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Purpose: Loss of cholinergic neurons in the hippocampus is a hallmark of many dementias. Administration of stem cells as a
therapeutic intervention for patients is under active investigation, but the optimal stem cell type and transplantation modality
has not yet been established. In this study, we studied the therapeutic effects of human placenta-derived mesenchymal stem cells
(pMSCs) in dementia rat model using either intracerebroventricular (ICV) or intravenous (IV) injections and analyzed their
mechanisms of therapeutic action.

Materials and Methods: Dementia modeling was established by intraventricular injection of 192 IgG-saporin, which causes le-
sion of cholinergic neurons. Sixty-five male Sprague-Dawley rats were divided into five groups: control, lesion, lesion+ICV injec-
tion of pMSCs, lesion+IV injection of pMSCs, and lesion+donepezil. Rats were subjected to the Morris water maze and subse-
quent immunostaining analyses.

Results: Both ICV and IV pMSC administrations allowed significant cognitive recovery compared to the lesioned rats. Acetylcho-
linesterase activity was significantly rescued in the hippocampus of rats injected with pMSCs post-lesion. Choline acetyltransfer-
ase did not co-localize with pMSCs, showing that pMSCs did not directly differentiate into cholinergic cells. Number of microglial
cells increased in lesioned rats and significantly decreased back to normal levels with pMSC injection.

Conclusion: Our results suggest that ICV and IV injections of pMSCs facilitate the recovery of cholinergic neuronal populations
and cognitive behavior. This recovery likely occurs through paracrine effects that resemble microglia function rather than direct
differentiation of injected pMSCs into cholinergic neurons.
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saporin, an immunotoxin, leads to cholinergic hypofunction
and eventually results in considerable impairment of cognitive
function and behavior.? Thus, various previous studies have uti-
lized 192 IgG-saporin administrations as a method of neuro-
degenerative dementia rat model establishment.*®

Acetylcholinesterase (AChE) inhibitors are an FDA-approved
drug for dementia patients, but this method has shown limited
efficacy, calling for a more effective treatment method. Alter-
natively, mesenchymal stem cells (MSCs) have been actively
researched for their therapeutic potential against neurode-
generative disorders,” and MSCs were found to secrete neuro-
regulatory factors that carry out neuroprotective actions and
promote neurogenesis.® Some studies using MSC have report-
ed promising results for neurodegenerative disease models.
In 6-hydroxydopamine-induced Parkinson’s disease (PD) rat
models, intravenous administration of human bone marrow-
derived MSCs was found to alleviate explicit parkinsonian
symptoms, suggesting that MSC administration could elicit
therapeutic effects on neurodegenerative diseases pertaining
to dopaminergic neurons.’ Also, human adipose tissue-derived
MSCs (ADSCs) facilitated B-amyloid peptide (AB) clearance
via in vitro secretion of exosomes containing the AB-degrading
enzyme neprilysin, suggesting a possible therapeutic approach
to AD using ADSCs."

While MSC administration for therapeutic intervention of
neurodegenerative disorders is rising in popularity, limited
information is available regarding the most appropriate source
of MSCs for transplantation. Human placenta-derived MSCs
(pMSCs) exhibit high adhesive and secretory properties.
Moreover, procurement of pMSCs does not conflict with ethical
concerns' and they display phenotypic plasticity.” They are
also immunologically privileged"* and are easily obtainable
without invasive procedures. Based on such advantages, pM-
SCs seem to be a viable candidate for transplantation in neu-
rodegenerative dementia models.

MSC transplantation was shown to influence microglia ac-
tivation in AD mouse models and reduce AP deposition." Mi-
croglia are glial cells that defend the neural parenchyma from
factors such as infections, ischemia, and neurodegeneration.'®
Microglial cells are known to help maintain neural stem cell
homeostasis and participate in immunological actions through
phagocytic activity.' In addition, microglia have been shown
to serve neuroprotective functions through secretion of various
factors and increasing neuronal survival,'” and microglia in the
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hippocampus of stroke rat models were shown to protect neu-
rons by synthesizing tumor necrosis factors.'® Thus, we antici-
pated that active microglia quantity would grow in dementia
model rats with lesions of cholinergic neurons and decrease
upon appropriate treatments that allow recovery in cholinergic
function.

