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With the increasing of depth and complexity of the convolutional neural network, parameter dimensionality and volume of
computing have greatly restricted its applications. Based on the SqueezeNet network structure, this study introduces a block
convolution and uses channel shuffle between blocks to alleviate the information jam. The method is aimed at reducing the
dimensionality of parameters of in an original network structure and improving the efficiency of network operation. The
verification performance of the ORL dataset shows that the classification accuracy and convergence efficiency are not reduced or
even slightly improved when the network parameters are reduced, which supports the validity of block convolution in structure
lightweight. Moreover, using a classic CIFAR-10 dataset, this network decreases parameter dimensionality while accelerating
computational processing, with excellent convergence stability and efficiency when the network accuracy is only reduced by 1.3%.

1. Introduction

In the 5G era, with the development of emerging technolo-
gies such as the Internet of Things and big data, related appli-
cations in smart terminals are becoming more and more
widespread. As a support for these intelligent applications,
brain-computer-interface (BCI) technology plays an essential
role in intelligent identification, classification, and comput-
ing. Our work mainly focuses on the intelligent recognition
of images and videos, which is an indispensable intelligent
application in life.

Since the publication of the 2006 Hinton research [1],
deep learning algorithms have evolved rapidly. Based on
the traditional artificial neural network (ANN) and the pro-
cessing power of modern computers, it has achieved remark-
able results in image processing, speech recognition, and
scene analysis. The processing power and algorithm perfor-
mance of complex problems have been greatly improved,

which has attracted widespread attention from academia
and industry. The idea of deep learning can be summarized
as unsupervised learning from bottom to top and parameter
adjustment from top to bottom. Its adjustment process is
based on the traditional BP algorithm. Typical deep learning
algorithm models mainly include encoder, deep belief net-
works (DBN), and convolutional neural networks.

The development of ANN can be tracked back to the
1940s, and its development process is roughly divided into
three stages. The first stage was the submission of the neuron
model and learning rules from 1947-1969, such as perceptron,
HEBB learning rules, binary neuron model (MP model), etc.
The second stage is the HNN neural network model intro-
duced by Professor Hopfield in 1982 by introducing the
concept of Energy Function. The third stage is the classic
back-propagation algorithmproposed by Professor Rumelhart
in 1986. This algorithm is now known as the BP algorithm [2].
A typical three-layer ANN model is shown in Figure 1.
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One of the benefits of deep learning frameworks in image
recognition is that they do not need the traditional classifica-
tion algorithms. It requires a lot of artificial processing of
image features.

It is an adaptive algorithm. Through multilayer convolu-
tion and a nonlinear activation function, the algorithm clas-
sifies and regresses all image features through MLP [3]. It
has the characteristics of migration invariance, scale invari-
ance, and radiance image brightness. The overall CNNmodel
starts with a convolutional layer. A convolution layer is a
series of feature filter pairs (filter set), which contains multi-
ple convolution kernels, and the output is feature maps.
Then, convolution results are linearly modified; using RELU
[4] function. After the convolution, a pooling layer is usually
added. Generally, there is a mean pooling layer and a maxi-
mum pooling layer to compress the image.

Many classic deep learning network architectures have
been developed based on the ILSVRC platform, such as Alex-
Net [5], ZFNet [6], VGGNet [7], GoogleNet [8], and ResNet.
VGGNet is an improved framework based on the 1000-class
image classification and localization model using the image-
Net model. Due to the characteristics of neural networks, in
order to obtain high accuracy, existing pipelines tend to
increase the depth and complexity of their networks contin-
uously. The number of internal parameters and the nonlinear
mapping tends to be huge, which makes the deep network
structure perform well in competition and data reflection.
However, real-world applications are often constrained by
storage space, computing power, and computing speed of
the terminals. For example, in practical applications such as
automatic driving, face recognition on mobile phones, video
classification, etc., learning results are often demanded in
milliseconds. Additionally, these devices often have limited
processor performance with no prior trainings in the lab.
Therefore, the practicality of CNN could be limited.

Two lines of work have been proposed to make deep
learning networks applicable to daily lives. One is to improve
hardware. The other is to improve the computing power of
mobile terminals and to improve network structures, with a
goal to minimize the training time and the amount of data
required without affecting the accuracy. The development
speed of the hardware is relatively slow, and its update itera-
tion is far behind the speed required for the evolution of the
network structure. Therefore, reducing the calculation
parameters and calculation complexity of traditional network
frameworks has gained the most research interests in deep
learning.

2. Related Works

Since the discovery of electrodes that can be used to collect
EEG signals from the subcortex in the 1930s, research on
EEG signals has provided experimental tools to decode neu-
ral substrates that are associated with thoughts and feelings
of study subjects. With the rapid development of pattern rec-
ognition algorithms, ANNs, and deep learning frameworks,
research on brain-computer interface (BCI) systems is in full
swing.

