
Recon3D: A Resource Enabling A Three-Dimensional View of 
Gene Variation in Human Metabolism

Elizabeth Brunka,b, Swagatika Sahooc,d, Daniel C. Zielinskia, Ali Altunkayae, Andreas 
Drägerf, Nathan Miha, Francesco Gattoa,g, Avlant Nilssong, German Andres Preciat 
Gonzalezc, Maike Kathrin Aurichc, Andreas Prliće, Anand Sastrya, Anna D. Danielsdottirc, 
Almut Heinkenc, Alberto Noronhac, Peter W. Rosee, Stephen K. Burleye,h, Ronan M.T. 
Flemingc, Jens Nielsenb,g, Ines Thiele*,c, and Bernhard O. Palsson*,a,b

aDepartment of Bioengineering, University of California San Diego CA 92093

bThe Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 
2800 Lyngby, Denmark

cLuxembourg Centre for Systems Biomedicine, University of Luxembourg, Campus Belval, Esch-
Sur-Alzette, Luxembourg

eRCSB Protein Data Bank, San Diego Supercomputer Center, University of California, San Diego, 
La Jolla, CA 92093, USA

fApplied Bioinformatics Group, Center for Bioinformatics Tübingen (ZBIT), University of Tübingen, 
72076 Tübingen, Germany

Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, 
subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms
*correspondence should be addressed to: I.T. (ines.thiele@gmail.com) and B.O.P (palsson@eng.ucsd.edu).
dCurrent address: Department of Chemical Engineering, Indian Institute of Technology Madras, India 600036

AUTHOR CONTRIBUTIONS
Conceptualization, E.B., I.T., D.Z.; Methodology, (Reconstruction of metabolic network: S.S., IT, RMTF, ADD, AH, MKA ; 
Reconstruction of GEM-PRO: EB, NM AS; 3D-hotspot analysis: EB, AP, AS, PWR; Machine learning: D.Z.; PDB visualization: AA, 
AP, AD, RMTF, SKB; atom-atom mapping: GAPG, RMTF; Model testing and validation: IT, RMTF, SS, MKA, DZ, AN, FG; Cell-
specific and infant model simulations: MKA, AN, FG); Investigation, EB., DZ, GAPG; Writing – Original Draft, EB, BOP; Writing – 
Review & Editing: all authors; Funding Acquisition: IT, RMTF, SKB, JN, and BOP; Resources, IT, RMTF, SKB, JN, and BOP; 
Supervision: IT, RMTF, SKB, and BOP.

COMPETING FINANCIAL INTERESTS
The authors declare no competing financial interests.

DATA AND CODE AVAILABILITY
Recon3D is available available as a metabolic reconstruction at http://vmh.life.
To facilitate the future use of the Recon 3D GEM-PRO model, the procedure to collect sequence and structure information as 
described above has been consolidated into a shareable JSON file, which we call the “minimal” GEM-PRO needed to start structural 
analyses. This model assigns a single representative structure per gene in the reconstructed metabolic model, and is available at https://
github.com/SBRG/Recon3D. The accompanying software package required for reading and working with the GEM-PRO JSON is 
available at https://github.com/SBRG/ssbio. This entire repository can be cloned to a user’s computer and contains Jupyter notebooks 
in the root directory to guide a user through the content available in the Recon 3D GEM-PRO model (Recon3D_GP - Loading and 
Exploring the GEM-PRO.ipynb) as well as to update the model with revised sequence information or newly deposited structures in the 
PDB (Recon3D_GP - Updating the GEM-PRO.ipynb). This repository also includes all sequence and structure files mapped per gene, 
metadata downloaded through UniProt and the PDB, as well as the ability to rerun the QC/QA pipeline with different parameters such 
as sequence identity and resolution cutoffs. These notebooks also include basic visualization features enabled with the NGL viewer 
package69.
All other scripts related to gene deletion simulations and infant growth simulations can be found at https://github.com/SBRG/
Recon3D.

HHS Public Access
Author manuscript
Nat Biotechnol. Author manuscript; available in PMC 2018 August 19.

Published in final edited form as:
Nat Biotechnol. 2018 March ; 36(3): 272–281. doi:10.1038/nbt.4072.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://vmh.life
https://github.com/SBRG/Recon3D
https://github.com/SBRG/Recon3D
https://github.com/SBRG/ssbio
https://github.com/SBRG/Recon3D
https://github.com/SBRG/Recon3D


gDepartment of Biology and Biological Engineering, Chalmers University of Technology, Sweden

hDepartment of Chemistry and Chemical Biology, Center for Integrative Proteomics Research, 
Institute for Quantitative Biomedicine, and Rutgers Cancer Institute of New Jersey, Rutgers, The 
State University of New Jersey, Piscataway, NJ 08854, USA

Abstract

Genome-scale network reconstructions have helped uncover the molecular basis of metabolism. 

Here we present Recon3D, a computational resource that includes three-dimensional (3D) 

metabolite and protein structure data and enables integrated analyses of metabolic functions in 

humans. We use Recon3D to functionally characterize mutations associated with disease, and 

identify metabolic response signatures that are caused by exposure to certain drugs. Recon3D 

represents the most comprehensive human metabolic network model to date, accounting for 3,288 

open reading frames (representing 17% of functionally annotated human genes), 13,543 metabolic 

reactions involving 4,140 unique metabolites, and 12,890 protein structures. These data provide a 

unique resource for investigating molecular mechanisms of human metabolism. Recon3D is 

available at http://vmh.life.

It is widely recognized that progress in the biomedical sciences is hampered by the difficulty 

of integrating multiple disparate data types to obtain a coherent understanding of 

physiological and disease states1. A genome-scale network reconstruction represents a 

curated knowledge-base containing many different data types and sources, including high-

quality genome annotation, assessment of biochemical properties of gene products, and a 

wide array of physiological functional information. Computational genome-scale models 

integrate large-scale omics data from these knowledge-bases to aid in the interpretation and 

prediction of biological functions2. In recent years, human metabolic network 

reconstructions3–6 have generated insights into inborn errors of metabolism7, cancer8 and 

human microbiome co-metabolism9,10.

Using metabolic reconstructions, information about chemical reactions is stored and 

continually updated in a standardized biochemical and genetic representation through a well-

established process11. Over the past ten years, updating the human metabolic network 

reconstruction has focused on expansion of metabolic reaction coverage. From the first 

human reconstruction, Recon14, to the most recent version, Recon23, the content has been 

expanded from 1,496 genes (corresponding to 3,311 reactions) to 1,675 genes (7,785 

reactions). Various other reconstructions have been released and community driven-efforts 

have been made to ensure interoperability of these resources3,5. Our knowledge about 

human metabolism is continuously increasing and the deluge of ‘omics’ data provides ample 

opportunity for updating current knowledge-bases of human metabolism3–6. In addition to 

updating metabolic coverage, expanding human reconstructions to include different types, 

such as metabolite and protein structures as well as atom- transitions, thereby enables a 

broader scope of biomedical questions to be addressed.