As mentioned above, there have been studies showing that
stem cell administration alleviates symptoms in PD and AD
models. However, to our knowledge, the therapeutic effect of
pMSCs in dementia models with cholinergic neuronal degen-
eration and its associated mechanisms are less understood. In
this study, we evaluated the behavioral recovery effects of pMSC
administration in 192 IgG-saporin-induced dementia model
rats in comparison with the current standard treatment using
donepezil, an AChE inhibitor.

Furthermore, we investigated the therapeutic effects of ad-
ministration of pMSCs in dementia model rats using two dif-
ferent cell injection methods, intracerebroventricular (ICV) and
intravenous (IV) injections, and also the possible mechanisms
of therapeutic action. Hemodynamic considerations may sug-
gest better stem cell delivery through intra-arterial (IA) injec-
tions, however, our previous IA injection trials entailed several
difficulties: considerable invasiveness involving incision through
neck skin and muscles, uncontrollable bleeding, and extend-
ed recovery time post-operation. Thus, as the two prime injec-
tion methods of our study, we selected the ICV route, which is
invasive but highly target-specific, and the IV route, which al-
lows marginal invasiveness and faster stem cell administration.

MATERIALS AND METHODS

Animals and experimental grouping

All animal experiments in this study were performed in accor-
dance with the Guide for the Care and Use of Laboratory Ani-
mals of the National Institutes of Health and were approved
by the Institutional Animal Care and Use Committee of Yonsei
University, Korea.

Procedures were carried out according to the experiment
timeline (Fig. 1). Rats were housed in groups of three per cage
with food and water ad libitum, and they were kept in a tem-
perature/humidity-controlled room with a 12-hour light/12-
hour dark cycle. Efforts were taken to minimize the number of
rats used and overall animal suffering.

Immunosuppression (daily cyclosporine injection)

Rat arrival
(0 weeks)

Modeling
(1 week)
pMSC transplant

(2 weeks)

Fig. 1. Experiment timeline. pMSC, placenta-derived mesenchymal stem cell.
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Experimental grouping is summarized in Table 1. Sixty-five
male Sprague-Dawley rats (180-200 g) were randomly assort-
ed into five groups before surgery. The control group rats (n=
16) did not undergo any surgical procedures. The lesion group
rats (n=17) received bilateral ventricular infusion of 192 IgG-
saporin into the brain. Rats in the ICV transplantation group
(n=12) were bilaterally infused with 192 IgG-saporin in the
lateral ventricle and received ICV injection of pMSCs one week
later. Rats in the IV transplantation group (n=12) were bilater-
ally infused with 192 IgG-saporin in the lateral ventricle and
received tail vein injection of pMSCs one week afterwards.
Lastly, rats in the donepezil group (n=8) were bilaterally in-
fused with 192 IgG-saporin in the lateral ventricle and were in-
traperitoneally injected with donepezil every day after pMSC
transplantation in the ICV and IV group rats.

Surgical procedures
Forty-nine rats (excluding the control group) were anesthetized
with a mixture of ketamine (75 mg/kg), xylazine (Rompun™ 4
mg/kg; Bayer Korea, Seoul, Korea), and acepromazine (0.75
mg/kg) and were secured in a stereotaxic frame. Scalp skin was
incised, and two holes were drilled into the skull [anteroposte-
rior (AP) -0.8 mm, mediolateral (ML) +1.2 mm, dorsoventricular
(DV) -3.4 mm]. Afterwards, 8 L of 192 IgG-saporin (0.63 pg/pL;
Chemicon, Temecula, CA, USA) were bilaterally injected into
the lateral ventricle at a rate of 1 pL/min and was left to diffuse
for 5 min after injection.