BCI system-evoked potential collection methods include
nonimplantable electroencephalogram (EEG) [7], implant-
able electroencephalogram (EcoG) [8], and functional mag-
netic resonance imaging (functional magnetic resonance
imaging) [9]. The acquisition of nonimplantable EEG signals
will not cause damage to the cerebral cortex. As a convenient,
simple, and low-cost method, it has been widely used in the
field of brain-computer interface system research.

The five-layer CNN has AlexNet and its optimized net-
works such as ZF, VGG, GoogleNet, ResNet, and DenseNet.
Their performance is gradually improving, but the amount of
parameters is also increasing. See Figure 2 for a comparison
of the performance and quality of some of the more popular
network models recently. It can be seen that the quality of
these volume computer networks is mostly in the tens to
hundreds of megabytes.

UC Berkeley proposed the SqueezeNet convolutional
network model in 2016. This model can reduce these tens
of megabytes and hundreds of megabytes of network struc-
ture to about 4.6 megabytes without affecting accuracy. This
paper proposes three improvement strategies for Squeeze-
Net’s core module, Fire Module. The first strategy is to
improve on the dense 1 × 1 convolution [9] kernel by using
1 × 1 grouping convolution to reduce the number of calcu-
lations. This strategy can also solve the problem of noncir-
culation of channel information in grouped convolution.
The second strategy is to add channel shuffle [10] (cross
grouping) operation. This strategy reorganizes the different
feature maps after grouping convolutions, so that the next
grouping convolutions come from different groups, making
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information flow in various groups. The third strategy is to
adjust at the SoftMax layer and use SoftMax Loss [11] and
Center Loss [12] to monitor training jointly. This training
can be used to compensate for the high similarity image
recognition effect.

In order to research the lightweight of CNNs in BCI, in
2015, Professor He Kaiming introduced a new structure of
deep residual neural networks [13, 14]. The CNN trained
on this structure has a depth from the AlexNet8 layer to the
VGG19 layer to the ResNet152 layer and can converge and
train regularly. ResNet won the championship with an accu-
racy of 16% over the second place in the ImageNet detection
task and surpassed the second place by 27% in the ImageNet
positioning task.

3. Improvements and Design of Fire Module

3.1. Improvements of Fire Module. As shown in Figure 3, the
core module of the SqueezeNet network model is the Fire
Module. It consists of the Squeeze layer and the Expand layer.
The Squeeze layer is composed of a 1 × 1 convolution kernel.
The 1 × 1 convolution kernel can change or reduce the num-
ber of channels when the model is input by changing its own
convolution kernel number. Finally, the purpose of reducing
the number of parameters and computational complexity is
achieved. The Expand layer consists of a 1 × 1 convolution
kernel and a 3 × 3 convolution kernel. Because the 1 × 1 con-
volution calculation in the convolution operation accounts
for most of the entire module, the calculation complexity is
still high. This paper replaces the original 1 × 1 conventional
convolution kernel with a 1 × 1 packet convolution on the
basis of Fire-Module. In addition, batch normalization
(BN) is used for the input of the model to speed up the
training and convergence process and improve the classifi-
cation accuracy. Finally, the strategy cascades improved
Fire Modules.

3.2. Grouping Convolutional Appointments. The comparison
between grouped convolution and regular convolution is
shown in Figure 4. The traditional convolution is shown in
Figure 1. The convolution kernel is completely converted

for training. In the grouping convolution, the convolution
kernel is divided into N (N = 3 in the figure) parts, and the
input dimension is Din/N . In the grouping convolution, the
convolution kernel corresponds to the input ½: , : 0 : Din/N�
dimension part for convolution operation. The second set
of convolution kernels and the input ½: , : Din/N : 2Din/N�
dimensions are used for convolution. According to this, it is
concluded that the output after the convolution operation
of each group has become a convolution kernel in the D0/N
dimension. And each set of input and output operations is
independent convolution operations. The input is convolved
only with the current grouping convolution kernel and not
with other grouping convolution kernels. After all the group-
ing convolutions are completed, the outputs of all D0/N
dimensions are superimposed to obtain the complete output
of the final grouping convolution.

It is clear from Table 1 that the comparison of the con-
ventional convolution parameters of the grouped convolu-
tion kernel is directly proportional to their ratio and
number of groups. When the input size is W1 (width), H1
(height), and C1 (size), assuming a C2 convolution kernel
and the size of the convolution kernel is h ×w, the calcula-
tions in the above table can be regarded as grouping convolu-
tion and regular convolution calculations and parameters. It
can be concluded that the use of grouped convolution can
significantly reduce the number of parameters and the calcu-
lation of the entire model.