Historically, systems biology has focused on characterizing catalytic or regulatory roles of 

proteins in metabolism without placing emphasis on the three-dimensional structure of the 

proteins themselves. For example, studies on genetic variation have mainly focused on 
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frequency of occurrence12 or sequence-based attributes13. Only recently have mutations 

been explored in the context of their three-dimensional location or spatial relationship14–17. 

Exploring mutations in 3D extends beyond nucleotide sequence identity18, as mutations that 

may be far away from each other in linear sequence may actually be proximal in the folded 

state. In recent years, increasingly accessible protein and metabolite data have enabled the 

progression of systems biology to a 3D perspective. In one study, protein structures were 

mapped to the metabolic network of Escherichia coli, to reveal the role of ribosome pausing 

in co-translational protein folding19. In another study, human population variation was 

studied by integrating protein structures with the human erythrocyte metabolic network to 

understand the adverse effects of drugs on genetic variants20 and identify new pathways 

related to drug perturbation. These studies highlight the value of integrating different types 

of data to address complex biological questions.

We present Recon3D, an updated and expanded human metabolic network reconstruction 

that integrates pharmacogenomic associations, large-scale phenotypic data, and structural 

information for both proteins and metabolites. Recon3D contains over 6,000 more reactions 

than Recon2, all of which were manually curated to remove redundant or blocked reactions. 

We use Recon3D to prioritize putative disease-causing genetic variants by mapping single 

nucleotide variants (SNVs) to protein structures. We show that deleterious mutations are 

more likely to cluster together into functional hotspots than non-deleterious mutations. In 

contrast to previous models, these mutation hotspots identify ACAT1 as a cancer-related 

gene. Furthermore, we demonstrate how structural information can be used to investigate the 

potential mechanisms by which drugs exert an effect on metabolism. The Recon3D 

Resource (http://vmh.life) provides new avenues for investigating the molecular basis of 

disease and may aid the development of treatment strategies, biomarkers, and drug 

repurposing.

RESULTS

Increasing the scope of the human metabolic network reconstruction

We expanded Recon 23 by using ten metabolomic data sets to identify new metabolites and 

transport and catalyzing reactions (1,865 reactions). We added reactions from HMR 2.021 

(2,478), a drug module22 (721), a transport module23 (51), host-microbe reactions10 (24), 

and absorption and metabolism of dietary compounds (20). Overall, 66 metabolic 

subsystems, including lipoprotein (44 reactions) and bile acid (216 reactions), were 

expanded and 10 new subsystems were added (Supplementary Figure 1–3; Supplementary 

Data Files 1–2; Supplementary Note 1). We further refined numerous aspects of the 

reconstruction, including 2,181 gene-protein-reaction (‘GPR’) associations, reaction/

metabolite duplication, reaction directionality, and thermodynamic feasibility (see Online 

Methods). The metabolic scope was extended by 82% (total 13,543) reactions and 58% 

(total 4,140) unique metabolites (Figure 1(a-b)). Recon3D is the most comprehensive 

metabolic resource currently available (Supplementary Table 1(a-c)). Out of the 20,266 

human proteins documented in UniProt24 (queried July 2016), 19,213 are functionally 

annotated (i.e., not hypothetical) and 17% of this subset is metabolic, well-characterized, 

and included in Recon3D.
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Genome-scale network reconstructions can be converted into computational models that 

enable predictive biology2. We derived a computational model from Recon3D by removing 

reactions that were stoichiometrically inconsistent and that were flux inconsistent, (i.e., 

reactions that could not carry flux under the applied reaction bounds; Supplementary Note 2; 

Supplementary Data 1). After performing standard quality-control tests, the resulting generic 

Recon3D model contained 10,600 reactions (78% of the reconstruction reactions) and was 

able to reproduce literature-consistent energy (ATP) yields from different carbon sources 

(Supplementary Data Files 3–10), to fulfill metabolic functions describing cellular and 

whole body metabolism, and to replicate the predictions of infant growth from a previous 

study25 (Supplementary Figure 4).

Enabling a three-dimensional view of metabolism

Using a recently established approach26, the metabolic network content of Recon3D was 

expanded to include three-dimensional protein structures from the Protein Data Bank 

(PDB)27 as well as homology models (Figure 2(a); Supplementary Figure 5; Supplementary 

Data Files 11–13; Online Methods). In addition, we mapped content from a variety of 

external database resources (Online Methods), to include metabolite structures 

(Supplementary Data File 14). We obtained high-quality structural coverage for over 80% of 

the human metabolic proteome (Figure 2(a); Supplementary Figure 6; Supplementary Tables 

2–4) and 85% of the metabolome (Figure 2(b)). Furthermore, we used 2,369 unique 

metabolite structures to trace algorithmically atom transitions28 (from each substrate to 

product atom) for 7,804 (87%) internal, mass-balanced reactions of the Recon 3D derived 

model (Online Methods; Supplementary Note 3) . The prediction accuracy of the algorithms 

was validated by comparison with 512 manually curated atom mapped reactions (Figure 

2(c); Supplementary Figure 7). The atom mappings enable identification of conserved 

moieties, which are the fundamental structural units of any chemical reaction network. 

Hence, we provide an invaluable bridge between metabolic modeling and chemoinformatics. 

For the first time, relationships between human metabolic genes, their encoded proteins, and 

the reactions they catalyze can be described in the context of specific 3D configurations, 

interactions, and properties (Figure 1(c-d)).

Web visualization of protein structures in metabolic networks

Using Recon3D, we have implemented the first web-based visualization of 3D 

macromolecular structures in the context of their neighboring chemical reactions, 

metabolites, and their metabolic subsystems, (e.g., glycolysis, citric acid cycle, amino acid 

metabolism, and carbohydrate metabolism, among others). This tool utilizes a recently 

developed global human network map29, together with network visualization software (see 

Online Methods) and conversion tools (Supplementary Note 4 and Supplementary Figures 

8–11) and is available through the RCSB PDB website: http://www.rcsb.org/. The systems 

biology interface provides users with the ability to visualize networks that have been 

annotated to highlight which reactions are associated with experimental crystallographic 

structures, homology models, or metabolite structures (Figure 2(d)). Dataframes for 

Recon3D are found in the github repository: https://github.com/SBRG/Recon3D.

Brunk et al. Page 4

Nat Biotechnol. Author manuscript; available in PMC 2018 August 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.rcsb.org/
https://github.com/SBRG/Recon3D


Gene variation in 3D

We probed mutations in the context of representative protein domains (i.e., common 

structural regions redundant across the proteome). Such domains (e.g., tim-barrel motif) are 

often linked directly to their encoding gene’s function, and thus provide a new way to 

directly assess the functional impact of a mutation.

