heart Disease”, “Malaria”, and “Obstructive Pulmonary Disease” (see Table 2, 
Table 4, and Fig. 7). As for those high-weights but non-periodic features, including “Car Accident”, “Lung Can-
cer”, “Respiratory Infection” “Sick” and “Stomach Cancer”, tended to contribute more to the death-related terms 
with multiple competing oscillatory components (e.g., “die”) than that dominated by the annual or semiannual 
periodic patterns (e.g., “death”).

The search query “die” may associate with a fear-driven fatal disease outbreak, such as the abrupt changes 
due to an emergent occurred event or those with annual prevalence, as shown in Fig. 2a. Following this, only 

Table 5.  Comparisons of performances (rho with its p-value, and MSE) in decoding the estimated variables 
(i.e., “Die” and “Death” in bilingual keyword search queries) with the three types of features selecting strategies 
(i.e., all possible features, the ten most periodic features, and the ten highest-weight features). Bold fonts 
indicate p-value < 0.05.

Normalization Selection Estimated variable rho p-value MSE

No

All possible features
Die + 死 −0.18 0.0085 81.38

Death + 死亡 0.32  < 0.0001 62.35

Ten most periodic features
Die + 死 −0.04 0.5716 79.99

Death + 死亡 0.36  < 0.0001 76.62

Ten highest-weight features
Die + 死 0.12 0.0921 87.25

Death + 死亡 0.37  < 0.0001 82.17

Yes

All possible features
Die + 死 −0.05 0.5137 1.38

Death + 死亡 0.40  < 0.0001 0.88

Ten most periodic features
Die + 死 0.06 0.3577 1.54

Death + 死亡 0.41  < 0.0001 1.06

Ten highest-weight features
Die + 死 0.14 0.0403 1.45

Death + 死亡 0.41  < 0.0001 1.02
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the feature selecting strategies with the ten highest-weight features presented significant positive correlations 
compared to that with the ten most periodic features selecting strategies (Table 5). In contrast, the search query 
“death” presented the overall trend that comprises the multiscale oscillatory patterns corresponding to the mul-
tiple death causes with less contamination by the emergent occurred event (Fig. 2b). Therefore, both the feature 
selecting strategies with the ten most periodic features or with the ten highest-weight features presented similar 
and significant correlations and were slightly higher for the latter (Table 5).

Conclusion
This study explored the death-related online search behavior in Taiwan based on three different methods with 
the engagement of a set of death-cause-based search queries from Google Trends. Our results showed the Wiener 
models outperformed the multiple linear regression model and the SARIMA in terms of the correlations between 
the estimated and the actual trends for the death-related queries. Of note, significant correlations between the 
bilingual death-related queries and the authentic death number in Taiwan were validated. Moreover, both the 
feature possessed remarkable periodicity and of high-weight contributed to similar performances for the term 
“death”, while only the high-weighted features favored the term “die” and presented significant correlations.

Materials and methods
Dataset collection and feature extraction. Keyword search volumes from Google Trends (https:// 
Trends. google. com/ Trends) were assessed as our datasets. Table 1 summarizes 21 variables, among them nine-
teens as the explanatory variables (i.e., No. 1 to No. 19), whereas the rest two are the estimated ones (i.e., No. 
A and No. B). The two death-related estimated variables include “die” and “death”. All search volumes of the 21 
variables were automatically normalized by Google Trends, ranging from 0 to 100. The explored features were 
determined by the main death causes in Taiwan, or their extended concepts. Among the nineteen potential death 
causes, sixteens were referenced to the common death causes reported by the World Health Organization, except 
for the four extended terminologies (i.e., cancer, car accident, flu, and sick). These nineteen potential death-
related factors may either serve as the immediate, antecedent, or contributory causes of death. The immediate 
death cause defines as the reasons which directly cause the death, whereas the antecedent death cause refers to 
the underlying diseases that causally lead to the immediate cause. The contributory death cause facilitates the 
death (e.g., diabetes), however not necessarily relates to the immediate and/or the antecedent causes. All search 
queries spanned from Oct. 2014 to Sep. 2019. Of note, the data that support the findings of this study are avail-
able from the corresponding author upon reasonable request. A sliding and non-overlapping window with a 
fixed length in a week was applied (i.e., 52 counts/year), to reach a moderate resolution and/or oscillatory vari-
ation of a time series.

The monthly official mortality data were collected from the National Statistics Network in Taiwan (https:// 
www1. stat. gov. tw), covering all ages and all death causes. As aforementioned, the search volumes from Google 
Trends were sampled by weeks while the official mortality data were presented monthly; thus, to match and align 
the samples for an approximate correlation between the Google search volumes and the real mortality records, 
the monthly death number was split evenly by weeks, wherein the death number of the week covering adjacent 
months was weighted by the lasting days of each. Spearman correlation analysis was then applied to validate 
that the incidence of the words “death” and “die” resembled that of the real mortality records. To guarantee a 
satisfactory performance whilst minimizing the number of features applied, a finer sorting algorithm may fulfill 
the needs. To this end, a complex Morlet Wavelet transform was first applied to generate a time–frequency rep-
resentation of each weekly search query (e.g., Fig. 2). Next, these nineteen predictive features were categorized 
and sorted according to either the periodicities or the eigenvalues of each explanatory variable. The selections 
of features are rooted on three types of criteria including all search terms as features, or features with cyclic 
alternating patterns determined by the periodicities of search queries according to their Wavelet scalograms, or 
involving only the high-weighted features based on the decoding performances with all possible features set as 
predictors. All methods were carried out in accordance with relevant guidelines and regulations.