pMSCs were harvested and isolated from normal human pla-
centa according to protocols described in previous studies."
MSC harvestation procedure on human donors was approved
by the Institutional Review Board of CHA General Hospital,
Seoul, Korea. Cell surface marker profiling in our previous stud-
ies also revealed that the pMSCs were negative for CD34 (a
hematopoietic and endothelial cell marker), SSEA4, TRA-1-60,
and TRA-1-81 (embryonic stem cell markers), and positive for
CD9 (a nontrophoblast marker), CD13 and CD90 (MSC mark-
ers), and CD200 (an immunoregulator).’ One week after 192
IgG-saporin injections, 12 rats in the ICV group were anesthe-
tized with a mixture of ketamine, xylazine, and acepromazine.
Afterwards, the rats received 6 puL of pMSC (9x10° cells/6 pL, 3
pL/5 min) transplantation into the following coordinates: AP
-0.8 mm, ML +1.2 mm, DV -3.4 mm. The pMSCs were allowed
to diffuse for 5 min after each injection. Twelve rats in the IV

Table 1. Grouping of Experimental Subjects

Neuroprotective Effects of pMSCs in Dementia Rats

group received 200 pL of pMSCs (5x10° cells/200 pL) via tail
vein injection. All rats were immunosuppressed with cyclo-
sporine [12.5 mg/kg, daily intraperitoneal (IP) injection] start-
ing the day before transplantation for up to five weeks. Eight
rats were used for the donepezil injection group (3 mg/kg,
daily IP injection).

Additionally, in order to exclude the possible effects of sur-
gical procedures on microglial cell count, four rats were sham-
operated [bilateral injection of 8 pL phosphate buffer saline
(PBS)], and their microglial cell counts were compared with
those of control group rats.

Behavioral test-Morris water maze

Five weeks after pMSC transplantation, all rats underwent the
Morris water maze test. The Morris water maze apparatus was
made up of a circular pool 2 m in diameter and 0.5 m in depth.
This pool was filled with opaque tap water (23°C) and con-
cealed a circular (0.15 m in diameter) black escape platform
submerged 2 cm below the surface of the water. All rats were
trained for four trials per day. These four trials continued for 5
consecutive days with a fixed hidden platform guided by spatial
cues. For each training trial, the rat was semi-randomly placed
into one of the four start points and was given 60 sec to reach
the hidden platform. After finding the platform, the rat was al-
lowed to remain on the platform for 10 sec. Rats that failed to
reach the platform within 60 sec were led to the platform by
the experimenter and were allowed to remain on the platform
for 10 sec. Twenty-four hours after the final training trial, the
rats were given probe tests. Each probe test lasted for 60 sec
without the platform. Swimming distance, time spent in each
zone, swim path, and speed were recorded and computed by
the SMART video-tracking system (Harvard Apparatus, Hol-
liston, MA, USA).

Tissue preparation

After the behavioral tests, 8 out of 16 rats from the control group,
8 out of 17 rats from the lesion group, 6 out of 12 rats from the
ICV group, 6 out of 12 rats from the IV group, and 4 out of 8 rats
from the donepezil injection group were anesthetized with a
mixture of ketamine (75 mg/kg), xylazine (4 mg/kg), and
acepromazine (0.75 mg/kg) and underwent transcardial per-
fusion with normal saline and cold 4% paraformaldehyde.
Brains were removed, post-fixed, transferred to 30% sucrose,

Groups n 192 IgG-saporin pMSC Donepezil
Control 16 -
Lesion 17 ICV, bilateral -
ICV 12 ICV, bilateral ICV, bilateral
% 12 ICV, bilateral IV
Donepezil 8 ICV, bilateral P

pMSC, placenta-derived mesenchymal stem cell; ICV, intracerebroventricular; IV, intravenous; IP, intraperitoneal.

“-" indicates no injection.
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and stored for 3 days. The brains were sectioned into 35 um
slices using a freezing microtome and stored in a cryoprotec-
tant solution [0.1 M phosphate buffer (pH 7.2), 30% sucrose,
1% polyvinylpyrrolidone, and 30% ethylene glycol] at -20°C.