We used Recon3D to map missense mutations from Single Nucleotide Polymorphism (SNP) 

database (dbSNP)30, UniProt24, PharmGKB31, among others, to the metabolic network 

using a previously established pipeline20 (Figure 3(a)). We chose to focus on SNPs that were 

known to be deleterious or potentially harmful. In total, we mapped 3,536 SNPs to 655 

genes within Recon3D. We identified representative protein domains for this set of genes 

using a structure-based clustering algorithm32. We tallied the number of SNPs (or single 

nucleotide variants, SNVs) occurring in each protein domain and found the gene to domain 

ratio to be less than one (i.e., domain redundancy; Supplementary Figure 12(a)). This 

analysis resulted in the identification of specific regions within protein domains that are 

commonly mutated (mutation hotspots), share common disease associations, and are prone 

to malfunction. As shown in Figure 3(b), six genes share the Bruton’s Tyrosine Kinase 

representative domain (PDP:4RFZa, PF007714) and, when mutated, are affiliated with 

diseases such as cancer. This kinase domain is known for its role in non-small cell lung 

cancer33 and the SNPs associated with lung cancer cluster in one specific region of the 

protein (see the red-colored mutation hotspot in Figure 3(b)).

The power of exploring gene variation in the context of both protein and network structure is 

further illustrated by Aryl sulfatase A (ARSA). Within the subset of SNPs that map to the 

representative domain of ARSA (SCOP: d1e2sp_), the mutation P428L (P426L in PDB 

1e2s; dbSNP rs28940893) is associated with Metachromatic Leukodystrophy Disease 

(MLD)34. This mutation influences the biological assembly of ARSA, in which the native 

homo-octamer state (Figure 4(a)) is disfavored relative to the dimeric state (Figure 4(b)). 

Other SNPs associated with the most severe form of MLD are located in the vicinity of the 

metal binding site, a mutation hotspot (Figure 4(c)). ARSA is also located within a “network 

hotspot,” with other deleterious SNPs dispersed throughout the neighborhood of surrounding 

reactions (Figure 4(d)). All mappings between SNPs, PDB, their representative domain, 

hotspots, and disease relevance are provided in Supplementary Data Files 15–20.

Oncogenic mutations cluster in structurally equivalent positions in the human proteome

The first application of Recon3D demonstrates its capability to discriminate pathogenic 

mutations from passenger mutations. We studied 889 somatic cancer mutations from 88 

genes (which were previously analyzed35) from whole-exome sequence data from 178 

tumour–normal pairs of lung squamous cell carcinoma36. Furthermore, we obtained detailed 

annotations about each of the mutations from cBioportal37, including whether a gene is a 

known oncogene37,38 (KO) or the mutation is recurrent12, has gain-of-function (GOF), and 

has a drug association. Using Recon3D, we mapped each of the mutations to their 

corresponding protein, its representative domain(s) and network reaction(s) (Figure 5(a)).
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Analysis of all cancer mutations in the context of their representative protein domains 

suggests that oncogenic mutations cluster in structurally-equivalent positions within 

representative domains. For the 88 genes, we counted the number of mutations that occur 

within 5 Å of another mutation within the representative domain (referred to as the 3D 

hotspot analysis; Online Methods; Supplementary Note 5). In some cases, mutations from 

different genes co-occurred in the same region of a shared domain, suggesting that domain 

plays an important role in oncogenesis. Mutations co-occurring in the same location of other 

mutations are significantly more likely to be associated with somatic mutations, when 

compared to a random selection (p < 0.02 using a two-tailed t-test; Figure 5(b)). All data 

mapping related to the somatic cancer mutations can be found in Supplementary Data Files 

21–23).

Filtering mutations based on their spatial relationships brings about several significant 

biomedical implications. When mutations are rank-ordered by the number of neighboring 

mutations, we can filter the mutations with known roles in oncogenesis (based on known 

annotations37; Figure 5(c)). For example, we find that selecting the top 25% of the data 

recovers 82 and 88 percent based on co-occurrence aids in identifying known oncogenic 

mutations and GOF mutations, respectively (compared to 1.6 and 2.9 percent when selected 

at random; Figure 5(c); for a sensitivity analysis, see Supplementary Note 5). Furthermore, 

striking similarities in protein structure, based on three-dimensional structure alignments, 

indicate that not only do mutations co-occur in shared domains, they also occur in 

structurally-similar proteins within the same dataset (Supplementary Figure 12(b)). These 

findings suggest that cancer mutations cluster in functionally-relevant parts of protein 

domains and that this property could guide the discovery of novel biomarkers and drug 

targets.

We combined our approach with metabolic modeling to understand whether structural 

information could improve the predictive power of the model. We focused on glioblastoma 

multiforme (GBM), a malignant brain tumour, and studied the mutational landscape of 

metabolic genes (Figure 5(a)). Genes were selected based on the rate of mutation found in 

exome samples of 291 glioblastomas as well as involvement in cholesterol metabolism39 

(Online Methods; Supplementary Note 5). Gene knockdowns were performed and the 

essential genes were compared across different generic and cell-type specific human 

metabolic models (Recon3D, HMR2, and HMR-derived TCGA-derived models8 (Online 

Methods). Notably, the majority of models predicted the gene ACAT1 (GeneID 38) to be 

non-essential (Figure 5 (d); Supplementary Figure 13). Yet, a 3D hotspot analysis of the 

mutations in this gene suggested that this gene may be important in cancer (Figure 5 (e)). 

This finding was recently validated, confirming that inhibition of ACAT1 suppresses GBM 

growth by blocking SREBP-1-mediated lipogenesis40. This result highlights the potential for 

structure-based analysis in genome-scale models to identify important genes for cell growth.

Co-occurring mutations across shared protein domains are significantly more deleterious

We used Recon3D to identify potentially deleterious mutations in a large-scale population 

study. We analyzed SNP data from multiple gene variation databases (dbSNP30, UniProt24, 

PharmGKB31) and assessed whether the 3D location of variants in a gene could, in general, 
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discern whether mutations were deleterious or tolerated41. We mapped over 10,000 SNPs to 

their 3D structural coordinates using our 3D hotspot analysis workflow and computed the 

number of mutations co-occurring in 5 and 10 Angstrom spheres in common protein 

domains. 1,385 unique genes had 3,649 SNPs that mapped to regions of a protein where 

structural data exist. We computed the number of mutational co-occurrences across this set 

of SNPs and found that deleterious mutations are much more likely to neighbor other 

deleterious mutations (p < 0.05 using a two-tailed t-test) than those predicted to be tolerated 

(p > 0.1, using a two-tailed t-test; Supplementary Figure 14, Supplementary Tables 5–6). 

These added features enable predictive power over any existing model, in that mutational 

data can be assessed in the context of protein structure and compared with network-level, 

genome-wide model knockdowns (e.g., Figure 5(e)). Prior reconstructions are unable to 

identify structural changes that affect complex assembly or other intrinsic protein properties. 

Such details can now be explicitly studied using Recon3D. To this end, Recon3D provides 

new inroads for metabolic models to explore disease-relevant mutations.

Elucidating relationships between drug indications and their metabolic responses

Drug interventions influence the behavior of metabolic networks42, but the impact of drug 

treatment on metabolic responses and the mechanisms underlying these responses are poorly 

understood.