3.3. Channel Shuffle. Because the input is a whole, the output
after convolution is also mapped to the whole of the input. In
the grouping convolution, the training of each grouping con-
volution is performed independently for each channel. This
is equivalent to dividing the overall input into many indepen-
dent parts for convolution. Therefore, the independent oper-
ation between each group will cause the information of each
group channel to flow. To strengthen the information
exchange between each packet, this article adds channel shuf-
fle operation on this basis.

As shown in Figure 5, cross scramble the grouped fea-
tures to form a new feature and input it into the next round
of convolution operations. This allows the input of the
grouping convolution to come from different groups and
allows the information between different independent groups
to circulate.

3.4. Improvement of Loss Function SoftMax. SqueezeNet uses
a conventional SoftMax classifier, and the SoftMax function
is a finite discrete probability distribution function. The Soft-
Max function, as shown in
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For probabilistic multiclassification problems, it is simple
and effective. However, the high similarity and features of
human facial pictures are not apparent, and the class spacing
of their features is often substantial. The intraclass distance is
likely to be larger than the interclass distance. This will result
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in a lower recognition rate under complex face pictures. The
Center loss function is shown in

LC =
1
2〠
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i=1
xi − cyi
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�
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�
�

2

2
: ð2Þ

The mixed loss function is shown in

L = Ls + γL: ð3Þ

In Equation (3), xi represents the features before the fully
connected layer, and cyi represents the center of the yi

branch. The difference of Center Loss is that it adds a center
to each class branch and, on this basis, increases the distance
between other class branches and the center. So it makes the
gap between classes smaller and the distance between classes
larger. These features are more useful for classifying some
complex images. Based on this, the SoftMax classification
layer of SqueezeNet is improved to become a joint classifica-
tion of SoftMax-Center Loss to reduce class spacing, which
makes it more useful to recognize complex and similar face
models.

3.5. NVMNet. The Fire Module improved based on the above
method is shown in Figure 6. This article is named the NVM
(New Visual Module). Based on this, the NVMNet (New
Visual Module Net) structure is established. Compared with
the previous Fire Module, the NVM is also composed of a
compression layer and an expansion layer. This paper
replaces the last 1 × 1 conventional convolution with a
grouped convolution to reach the model reduction. It
reduced the number of input channels by 1 × 1 grouping con-
volution in the compression layer before and added batch
normalization after the 1 × 1 convolution to speed up the
training process. Then, channel shuffle allows the data to cir-
culate the packet training information in different channels.

According to the hyperparameters of the previous mod-
ule, the grouping number g of the grouping convolution of
the Squeeze layer and the Expand layer, the number of con-
volution kernels h of the layer Squeeze, the number of convo-
lution kernels w of the convolution layer, and the number of
convolution kernels n of the expansion layer are set. Among
them, h =m, h < n, and w < n.

The dimensions and dimensions of the input and output
of the entire model are the same. This article refers to the
structure of the SqueezeNet model by linking the improved
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Figure 4: Regular convolution and grouped convolution.

Table 1: Comparison of parameters and calculations of traditional convolution and grouping convolution.

Parameters Calculations

Regular convolution C1 × C2 × 9 2 × C1 × h ×w ×H1 ×W1

Grouping convolution C1/gð Þ × C2/gð Þ × 9 × g 2 × C1/gð Þ × C2/gð Þ × h ×w ×H1 ×W1 × g

R 1 : 1/gð Þ 1 : 1/gð Þ

Input

Grouped 1

Feature

Grouped 2

Input

Channel Channel Channel

Figure 5: The principle of group convolution. (a) The channels are
grouped into 3 groups, and there is no communication between
different groups of feature maps. (b) Reconstructed feature maps.
(c) Channel shuffle after convolution
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NVM. And add a pooling layer and two NVM to the fabric.
Besides, add the SoftMax-Center Loss function at the end
of the structure. The new SoftMax-Center Loss function
maps the model’s output value to the [0, 1] interval during
training. But the overall output sum is still 1. It is the proba-
bility value of the classification result needed in this paper.
Table 2 shows the whole structure of NVM.

4. Improvement and Design Based on
SE-ResNet Module

4.1. Shortcut Connects and Bottleneck in ResNet. The results
and discussion may be presented separately, or in one com-
bined section, and may optionally be divided into headed
subsections.

It is not difficult to know from Figure 7 that shortcut con-
nect transfers the top-level information in the CNN to the
bottom layer of the network similar to a fast link, if we con-
sider a 50-layer CNN as a process in which 50 people send
notifications in sequence. In the transmission process of the
warning to the 50 people, inevitably, the expression of the
notice and the initial notice issued at the time of the 50th per-
son are inconsistent due to some reasons. Shortcut connect is
similar to a pager, and when it is passed from the first person
to the second person, the third person is notified through the
pager at the same time. This can effectively avoid the loss or
miscommunication of information. The notification process
from the first person to the third person is a complete resid-
ual connection module.