Multiple linear regression model. All candidate explanatory variables were used as predictors to esti-
mate the search volume of “die” or “death” from 2015 to 2019. The linear regression model is formulated as 
yt = β0 +

∑19
i=1 βixit , where yt represents the estimated mortality at time t, xit refers to the ith predictor at the 

same time point t, while βi stands for the linear regression coefficients.

SARIMA model. The Seasonal Autoregressive Integrated Moving Average (SARIMA), an extension to the 
Autoregressive Integrated Moving Average (ARIMA) model, supports the modeling with the seasonal modula-
tion in the series. The general form of the SARIMA model can be expressed as ARIMA (p, d, q) × (P, D, Q) S, 
where p, d, and q corresponds to the number of the autoregressive terms, the non-seasonal differences, and the 
moving-average terms, respectively; P, D, and Q stands for the number of the seasonal autoregressive terms, the 
seasonal differences, and the seasonal moving-average terms, while S denotes the periodic terms.

In this work, we constructed an ARIMA (1,1,1)×(0,1,1) model to estimate the continuation of the search 
volumes of “die” and “death” respectively. Considering that the estimated variables “death” possessed both the 
annual and the semiannual periodic patterns (Fig. 2b), especially for the semiannual one; While the term “die” 
presented the intermittent annual pattern (Fig. 2a). Hence, the SARIMA model implemented in this work was 
embedded with a periodicity of 52 weeks (S = 52) for “die”, and with a periodicity of 26 weeks (S = 26) for “death”, 
of note, both were performed with the data from 2014 to 2018 as the training set, and the data from 2018 to 
2019 as the test set.

https://Trends.google.com/Trends
https://Trends.google.com/Trends
https://www1.stat.gov.tw
https://www1.stat.gov.tw
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Wiener filtering and cascade model. The Wiener  filter25, which is similar to that of the multiple linear 
regression, aims to seek the weights of a weighted sum of different features. In this work, the estimated mortality 
was set as the dependent variable, while the search queries at various time lags were set as the explanatory vari-
ables. The linear representation of a Wiener filter is formulated as M(t) =

∑Q
j=0

∑P
i=1 aijxi(t − j) , where M(t) 

represents the estimated mortality at time t, aij stands for the weight corresponds to the ith feature (P features in 
total) at a time lag of j (Q time lags in total), whereas xi(t − j) refers to the ith feature at a time lag of j.

To estimate and optimize the corresponding weights, the Wiener–Hopf  Equation25, a set of linear equations 
formulated as A = (XTX)

−1
XTM , minimizes the sum of the squares of the difference between the estimated 

mortality M(t) and the actual death-related search query M(t) , has the inside track for its computational effi-
ciency with a closed-form solution, where A is a P(Q + 1)× 1 matrix of aij , X represents all features at various 
lags (maximum time lags = 52 weeks) with a N × P(Q + 1) matrix, N stands for the number of sliding win-
dows, whereas M denotes the actual death-related queries with N× 1 vector. Next, a ridge regression A2 was 
added to the Wiener–Hopf equation as a regularization term to deal with overfitting, which is formulated as 
A = (XTX + �I)

−1
XTM , where λ denotes the regularization  parameter26.

To go a step further, a Wiener Cascade  Model26 was built by cascading the output of the Wiener filter to a 
static nonlinear unit, to model nonlinear relationships between the predictors and the estimated trends. In this 
work, a 3rd order polynomial unit was applied with the corresponding weights to be estimated by the least-
squares approach.

Decoder evaluations and statistical analyses. Before the decoding process, the z-score method was 
applied to normalize the raw time series. The decoding performances of the estimated trends were first evalu-
ated by calculating the Spearman’s rank correlation coefficient (rho), a non-parametric measure of correlation 
without the need to fulfill any assumptions in the frequency distribution of the inputs, to measure how well a 
monotonic function represents the relationship between the estimated and the actual trends of the death-related 
series, of note α = 0.05 was set for all hypothesis testing. On the other side, the mean square error (MSE) was 
also used to access the quantitative differences between the estimated and the actual trends, thereby ensuring the 
oscillatory differences were refined within a sufficiently small error. In this work, we applied the fivefold cross-
validation algorithm to train the multiple linear regression model and the Wiener Model, of which 4 of the 5 
folds were served as the training datasets to test the other one fold, respectively. For the Wiener Model, similar 
decoder evaluations and statistical analyses were applied to models with different sets of included features. All 
analyses were conducted using MATLAB (MathWorks, Natick, MA).

Limitations of the study. One important limitation of nowcasting mortality-related concepts using data 
from Google Trends must be borne in mind is that the database is oriented from the time-evolving search vol-
umes of queries, thus specific discussions, such as critical features in predicting mortality, which may change 
over time, require additional validation. In addition, to secure the relative homogeneity of the dataset as well as 
to the pursuit of the nowcast based on the one-year time lags, we only included the one-year historical data into 
the prediction. For those with longer time lags which could be relatively diverse in patterns is beyond our scope. 
On the other side, to correlate the Google search volumes with the official mortality records, we assumed that 
the monthly death number follows weekly uniform distributions, resulting in an approximation but not a precise 
estimation. Another point that was not validated yet is the linkages between the death-cause-related search vol-
umes and the clinical diagnostic records showing the disease prevalence in the population, as we aimed to exam-
ine the effectiveness of the death-cause-related search queries in prediction, exploring such linkages is beyond 
our scope. The last limitation is that the present study did not engage with the real-world mortality records in 
developing predicting models, as the interest of the present work lies in exploring the degree to which death-
cause-related online behavior could predict the death-related online behavior at a population level, as well as to 
offer potential mortality-related decoders along with guidance to the critical predictors in death-cause-related 
search queries, thus such analyses are beyond our scope (see Suppl. Information for full name and description 
for abbreviation).
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