We used Recon3D to combine large-scale data on drugs, their indications, and their effects 

on gene expression. This data was used to guide and inform genome-scale constraint-based 

modeling analyses42,43 to identify the metabolic pathways most perturbed in a given 

condition (Supplementary Figure 15). More specifically, we used a machine-learning 

approach to assess similarities in metabolic responses to a given drug. Using a genetic 

algorithm, the area under the curve (AUC) of the receiver operating characteristic (ROC) 

curve was maximized to predict the indication of the drug based on the type and degree of 

perturbation (Figure 6(b); Supplementary Data File 24; Online Methods; Supplementary 

Note 6). Finally, we use the structural information in Recon3D to provide insights into the 

possible mechanisms by which the drugs exert their effects on metabolic pathways.

We first grouped 6,040 transcriptomic profiles (exposed to over 1,200 drug compounds in 

breast, leukemia, and prostate cancer cell lines from the Connectivity Map, or CMap44) by 

drug indication, using information from SIDER45 (Supplementary Table 7). A total of 47 

drug indications were analyzed in the context of the metabolic network, using a previously 

described machine-learning approach42 (Supplementary Figure 15). The analysis revealed 

that indication-specific drugs induced similar patterns of gene expression changes or “gene 

indication signatures.” Our findings suggest that metabolic responses are significantly 

conserved for a wide range of drugs (Figure 6(b)), with the most conserved pathway 

perturbations occurring for antipsychotic drugs (median AUC of 0.80; Supplementary Data 

File 25). For this specific case, the gene indication signature is composed of nine genes that 

have been previously associated with schizophrenia (Supplementary Table 8). We also find 

associations between changes in lipid and cholesterol pathways and common antipsychotic 

drug side effects (weight gain, cardiovascular risk, and anti-inflammatory effects). Notably, 

some drugs with entirely different indications shared similar pathway-level changes with 
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antipsychotic drugs and had previously been tested as adjunctive schizophrenia treatments46 

(Supplementary Table 9). A list of the drugs with the most predictable metabolic responses 

is provided in Supplementary Data File 26.

We then used protein and metabolite structural data in Recon3D to probe for mechanistic 

insights into drug response. In general, understanding mechanistic details entails identifying 

single or multiple targets of drug binding (or off-binding) and the respective downstream 

effects. Information in Recon3D can be visualized as a topological network to indicate 

shared features across nodes (genes) in a gene indication signature. Displayed in Figure 6(c) 

is one connected hub of genes (antipsychotic gene indication signature) and several features 

for comparison: protein structural domains, metabolites, biochemical reactions, and disease 

relevance. For this signature, we found several overlapping features, such as the metabolic 

subsystems targeted by known drugs (e.g., lovastatin and fatty acid metabolism) and the 

function of certain protein domains (e.g., an influence in membrane binding/trafficking). 

Despite these shared domain functions, minimal structural alignment of the protein domains 

and metabolites indicates that the majority of genes in this signature are not direct drug 

targets, but may play a role in compensatory signalling pathways that mediate drug effects 

synergistically. Finally, structural alignment of the drug compounds themselves yielded 

unexpected results; drugs that induced the same pattern of perturbation (both drugs with 

known antipsychotic action and unrelated drug indications) were found to be structurally 

diverse (Figure 6(d)). This finding is surprising given that drug discovery efforts tend to 

emphasize small changes in molecular structure to tune a desired biochemical effect. Here, 

we find that structurally diverse molecules exert similar effects on metabolic pathways, 

highlighting the potential of Recon3D for drug repurposing and the design of multi-targeted 

therapies that support a new polypharmacological paradigm in drug research47,48.

DISCUSSION

Recon3D is the first network reconstruction to include protein and metabolite structures as 

well as atom-atom mappings. Recon3D provides functional insights into genetic variation 

and the mechanisms underlying the effects of drugs on metabolic response in humans. It also 

serves as a computable knowledge-base with clear functional connectivity between genes 

and biochemical pathways. Pairing Recon3D with biomedical data provides a compelling 

avenue for studying disease at scale.

The ability of Recon3D to integrate multiple layers of biological data will provide a tool for 

obtaining a meaningful and coherent understanding of variation and the influence it exerts at 

both the level of individual proteins and within complex pathways. The inclusion of these 

multiple disparate data types offers new opportunities for network reconstruction: (i) it 

introduces atomic scale properties, such as ligand binding interactions; (ii) it provides new 

avenues for precision medicine by exploring human variation14,15, and (iii) it enables the 

probing of genetic variation via changes in the molecular properties of proteins20. In this 

way, individual sequence variations can be explicitly represented and the functional 
connections among disease, genetic perturbation, and drug action can be probed 

systematically.
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Recon3D enables straightforward data integration, as its content has been linked to external 

databases (KEGG, PDB, CHEBI, PharmGKB, UniProt). This knowledge-base can be 

converted into a genome-scale model, which can be computationally interrogated and 

characterized. Constraint-based methods43 can be used to assess network properties and 

bioinformatics tools32 can be used to assess protein or metabolite properties. Our findings 

present preliminary, yet compelling, support for the potential of Recon3D to complement 

traditional structure-based approaches for empowering applications in drug discovery and 

target validation. We have shown that a systematic exploration of mutations in the context of 

their three-dimensional spatial relationship provides a unique means for filtering out 

functionally relevant mutations and determining potential genes of interest. Furthermore, 

analysis of in vitro drug-treated gene expression profiling in the context of the human 

metabolic network provides insight into the broad metabolic response to different drug 

therapies.

The Recon3D knowledge-base is instrumental to gene variation analyses as it provides a 

framework for integrating structure-function relationships, and assessing specific and 

proteome-wide effects of sequence variation. Integrated frameworks like Recon3D enable 

understanding of how mutations or binding events lead to downstream responses and could 

aid in the identification of novel targets when coupled to structural bioinformatics16, 

molecular dynamics simulations20,49, and kinetic modeling50. In contrast, current metabolic 

models are not able to contextualize the effect of a sequence variant (beyond gene deletions) 

and therefore cannot be used to study disease-relevant mutations. Recon3D will potentially 

aid in translating biomedical knowledge, from large-scale omic data to drug discovery, target 

identification, and clinical biomarker development. Future efforts are likely to extend to 

personalized or precision medicine healthcare applications, where drug responses can be 

assessed in the context of individual patient-specific genomes. Recon3D is available via two 

databases3,51: http://bigg.ucsd.edu/ and http://vmh.life

ONLINE METHODS

Metabolic reconstruction

Recon 3D has been assembled using multiple data sources, i.e., HMR 2.006 (2,478 

reactions), metabolomics data sets (1,865 reactions), a drug module22 (721 reactions), a 

transport module (51 reactions), host-microbe reactions (24 reactions), absorption and 

metabolism of dietary compounds (20 reactions), and others (1004 reactions). The ‘others’ 

category included reactions that captured metabolism in specific human organs, (e.g., 

kidney), as well as novel metabolic pathways of lipoproteins, bile acids, and sphingolipids. 

The expansion of Recon 2 was performed in an iterative manner (Supplement Figure 1). 

With each addition, there followed extensive model debugging and manual curation for flux 

consistency and refinement.