AChE assay

The remaining rats from each group were anesthetized with a
mixture of ketamine (75 mg/kg), xylazine (4 mg/kg), and ace-
promazine (0.75 mg/kg) and then decapitated with a guillotine.
The brains were quickly removed. The prefrontal cortex, hip-
pocampus, and medial septum (MS) regions were dissected
with fine forceps from 1 mm coronal brain slices. These sam-
ples were homogenized in lysis buffer (Intron, Seongnam,
Korea) and centrifuged for 10 min at 12000 rpm. The protein in
the supernatant was measured using the bicinchoninic acid
protein assay reagent kit (Pierce, Rockford, IL, USA). The pro-
tein samples were stored at -70°C.

To evaluate the enzymatic activity of AChE, the method de-
scribed by Ellman, et al.*® was used. In brief, 20 pL triplicate
samples were mixed with a reaction mixture [0.2 mM dithio-
bisnitrobenzoic acid (Sigma-Aldrich, Louis, MO, USA), 0.56 mM
acetylthiocholine iodide (Sigma-Aldrich), 10 uM tetraisopro-
pyl pyrophosphoramide (Sigma-Aldrich), and 39 mM phos-
phate buffer; pH 7.2] at 37°C. After 30 min, the optical density
was measured at 405 nm.

Immunohistochemistry

DAB staining

Diaminobenzidine (DAB) staining was performed to evaluate
the location and number of pMSCs. For immunohistochemis-
try, brain sections were incubated in 0.3% H,O. for 60 min to
block endogenous peroxidase activity. The sections were bl-
ocked with 5% normal goat serum and incubated overnight
with monoclonal antibodies against a human cytoplasmic pro-
tein (STEM121, AB-121-U-050, 1:300; StemCells, Cambridge,
UK) at 4°C. Afterwards, the sections were incubated with anti-
mouse biotinylated IgG secondary antibodies (BA-9200; Vec-
tor Laboratories, Burlingame, CA, USA), followed by the avi-
din-biotin complex method (ABC Elite; Vector Laboratories).
The cells were then visualized using a DAB substrate kit (Ther-
mo, Fremont, CA, USA). The samples were examined using a
virtual microscope (BX51; Olympus, Tokyo, Japan).

ChAT and microglia immunofluorescence analysis

For immunofluorescence analysis of ChAT, sections were in-
cubated overnight at 4°C with monoclonal antibodies against
human nuclei (MAB1281; Merck Millipore, Billerica, MA,
USA) and ChAT (Anti-ChAT, 1:100; Merck Millipore). The sec-
tions were then incubated with anti-mouse Cy5 (A10524,
1:500; Life Technologies, Carlsbad, CA, USA) and anti-goat
FITC (Ab6881, 1:200; Santa Cruz Biotechnology, Dallas, TX,
USA). For immunofluorescence analysis of microglial cells,

https://doi.org/10.3349/ym;.2018.59.3.406
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sections were incubated overnight at 4°C with monoclonal
antibodies against microglia (Ibal, 019-19741, 1:400; Wako
Chemicals, Richmond, VA, USA). The sections were subse-
quently incubated with anti-rabbit Alexa Fluor 488 (A11008,
1:500; Invitrogen, Carlsbad, CA, USA) secondary antibodies. The
samples were examined and photographed with a confocal
laser scanning microscope (LSM700; Carl Zeiss, Jena, Germany).

Statistical analysis

Statistical analyses were conducted using SPSS software ver.
21 (IBM Corp., Armonk, NY, USA). All analyses were performed
using one-way analysis of variance (ANOVA) followed by post
hoc Fisher’s least significant difference method for exploratory
analysis of our factors. Data are presented as mean+standard
error. p-value <0.05 was considered statistically significant.

RESULTS

Morris water maze test

Prior to probe testing, all rats were trained in the water maze
for four trials per day for five consecutive days. On average, rats
in all five groups showed a gradual decline in latency to the
platform over the five days (Fig. 2A). Twenty-four hours after
the final training trial, the rats were subjected to probe testing.
Three measurements were made in the probe trial: time spent
in the target quadrant, time spent in the platform zone, and the
number of platform zone crossings.