Recon 2 was expanded in two stages: (i) additions of new reactions and (ii) network 

refinements for building high-quality flux-consistent model (Supplementary Figure 1). The 

total number of novel additions included 6163 reactions, 1589 metabolites, and 1654 genes 

completing Recon 3D. These new reactions were mostly from transport (32%), lipid 

metabolism (24%), exchange (19%), xenobiotic (11%), and amino acid (7%) metabolism 
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(Supplementary Figure 2B-C). Other major additions include those required for debugging 

the network for flux consistency (10% of newly added reactions), reactions representing 

organ-specific metabolism (7%), transport module (2% of newly added reactions), and those 

representing lipoprotein metabolism (2% of newly added reactions), novel dietary 

compounds and their associated reactions (1% of newly added reactions), and reactions 

capturing interaction between gut microbes and host (1% of newly added reactions). For 

details on the precise metabolic pathways, see Supplementary Note 1.

The largest contribution for new metabolic genes were those from: (i) lipid metabolism 

(10%), (ii) carbohydrate metabolism (5%), (iii) transport processes (5%), (iv) amino acid 

(3%), and (v) nucleotide metabolism and vitamin metabolism (1%) (Supplementary Figure 

2). The miscellaneous category mostly contained genes from HMR 2.0 (99%) 

(Supplementary Figure 2). The largest contribution for new metabolites were lipid (42%) 

and amino acid (19%) classes. Novel metabolites added in other subsystems include 

miscellaneous and xenobiotics (18%), carbohydrates (2%), vitamins (1.4%), and nucleotide 

(0.3%) metabolism (Supplementary Figure 2).

Once reactions and genes were added to Recon3D, the reconstruction was subjected to 

various quality control/quality assurance tests (Supplement Figure 1). These include: (i) 

checking for reaction and metabolite duplicity, (ii) modification of gene-protein-reaction 

associations, (iii) modification of metabolite formulae to pH 7.2 along with mass-charge 

balancing of reactions, (iv) a leak test, checking for stoichiometric and flux consistency and 

checking for thermodynamic feasibility52, (v) debugging and curation for removal of dead-

end metabolites, and (vi) checking for network accomplishment of defined functions/tests 

(Supplement Figure S1).

To check reaction and metabolite duplicity, we took several approaches. First, Quek et al53 

reported 95 duplicate metabolites, 71 of which were replaced (Supplementary Data File 9, 

and Supplementary Note 1). Second, the reaction and metabolite duplicity was checked for 

HMR reactions and metabolites (prior to inclusion in Recon 3). The metabolite formulae, 

particularly those received from HMR 2.0, were adjusted to an internal pH of 7.2, using mol 

files28 and COBRA toolbox54 and ChemAxon software (https://chemicalize.com/). This led 

to correct assignment of reaction stoichiometry and mass-charge-balancing of reactions. 

Third, gene-protein-reaction associations were curated and corrected for 2,180 reactions 

(Supplementary Data Files 6–7, and Supplementary Note 1). Finally, we performed 

additional QC/QA tests, (e.g., functional leaks, production of matter from water and oxygen, 

etc).

The COBRA toolbox54 was used to identify a subset of 10,600 reactions involving 5,835 

metabolites, representing the stoichiometrically consistent flux balance model. The final 

model was tested for 431 model objectives, representing essential biochemical functions of 

the human body. The model debugging was mostly done by the addition of extracellular and 

intracellular transport reactions. Examples include the addition of novel transport proteins 

for bile acids and folate intermediates. Novel intracellular transport proteins, i.e., 

mitochondrial pyruvate carriers (MPC1, GeneID: 51660 and MPC2, GeneID: 25874) were 

added for phenylpyruvate that operates in a proton symport mechanism55. These transport 
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reactions connected the intracellular and extracellular compartments of the model, enabling 

flux consistency. Manual curation of the relevant scientific literature was followed to obtain 

complete information on the respective biochemical pathway. A typical example includes the 

addition of 4-methyl-thio-oxo-butyrate (an intermediate of methionine metabolism) into the 

network. Upon literature curation, addition of the alternative route of methionine 

transamination and decarboxylation reactions were identified and added (Supplementary 

Data File 1).

In total, out of the 20,266 human proteins documented in UniProt24 (queried July 2016), 

19,213 are functionally annotated (i.e., not hypothetical) and 17% of this subset is 

metabolic, well-characterized, and included in Recon3D. Please refer to Supplement Note 1 

and Data Files 1–10 for detailed information on the network building and refinements.

GEM-PRO reconstruction

We followed the previously described procedure26 to map, assess, and refine PDB or 

homology models for integration into genome-scale models. For Recon 3D, additions to the 

gene identifier mapping workflow were made to address inconsistencies in gene isoforms 

across database entries and the ability to link isoforms to available homology models. In 

addition, QC/QA steps were taken in order to ensure the correct sequence was being 

retrieved (Supplementary Figure 5; Supplementary Note 3). For PDB structures with 

missing residues, we have filled in the gaps by querying previously generated databases of I-

TASSER homology models56,57, and manually generating homology models for genes that 

were not part of these databases using a previously defined protocol58. In the final master 

GEM-PRO data frame (Supplementary Data File 11), we note where available homology 

models have been mapped to their respective genes. For most homology modeling 

procedures, the amino acid sequence of a protein is all that is required to generate a 

homology model of a protein. It is important to note that certain PDB structures with 

unresolved residues or gaps in the structure can also be homology modeled to enhance the 

structural coverage of the amino acid sequence. Any sequences longer than 600 amino acids 

long were not homology modeled. We assessed the overall quality of the information 

coming from homologous templates in terms of (i) which organism the protein was 

crystallized from, (ii) the resolution of the PDB template, and (iii) the deposition date. We 

used these properties to compare the templates that were used to construct homology models 

in the previous GEM-PRO models with those of the recently updated versions 

(Supplementary Tables 2–4; Supplementary Figure 6).

To identify structures for the given set of metabolites in Recon 3D, we evaluated a number 

of databases where metabolite structures are publicly available, such as PDB (ligand-expo: 

http://ligand-expo.rcsb.org/, http://ligand-expo.rcsb.org/ld-search.html), PubChem59 Url 

(https://pubchem.ncbi.nlm.nih.gov/), and ChEBI Url (http://www.ebi.ac.uk/chebi/). We 

downloaded structures in various formats: 2D structure in .mol format (ChEBI), 3D structure 

in .sdf format (PubChem59), and in .pdb/.xyz format (RCSB). Supplementary Data File 14 

provides all the information content processed for metabolites in Recon 3D, which includes 

SMILEs and INCHI descriptors, Kyoto Encyclopedia of Genes and Genomes (KEGG)60 

IDs, CID IDs, CID file names, ChEBI file names, ChEBI IDs, and experimental coordinate 
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file URL locations and the ideal coordinate file name. The ChEBI mapping procedure 

contained the following steps: (i) identification of the particular metabolite from ChEBI 

using the source link (the metabolite name will be the starting point of search which is taken 

from the metabolite names in the Supplementary Data File 14); (ii) checking the molecular 

formula and charge (neutral or charged) of the metabolite in the ChEBI database; (iii) 

capturing the ChEBI link, ChEBI ID, SMILES, and INCHI into the respective fields in the 

dataset spreadsheet; (iv) 2D-structure is downloaded in .mol format. The same overall search 

was conducted in Pubchem and PDB (Ligand expo) with slight variations as to the initial 

search inputs and file type outputs.

The dataset of human single nucleotide polymorphisms (SNPs) and single nucleotide 

variants (SNVs) was collected from UniProt from a subset of protein altering variants from 

the 1000 Genomes Project. Furthermore, all SNPs/SNVs for model genes were downloaded 

directly from dbSNP (http://www.ncbi.nlm.nih.gov/SNP/) via the Ensembl BioMart 

interface61. We then selected all variants that were characterized to be “damaging” or 

“possibly damaging” as a predicted functional impact using the PolyPhen2 bioinformatics 

tool41. Functional annotations of the missense mutations were also annotated using SIFT 

(http://sift.jcvi.org/). In addition, we linked the missense variants to their gene-drug 

associations (clinically relevant pharmacogenomics interactions) using the PharmGKB 

pharmacogenomics database (https://www.pharmgkb.org/). All annotated gene-drug pairs 

contain information such as dosing guidelines, drug label annotations and each pair is 

generally specified in more than 1 type of annotation (dosing guideline, drug label, clinical 

annotation, variant annotation, VIP, or pathway). These selected pharmacogenomic 

associations allow us to understand whether certain missense variants have functional effects 

on drug therapies. All selected missense variants and their drug associations have been 

provided as Supplementary Data Files 15 and 16.

More details on the process and procedure for network reconstruction, protein and 

metabolite structure integration, identification of representative protein domains, linking to 

pharmacogenomics databases, linking to cancer genome atlases, mutation hotspot analyses, 

and comparison of tissue-specific cancer and pharmacogenomic/gene variation networks are 

all provided in Supplementary Note 3–4

Atom-atom mapping

Generation of atom mapping data requires chemical structures, reaction stoichiometry and 

an atom mapping algorithm. Atom mappings were predicted using the Reaction Decoder 

Tool62, and the DREAM algorithm63 for 7,535 (86%) mass balanced reactions with implicit 

and explicit hydrogens, respectively, while Reaction Decoder Tool and the CLCA 

algorithm64 were used to predict atom mappings for a further 269 reactions with 

incompletely specified metabolites (e.g., R group) with implicit and explicit hydrogens, 

respectively. We compared these predictions for internal reactions to a set of 512 reactions 

with atom mappings that we and others manually curated (Supplementary Note 3). This 

reaction set is representative of all six top level EC numbers. Based on this comparison, we 

observed that the predicted atom mappings are highly accurate for most of the reaction 

types28 (Supplementary Figure 7).
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3D mutation hotspot analysis

We filtered a set of mutations (whose genes are associated with experimental protein 

structures) based on whether the location of the mutated residue itself was resolved (e.g., 

certain protein domains are unresolved due to flexibility or unstructured regions of the 

protein being challenging to crystallize). Once the subset of mutations was established to (i) 

be linked to genes with experimental protein structures and (ii) be located within regions of 

the protein that were experimentally determined, we carried out 3D structure alignments 

between all proteins and their representative domains (mapping to representative protein 

domains is described previously in the section entitled “mapping and alignment of PDBs to 

their representative domains”). In contrast to sequence alignments, 3D structure alignments 

find a best fit in terms of the three-dimensional shape or geometry of two proteins. 

Therefore, any two proteins that have different sequences but share a common domain 

architecture can be successfully aligned in 3D space. Similar to sequence alignments, the 3D 

structural alignment provides a direct residue-to-residue mapping for residues that share 

structurally equivalent positions in a common/shared domain motif. Once this residue-to-

residue mapping was established for all proteins in our dataset, we located 3D “hotspot” 

mutations by tallying all residues in the representative domains that map to mutated residues 

in a given protein of interest. To this end, certain residues in a representative domain may 

have multiple hits if more than one gene is linked to that representative domain and the same 

structurally equivalent residue is mutated across various genes. Supplementary Data File 17 

provides the mapping between the residue number of the Uniprot missense variant > the 

PDB residue number > the PDB chain where the residue is located > the representative 

domain ID linked to a given PDB chain > the structurally equivalent residue within that 

representative domain.

Mapping cancer mutations in 3D

We used the TCGA level 3 variant data in the cBioPortal (http://www.cbioportal.org/). For 

this study, we used high level (processed) data from a subset of pre-analyzed mutations from 

178 tumour–normal pairs of lung squamous cell carcinoma36. When the MutSig1.0 

approach was applied on this dataset35, it identified 450 genes as significantly mutated. 

Starting from this set of genes, we identified a subset of 86 genes that have Uniprot 

accession numbers and protein structural information. Within this set of genes, we found 

that 889 somatic cancer mutations map to residues that have been successfully resolved in 

the crystallographic structures of proteins. We used the list of 86 genes to query the 

cBioportal web-based dataset and downloaded various information including: somatic 

cancer mutations, cancer study sample IDs, amino acid mutations, annotations (coming from 

various sources, such as http://oncokb.org/ and https://www.mycancergenome.org/), type of 

mutation, copy number changes, overlapping mutations in COSMIC, the predicted 

functional impact score (from Mutation Assessor), variant allele frequency in the tumor 

sample, and total number of nonsynonymous mutations in the sample. A summary of cancer 

data sets used in this study is given in Supplementary Data File 21 and a detailed summary 

of all somatic mutations for this set of genes is provided in Supplementary Data Files 22–23. 

The 3D hotspot analysis was carried out as detailed above and mutations were rank-ordered 

on the basis of how many mutations fell within a 5Å sphere (i.e., number of nearest 
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neighbors). We performed a sensitivity analysis to understand whether the selection of data 

points had an effect on the significance of these results.

The above 3D hotspot analysis approach was also applied to 22 genes from which cancer 

mutations have already been analyzed65 (exome samples of 291 glioblastomas) and 92 genes 

involved in cholesterol metabolism, owing to the fact that cholesterol biosynthesis plays an 

important role in GBM39.

Statistical Tests—We performed a sensitivity analysis to understand whether the selection 

of data points had an effect on the significance of these results. We find that the 3D hotspot 

analysis is more likely to select somatic mutations compared to a random selection. Data 

points (50–700) were selected so that 0.065–0.91 of the total data set was covered. We 

performed the 3D hotpot analysis across the different selections and found p values to range 

0.017 - 0.049 compared to 0.182–0.241, using a random residue selection.

For annotations of mutations that are known oncogenes (KO) and known hotspots (HS), 

selection of the data based on 3D hotspot analysis is significant, regardless the number of 

data (or % of data) selected (pval < 0.05). Compared to a random selection, our computed 

(using a two-tailed t-test) p value is > 0.1. We also performed a sensitivity analysis using the 

slices of the total data set as mentioned above (50–500 data points) and computed the total 

number of known oncogenes and known hotspots (from previously published analyses), 

using the 3D hotspot analysis compared to a random selection. We find that the percentage 

of data selected is significantly higher using the 3D hotspot analysis. For KO, 37–83% of the 

data is selected using 3D hotspot compared to 0.046–0.43 at random. Similarly, for HS, 

72.5–88.3% of the data is selected using 3D hotspot analysis compared to 9.8–64%. See 

Supplementary Note 5 for more information.