In the probe test, the lesion group rats showed poor perfor-
mance compared to the control rats in all three measurements
of interest (Fig. 2B, C, and D). ICV and IV group rats all showed
significant improvement in all three measurements compared
to the lesioned rats (Fig. 2B, C, and D). Donepezil group rats
also showed significant improvement in time spent in the tar-
get quadrant and in the platform area but did not show a signif-
icant difference from the lesion group in the number of plat-
form crossings (Fig. 2B, C, and D).

Cholinergic functions

In order to compare cholinergic neuronal activity, we quanti-
fied AChE activity in all groups using Ellman’s methods.” This
measurement was made in three parts of the rats’ brains: the
medial prefrontal cortex (mPFC), the hippocampus, and the
MS. In the mPFC and hippocampal regions, AChE activity was
significantly reduced in the lesion group compared to the con-
trol group (Fig. 3A and B). AChE activity in the MS also declined
in the lesion group, although the difference from controls was
not statistically significant (Fig. 3C). In the mPFC and hippo-
campus, AChE activities of ICV and IV group rats significantly
improved compared to that of the lesioned rats, suggesting that
pMSC administration boosts cholinergic neuronal function to
a level similar to rats without dementia (Fig. 3A and B). In con-
trast, lesion, ICV, IV, and donepezil group rats all tended to show
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Fig. 2. Morris water maze test results. (A) All five groups showed a tendency to improve in cognitive performance over the five training sessions. (B, C,
and D) Probe test results after training: time spent in the target quadrant (B), time spent in the platform zone (C), and the number of platform crossings
(D). Comparisons among groups were made using one-way analysis of variance followed by post hoc Fisher's least significant difference method.

*p<0.05, 'p<0.01,*p<0.001 for comparisons. ICV, intracerebroventricular; IV, intravenous.

2.0 2.0+

Optical density 405 nm
p e
L 1
Optical density 405 nm
5 &

o
33l
1
o
o
1

0.0~

o
o
1

Control Lesion  ICV IV Donepezil Control  Lesion

A mPFC B

2.0+

Optical density 405 nm

0.0

T
ICV IV Donepezil Control Lesion  ICV IV Donepezil

Hippocampus C MS

Fig. 3. AChE assay. Quantification of AChE was carried out for three brain regions involved in the memory circuit: the mPFC (A), the hippocampus (B),
and the MS (C). Comparisons among groups were made using one-way analysis of variance followed by post hoc Fisher’s least significant difference
method. *p<0.05, 'p<0.01 for comparisons. AChE, acetylcholinesterase; mPFC, medial prefrontal cortex; MS, medial septum; ICV, intracerebroventricu-

lar; IV, intravenous.

lower levels of AChE activity in the MS region compared to con-
trol rats, but the difference was not significant (Fig. 3C). Over-
all, ICV and IV pMSC administrations showed therapeutic ef-
fects similar to that of donepezil.

Localization of pMSCs

Placental MSC homing was investigated for ICV and IV groups
to evaluate the effectiveness of the injection methods. The in-

410

jected pMSCs were counted after DAB staining for STEM121,
and indeed certain portions of pMSCs were found for both
methods (ICV 2727.5+574.332 cells; IV 7172.5+1041.075 cells)
at the dentate gyrus of the hippocampal region (Fig. 4). Per-
centages of localized pMSCs at the dentate gyrus with respect
to the total number of injected cells were approximately 0.30%
in the ICV group and 0.14% in the IV group.

https://doi.org/10.3349/ymj.2018.59.3.406
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Fig. 4. DAB staining (%20, objective lense) for STEM121 human cytoplasmic marker. DAB staining was performed for investigation of stem cell homing
at the dentate gyrus region after pMSC administration. The pMSCs were found at the dentate gyrus region after both ICV and IV injections. No pM-
SCs were found in the control and lesion groups. Scale bar=100 ym. DAB, diaminobenzidine; pMSC, placenta-derived mesenchymal stem cell; ICV,

intracerebroventricular; IV, intravenous.