Gene deletion simulations in GBM

In silico single gene deletion (SGD) simulations were performed as previously described66. 

Given a certain GEM, the simulation of a SGD was performed by formulating the linear 

program problem (1) for each gene g in the GEM:

1. max vobj subject to:

2. 0 < vobj < γ

3. S · v = 0

4. −1000 ≤ vj ≤ +1000 ∀j ∈ {Exchange reaction indexes for medium metabolites}

5. vr = 0 where r ∈ {Reaction indexes univocally encoded by gene g}

where vobj is the flux through the biomass equation, γ is an arbitrary number set to 1, S is 

the stoichiometric matrix of the GEM (that is a m × n matrix where m is the number of 

metabolites and n is the number of reactions and each (i,j) entry is the stoichiometric 

coefficient of the metabolite corresponding to row i in the reaction corresponding to column 

j), v is the vector containing the values of the fluxes through each reaction in the GEM, and j 
indexes each exchange reaction known to be present in a rich mammalian medium (Ham’s 

medium, HAM; see Supplementary Note 5 for more details). The simulation was carried out 
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for the following GEMs: Recon3D, HMR2.00, and 22 personalised GEMs for glioblastoma 

multiforme (GBM) previously reconstructed using HMR2.00 as a template from as many 

GBM expression profiles retrieved at The Cancer Genome Atlas67.

Drug perturbation analysis

To compute metabolic pathways with gene expression perturbed by drugs, the human 

metabolic network model was first converted into an irreversible network. Then, the 

MetChange algorithm42 was run using gene expression presence/absence p-values from the 

Connectivity Map (Cmap) database44 build 02. Drug indications were taken from Side 

Effect Resource (SIDER) database68 for all available drugs overlapping with the Cmap 

database. Synonyms were aggregated when present as with side effects. A minimum of 10 

drugs for each indication were required for the inclusion in the analysis, corresponding to a 

much greater number of expression sets for each indication. A total of 48 drug indications 

were analyzed for 1459 expression sets corresponding to 334 drugs. A genetic algorithm 

(Supplementary Figure 15)) was then implemented as described in Supplementary Note 6. 

Details of the gene indication signatures can be found in Supplementary Note 6.

All other details on reproducibility and statistics can be found in the Life Sciences Reporting 

Summary.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. The properties and content of the Recon3D knowledge-base
(a) Recon3D includes information on 3,288 open reading frames that encode metabolic 

enzymes catalyzing 13,543 reactions on 4,140 unique metabolites, protein structural 

information from Protein Data Bank (PDB)27, metabolite structures from CHEBI70 and is 

capable of performing flux-balance analysis to integrate and interpret a variety of emerging 

data types including linking mutations identified from human variation data or cancer 

genome atlases. (b) A comparison of the genes, reactions, metabolites, blocked reactions, 

and dead end metabolites among Recon predecessors3–5 and HMR2.06. (c) Relationships 

between genes, their encoding proteins, and the reactions they catalyze, (i.e., GPRs), are 

now described in the context of their specific 3D configurations, interactions, and properties. 

New data types include representative structural domains32 of proteins, metabolite structures 

along with their conserved moieties, and atom-atom mappings. Atom-level transitions were 

analyzed for 8,315 reactions (Supplementary Note 3). (d) Domain connectivity explored 

across the network to identify domains that are shared across multiple proteins, or involved 

in multiple catalyzing reactions. An example is the alpha/beta protein domain (d1su0a_), 
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which is present in eight different genes (described by Uniprot accession number). The 

proteins encoded by these genes belong to the reductase family; they catalyze different 

reactions in various metabolic subsystems, ranging from glycolysis and the pentose 

phosphate pathway to xenobiotics metabolism and glycerophospholipid metabolism. 

Recon3D can be queried and downloaded from http://bigg.ucsd.edu/ or http://vmh.life. Users 

can visualize protein structures in networks via www.rscb.org or visualize network 

simulation results using the interactive ReconMap built on the Google Maps API (http://

vmh.life/#mapnavigator).
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Figure 2. Linking human metabolic network to protein structural databases, cheminformatics 
platforms, and the Protein Data Bank
(a) The metabolic content in Recon3D was cross-referenced with sequence and structure-

based databases, such as UniProt24 and PDB27. The links in the metabolic network, which 

represent reactions, were mapped to three-dimensional (3D) structures through their 

encoding genes. The nodes in the network, which represent metabolites, were also linked to 

structural representations (3D, 2D, or 1D connectivity specifications). (b) Structural 

coverage of both proteins and metabolites in Recon3D is given by the pie charts, which 

indicate that over 80% of the metabolic proteome (2,793/3,297 genes) and 85% of the 

unique metabolome (2369/2797) has structural information. In the case of metabolite 

structures, the combination of structural data from multiple sources allows for the total 

structural coverage to exceed 70%. (c) Validation of atom-atom mapping by comparison 

with curated atom mappings for each major class of reaction. Recon3D is the first metabolic 

network reconstruction to contain atomic-level details. (d) An example of the type of 

visualization that can be found at the RCSB PDB website: http://www.rcsb.org/. The 

systems biology interface provides users with the ability to visualize metabolic network 

maps, that have been annotated to highlight which reactions are associated with 
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experimental crystallographic structures (blue), homology models (yellow), or metabolite 

structures.
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Figure 3. Linking human metabolic network to gene variation and cancer knowledge-bases
(a) Recon3D, as a Resource, provides information on three important layers of data related 

to disease biology: (i) amino acid location of mutations (or SNVs/SNPs) in the set of 

metabolic genes; (ii) the three-dimensional structure of proteins with sequence variants; and 

(iii) the relationships between mutations and the onset of disease. Information was cross-

referenced from Recon3D to human variation and pharmacogenomics databases, such as 

dbSNP30, PharmGKB31, and cancer-specific databases, such as the Cancer Genome Atlas 

(TCGA), the Human Protein Atlas (HPA), and CMap. We mapped single nucleotide variants 

(SNVs) and single nucleotide polymorphisms (SNPs) to the genes in Recon3D. Within the 

set of genes with genetic variation, we focused on cases where (1) protein structural data 

was available; (2) SNPs/SNVs were considered to be deleterious or potentially harmful (655 

genes). (b) Using this information, we probed characteristics of missense mutations and 
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their three-dimensional spatial relationships. For each protein, we identified its 

representative protein structural domain (or a fold or set of folds unique to a given protein or 

multiple proteins). For example, for kinases, we identify various representative domains 

(five are shown here) that are associated with one or multiple genes (given by UniProt 

accession numbers). To this end, these five representative domains constitute “structure-

based protein templates” shared among a group of genes. As illustrated, numerous mutations 

are found in 3D localized “hotspots” (or regions of the domain that experience high mutation 

burden). Interestingly, these mutation hotspots appear to be associated with specific diseases, 

such as primary brain cancer, glioblastoma, and other cancers in the case of Bruton’s 

Tyrosine Kinase (BTK) kinase domain scaffold (PDP:4RFZAa). All domains are determined 

by structural alignment32 and those featured here are named by the Protein Domain Parser 

(PDP) and the corresponding PDB structure (and chain) selected as the representative 

domain (see Online Methods; Supplementary Note 3). Colors map genes to the region 

(hotspot) of their respective variant(s) and the diseases associated with that variant.
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Figure 4. An example of bridging systems biology and structural biology through Recon3D
(a) Arylsulfatase A (ARSA) highlights an example of how the intersection of systems, 

structural, and pharmacogenomic information provides additional understanding of human 

disease variants. The macromolecular assembly in the native state contains a homo-octamer 

(four complexes of homodimers; PDB entry 1auk). (b) Identifying the location of a variant 

(e.g., P426L, dbSNP rs28940893) within the protein three-dimensional structure reveals 

mechanistic details of disease progression. This mutation, which is associated with a mild 

form of Metachromatic Leukodystrophy (MLD), weakens the interaction between 

monomers, causing the biological assembly to favor the homo-dimer state over the homo-

octamer state. (c) Clustering all SNPs that fall within a 5–10Å vicinity of other mutations, 

we find that the largest cluster falls within 10 Å of both the metal-binding site and the 
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substrate-binding site (residues 306 to 309 in PDB entry e2sp). These specific cases all 

cause a severe form of MLD in adults, juveniles, and infants. The distribution of structural 

and disease properties associated with all 76 SNPs that map to the representative domain of 

this protein (d1e2sp_) is given by the bar chart. The majority of cases map to the calcium 

binding domain, substrate binding domain, and have a significant effect on enzyme activity. 

(d) ARSA and its neighborhood of surrounding reactions link to a number of disease-

associated mutations, indicating that this is a “network hotspot” for deleterious or potentially 

harmful mutations. In many cases, the proteins catalyzing these reactions also have available 

protein structural content (shown by a heat map and reaction link color), enabling 3D 

visualization of other SNPs in proteins in neighboring reactions. Figures for protein 

structures were generated using ChimeraX, the next generation version of Chimera. 

Reactions are drawn with minimal number of metabolites and cofactors for clarity.
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Figure 5. Protein structure-guided discovery of mutation hotspots across structurally-related 
genes
Synchronization of protein structural domains, metabolic networks, and somatic mutation 

landscapes allows for stratification of variants into informative and meaningful sub-clusters. 

(a) The 3D hotspot analysis workflow. A list of genes with mutations35 is cross-referenced 

with databases such as TCGA. In this example, we studied mutations taken from whole-

exome sequence data from 178 tumour–normal pairs of lung squamous cell carcinoma36. We 

then assembled protein structural information for this subset of genes with somatic 

mutations and evaluated the number of representative protein domains for this set of genes. 

In total, 86 genes associated with 889 missense mutations had available experimental 
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crystallographic structures and could be linked to representative structural domains. We 

tallied the mutations occurring within 5 and 10 Å spheres for each representative domain. 

The domains with multiple mutations in a specific 3D location were termed “mutation 

hotspots.” (b) We compared the frequency of mutation co-occurrence (in a 5 Å sphere) in 

randomly selected residues (grey) within the same set of proteins with those taken from the 

lung cancer dataset (black). This comparison strongly suggests that somatic mutations are 

more likely to be found neighboring other mutations than what is expected by chance (p, val 

< 0.02). (c) Selecting the top 25% of mutations (235/889) with the highest number of 

neighboring mutations (within the same 5Å region in a representative protein domain) brings 

about a striking commonality that many are associated with known oncogenic roles. 

Information about various mutations was taken from several databases providing detailed 

annotations (which are color-coded in the plot), including recurrent sequence hotspots (R)12, 

known oncogenes (KO)37,38 (www.oncokb.org), as well as drug (Olaparib/BYL-719), 

Memorial Sloan Kettering level of evidence (3B), and other cancer subtype (endometrial/

breast) associations (www.mycancergenome.org). For example, of all the mutations in this 

dataset with gain-of-function (GOF) oncogenic associations, 83% are found in the subset of 

mutations selected for on the basis of 3D localization. Similarly high percentages are 

recovered for other characteristic annotations, including the frequency of occurrence (88%), 

association with endometrial cancer (100%), and associated with breast cancer (40%). 

Intriguingly, percentage of mutations with unknown effects is greatly reduced from 90% in 

the total dataset (bottom pie chart; 889 mutations across 86 genes) compared to 10% in the 

3D filtered subset (top pie chart; 235 mutations across 26 genes). Random selection of 235 

mutations (averaged across 10,000 trials) demonstrates that the probability of recovering the 

same percentage of mutations with known oncogenic roles is very low (shown by the white 

outlined bars). (d) We combined the 3D hotspot analysis with metabolic modeling and 

focused on the somatic landscape of glioblastoma multiforme65. Gene knockdowns were 

performed in various models, including Recon3D, HMR2.0, and cell-specific (GBM) and 

patient-specific models. (e) The majority of models predicted ACAT1 to be non-essential. 

Yet, when analyzing the mutations in this gene in 3D, we find a mutation hotspot. The 

importance of this gene is further confirmed by experiment, demonstrating its importance to 

GBM growth40. This example suggests that protein structure could facilitate model 

predictions by highlighting genes of interest using complementary information.
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Figure 6. Identification of metabolic signatures linked to drug indications
(a) A machine-learning based approach to predict metabolic responses to drugs. Drug 

indications were taken from the Side Effect Resource (SIDER) database45 for all available 

drugs overlapping with drug-treated gene expression profiles from the Connectivity Map 

(CMap) database44. A total of 47 drug indications were analyzed in the context of the 

metabolic network, based upon 1,459 expression sets from cell culture responses to 334 

drugs (see Supplementary Data File 26). (b) Cross validation results of metabolic gene 

expression signatures trained against drug indications versus the number of expression sets 

with the indication used in training. Results were empirically grouped as highly predictive, 

predictive, and marginally or poorly predictive based on AUC. Results were plotted with 
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consideration to dataset size, showing that the signature is conserved over a greater number 

of drugs and amount of noise. Schizophrenia appeared as a clear outlier with greater 

predictability for a relatively large number of expression sets and drugs (13 drugs used in 

training), indicating that the gene signature is highly conserved (median AUC of 0.8). (c) 
Analysis of the antipsychotic signature in the context of known metabolic effects in 

schizophrenia and antipsychotic therapy. Genes that cluster based on the antipsychotic drug 

indication signature are linked to structure, biochemical, and disease properties through 

Recon3D. Such connectivity networks provide a first glimpse at whether genes share similar 

biological functions or domain archetypes. (d) Perturbations in genes that cluster based on 

metabolite/drug similarity. Computing structural alignments of the drugs inducing the 

antipsychotic drug indication signature indicates that certain pairs are likely to have similar 

bioactivities (based on tanimoto coefficient > 0.8). Chemically similar drugs cluster into four 

structurally distinct groups that differ on the basis of drug class. Drugs within these four 

groups all induce the same drug indication signature despite being radically different in 

structure (tanimoto coefficient < 0.2).
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