Stem cell fate

To take into account the possibility of differentiation of the in-
jected stem cells into cholinergic neurons, rat brain sections
from all groups were subjected to immunofluorescence anal-
ysis using markers for human nuclei and for ChAT. Many stem
cells were found in the hippocampus, but we could not detect
any co-localizations between the stem cell nuclei marker and
the ChAT marker (Fig. 5). The injected stem cells did not seem
to differentiate into cholinergic neurons.

Microglial activity

Microglial cell count was carried out for control, lesion, ICV,
and IV group rats using the microglial cell marker, Ibal. The
cell count was performed for the dentate gyrus region. In or-
der to exclude the possibility of any influences on microglial
cell count invoked by the operation procedures, numbers of
microglial cells were compared across the four groups togeth-
er with a fifth sham-operated group. One-way ANOVA results
showed similar trends in microglial cell count for the control
and the sham-operated groups: both groups showed a signifi-
cant difference from the lesion group, whereas both groups
showed no significant difference from either ICV or IV groups
(significance level of 0.05 for all pairwise comparisons). The
normal and sham-operated groups did not show a significant

https://doi.org/10.3349/ym;.2018.59.3.406

difference from each other. For consistency, data for sham-
operated group rats were not included in the figure. The num-
ber of microglial cells markedly increased; the control group
(326.7+22.11 cells) and the lesion group (541.4+19.55 cells).
Both ICV and IV administration of pMSCs led to a significant
decrease of microglia count compared to the lesion group
(ICV 382.6+10.43 cells; IV 282.8+11.35 cells) (Fig. 6). Both ICV
and IV groups showed no significant difference from the con-
trol group in microglial cell count.

DISCUSSION

Dementia caused by cholinergic neuronal degeneration is
currently treated with AChE inhibitors such as donepezil, but
these drugs have limited efficacy. Stem cell therapy is now rec-
ognized as an alternative therapeutic tool for neurodegenera-
tive diseases for its potential in differentiation and paracrine
secretions. The efficiencies of different MSC transplant modali-
ties and relevant mechanisms, however, are not yet clarified.

Behavioral therapeutic efficacy of pMSCs compared
to AChE inhibitors

All rats showed improvement in the Morris water maze train-

m
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Fig. 5. Inmunofluorescence analysis of ChAT activity at the dentate gyrus region. Samples were stained with hNu, anti-ChAT, and DAPI (<20, objective
lense). White arrows indicate cholinergic neurons and transplanted pMSCs in ChAT and hNu images, respectively. No co-localization was found be-
tween hNu and ChAT markers (white arrows), indicating that the injected pMSCs did not directly differentiate into cholinergic cells. Scale bar=40 ym.
hNu, human anti-nuclei marker; ChAT, choline acetyltransferase; pMSC, placenta-derived mesenchymal stem cell.

ing phase, indicating that all rats managed to adopt a certain st-
rategy for escaping the water. It was reported that rats with le-
sions of cholinergic pathways show poor acquisition of spatial
memory and that they alternatively adopt a non-spatial search
strategy.”* Our water maze results were in accordance with such
findings; lesioned rats still showed similar improvement in
training latency to the control rats. It is, therefore, highly likely
that the lesioned rats used a random search strategy to find
the platform rather than relying on learning and spatial cogni-
tive functions; this strategy is also apparent in the water maze
probe test results in which the lesioned rats displayed signifi-
cantly poorer performance than the control rats in all three
measurements (Fig. 2). This speculation is also consistent
with former findings which showed that cholinergic dysfunc-
tion leads to downregulation of memory-related proteins, re-
sulting in cognitive impairment and memory loss.” Also, in the
probe test, ICV, IV, and donepezil group rats all recovered in
performance compared to lesioned rats (except for the done-
pezil group in platform crossings), suggesting that pMSC ad-
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ministration facilitated effects comparable to donepezil. Ad-
ditionally, we did not observe significant differences in terms
of behavioral improvement between ICV and IV groups. Thus,
we conclude that neither stem cell administration pathway is
superior over the other in regard with the effect on cognitive
behavior.

Molecular therapeutic efficacy of ICV and IV pMSC
transplant modalities

Since the MS-hippocampus-mPFC memory circuit consists of
a cholinergic system,'**! we first assessed cholinergic neuro-
nal activities in the three regions of interest using an AChE as-
say. Injection of 192 IgG-saporin tended decrease AChE activ-
ity in the MS and led to a decline in AChE activities in the
downstream hippocampus and mPFC regions as well (Fig. 3).
Stem cell administration through ICV and IV routes resulted
in no significant AChE activity increase from the lesion group
in the MS region, but led to AChE functional recovery in the
hippocampus (Fig. 3B). Since the dentate gyrus of the hippo-

https://doi.org/10.3349/ymj.2018.59.3.406
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Fig. 6. Immunofluorescence analysis of the microglia at the dentate gyrus region using Iba1. (A) Samples were stained with Iba1 (green) and DAPI
(blue) (<10, objective lense). The number of Iba1-positive microglial cells at the dentate gyrus significantly increased from the normal group to the le-
sion group. ICV and IV administrations of placenta-derived mesenchymal stem cell significantly reduced the number of microglial cells back to nor-
mal levels. Scale bar=200 pm. (B) The numbers of Ibal-positive microglial cells at the dentate gyrus region were counted for the four groups. Com-
parisons among groups were made using one-way analysis of variance followed by post hoc Fisher's least significant difference method. *p<0.01,

p<0.001 for comparisons. ICV, intracerebroventricular; IV, intravenous.

campus is a prime source of granule cell neurogenesis® and
the neighboring periventricular area also exhibits neural stem
cells,** the hippocampal region provides an adequate envi-
ronment for stem cell homing and neurogenesis. In effect, the
injected pMSCs possibly migrated to the hippocampal region
and helped restore cholinergic activity in the hippocampus,
increasing cholinergic innervation to the mPFC and enhanc-
ing cholinergic activity at the mPFC as well. It is quite likely that
the MS did not improve cholinergic activity due to its place-
ment upstream of the hippocampus in the circuit.

In order to verify whether the injected stem cells actually
reached the hippocampal region, brain tissue sections of the
rats in ICV and IV groups were stained using DAB immuno-
histochemistry for human cytoplasm. Stem cells were found
localized in the hippocampus for both groups, mainly at the
dentate gyrus (Fig. 4). Both IV and ICV administration of pM-
SCs into rodents allowed migration of the stem cells to the
malfunctioning site of the brain parenchyma, which is consis-
tent with earlier findings.**" Although earlier studies found
that most MSCs are filtered in the lungs, kidneys, spleen, and
liver upon IV injection and only a small fraction of MSCs reach
the brain target,” our study showed that IV injection nonethe-
less resulted in some pMSC localization at the hippocampus
and subsequent recovery in cognitive functions. Considering
its minor invasiveness and easier administration, IV injection
may also be relatively advantageous compared to ICV injec-
tion of pMSCs. However, in terms of cholinergic cell rescue, nei-
ther ICV nor IV injection method displayed significant domi-
nance over one another: both methods yielded similar results.

https://doi.org/10.3349/ym;.2018.59.3.406

Neuroprotective effects of pMSC transplantation therapy
Our main question was how these transplanted stem cells
helped restore cholinergic activity in the hippocampus. Our
first hypothesis was that the injected pMSCs, once reaching
the hippocampus, differentiated into cholinergic cells and re-
placed the lesions caused by injection of 192 IgG-saporin.
However, ChAT immunostaining results showed no co-local-
ization between human nuclei and ChAT markers (Fig. 5), in-
dicating that this was not the case. Such results are also con-
sistent with earlier studies. MSC administration is thought to
regulate AP accumulation not through direct differentiation
but through interactions with local immune cells,® and an in
vitro experiment using a cellular model of AD showed that
MSC and MSC secretome prolongs cell viability and promotes
neuritogenesis, suggesting that MSC secretome has therapeu-
tic potentials for neurodegenerative diseases.* The facts that a
certain portion of our injected pMSCs reached the hippocam-
pus of the rats (Fig. 4), and that these pMSCs did not differen-
tiate into cholinergic neurons (Fig. 5), also suggest that there
is a more complex therapeutic mechanism of injected pMSCs
than mere differentiation.

Since many previous studies reported that immune reac-
tions are triggered by implanted MSCs in the brain,**' we in-
vestigated participants of immune reactions in the brain, mi-
croglia in our case, that may have influenced behavioral re-
habilitation of dementia model rats after MSC administration.
As mentioned in the results, lesioned rats showed significantly
increased numbers of microglial cells at the dentate gyrus of
the hippocampus, and rats of both ICV and IV groups displayed
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significantly reduced numbers of microglia compared to the
lesioned rats and showed no significant difference from con-
trol rats (Fig. 6B). A limitation of study might be that normal
rats were used as the control instead of sham-operated rats for
experiments. However, statistical analysis of microglial cell
counts revealed a similar trend between normal and sham-
operated rats, as shown in the results section.

Microglia are glial cells in the central nervous system that
participate in innate immunity in response to pathology th-
rough numerous mechanisms, such as physical contact with
and removal of injured neurons and their synapses,* or even
phagocytosis of whole neurons.* This fundamental role of
phagocytosis is essential for facilitation of neuronal circuit re-
organization, anti-inflammatory responses, and regeneration
of new neurons.* However, excessive phagocytosis activates
production of toxic reactive oxygen species that can be detri-
mental to the surrounding neurons as well.* The phagocytic
activity of microglial cells can also lead to neuronal loss due to
phagocytosis of live neurons and live neural precursor cells.*
These results suggest that even though microglia carry out the
beneficial function of clearing out damaged neuronal debris,
excessively large numbers of microglial cells may not be desir-
able for normal neurons.

Therefore, our results showing that IV and ICV injections of
pMSCs lower microglia count to normal levels imply that pM-
SCs serve a dual function of neural recovery and neuroprotec-
tion. Again, no significant difference in microglial counts was
observed between IV and ICV groups, suggesting that neither
method was superior over the other. Administration of pMSCs
facilitated recovery of cognitive rehabilitation (Fig. 2) and cho-
linergic neuronal function in dementia model rats (Fig. 3),
while keeping the number of microglial cells in check, protect-
ing functional neurons from unnecessary phagocytosis (Fig. 6).
Although the mechanism by which these phenomena take pl-
ace remains as a subject for further research, it is possible that
the injected pMSCs take over the neural repair roles of microg-
lia. Besides phagocytosis, microglia promotes generation of
new neurons through secretion of signaling molecules such as
brain-derived neurotrophic factor (BDNF).*”* Also, although
still under debate, some studies have reported that human
MSC transplantation into rats leads to an increase in BDNF lev-
els at the injury site.*” Perhaps, similar paracrine effects of pM-
SCs facilitate the recovery of cholinergic neuronal systems,
consequently leading to cognitive restoration of dementia
model rats.

In summary, our results demonstrated that administration
of pMSCs into dementia model rats facilitated recovery of
cholinergic activity and cognitive function. This is supported
by the results of the AChE assay and Morris water maze test.
In addition, we found that both IV and ICV administrations of
pMSCs were effective for targeted delivery of the stem cells
into the hippocampus of the dementia model rats, and that
neither injection method was significantly more effective than
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the other. As previously discussed, both ICV and IV routes
have their advantages and drawbacks: ICV administration is
highly target-specific but invasive, whereas IV injection is less
invasive but is subject to filtration of pMSCs in various organs.
Thus, both methods are reasonable candidates for stem cell
administration, and the choice of method should be made
under careful consideration of physiological conditions of the
subject. Moreover, our results showed that the injected pM-
SCs did not directly differentiate into cholinergic neurons, but
rather influenced generation of cholinergic neurons via some
other mechanism. It is highly possible that microglia are one
of the main factors involved in this process, and that pMSCs
exert functions similar to microglial cells, such as secretion of
trophic factors. Although further researches are necessary for
clarification of the exact mechanisms involved and establish-
ment of optimal conditions for successful stem cell homing,
the therapeutic effects of pMSCs, nonetheless, shed light on
possible future clinical applications of stem cell therapy to de-
mentia and other neurodegenerative diseases.
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