It is not difficult to understand why ResNet is superior to
other CNNs in terms of convergence speed and classification
accuracy. In each remaining module, shortcut connect makes
convolutional layer learning difficult. Secondly, it guarantees
efficient transfer of gradients.

Figure 8 is the bottleneck structure [15, 16]. As shown in
this figure, we can see that the entire structure is firstly
transformed from 256-dimensional input features to 64-
dimensional by 1 × 1 convolution. Then, the feature extrac-

tion of a 3 × 3 convolution kernel is performed. Finally, the
output dimension is restored to 256 dimensions through a
1 × 1 convolution kernel. The calculation of the entire opera-
tion parameter amount is analogous to the grouped convolu-
tion and depth separable convolution mentioned in the
previous research, and the parameter amount can be reduced
by 17 times.

4.2. Squeeze-and-Excitation Module. In the ILSVRC2017
computer vision competition, SeNet won the classification
championship [17]. Its core module is Squeeze-and-
Excitation module [18]. As shown in Figure 9, it first uses
global average pooling as the channel for the Squeeze opera-
tion for features. Then, a Bottleneck structure composed of
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Link
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Figure 6: Improved NVM.

Table 2: NVMNet structure table.

Layer name
Output size

(number of parameters)
h w n

Input 224 × 224 × 3
Convolution layer 111 × 111 × 64
Maximum pooling 55 × 55 × 64
NVM2 55 × 55 × 64 16 16 64

NVM3 55 × 55 × 64 16 16 64

Maximum pooling 3 27 × 27 × 128
NVM 27 × 27 × 256 32 32 128

NVM 27 × 27 × 256 32 32 128

Maximum pooling 5 13 × 13 × 256
NVM6 13 × 13 × 384 48 48 192

NVM7 13 × 13 × 384 48 48 192

NVM8 13 × 13 × 512 64 64 256

Maximum pooling 9 6 × 6 × 512
NVM11 6 × 6 × 512 64 64 256

NVM12 6 × 6 × 512 64 64 256

NVM13 6 × 6 × 512 64 64 256

Average pooling 1 × 1 × 512
Full connection Classification number

SoftMax-Center Loss Classification number

Weight layer

Weight layer

+

ReLU

ReLU

X

identity

X

F(x)+x

F(x)

Figure 7: Structure diagram of shortcut connect.
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two fully connected layers is used to remove the correlation
between channels. The feature dimension is first reduced,
and the dimension is increased to achieve the purpose of
reducing the parameter amount and the calculation amount.

4.3. Improvement of Squeeze-and-Excitation Module. The
results and discussion may be presented separately, or in
one combined section, and may optionally be divided into
headed subsections.

According to the previous article, we improved the struc-
ture in the global pooling layer based on the Squeeze-and-
Excitation module, grew the 1 × 1 convolution operation,
and substituted the new loss function.

According to the introduction of the CNN pooling layer,
the sliding window size of the general pooling layer is fixed.
Based on this, RMAC pooling introduces variable sliding
windows to pool features. As shown in Figure 10, we use
three sliding window sizes. Each sliding window is Max-
pooled for the feature map, and 20 local features can be
obtained. Max pooling the entire feature map will also get a
local feature. In total, we received 21 local features. Then,
normalize and add the 21 local features to capture our final
features. The advantage of this is that it can better extract
the information between each channel and extract more
features.

In each dataset, the system is easy to recognize some cat-
egories, but difficult for others. Besides, the number of these
samples is different, so we choose the CNN classifier suitable

for the moment. The number of samples in each category is
prone to uneven proportions.

When a class has a large number of classifiers, the classi-
fier can generally distinguish the class well. Conversely, when
the number of classes is small, the performance of the classi-
fier is not so good. In the conventional cross-entropy loss
function, there is no distinction between the categories with
a larger proportion of classifiers and the fewer categories.
This will cause a waste of network resources. Because the sys-
tem repeatedly learns those samples that have a good dis-
crimination effect without focusing on training those
samples with poor discrimination effects.

The focus loss function expression is shown in

FL ptð Þ = −at 1 − ptð Þγ log ptð Þ: ð4Þ

In Equation (4), ð1 − ptÞ is the modulation index. It is
used for the contribution rate of different sample categories
to the loss function. It is not difficult to see that when γ = 0,
the focus loss function becomes a conventional cross-
entropy loss function [14]. In Equation (4), pt is the proba-
bility that the model predicts the sample category at the time
of output. It divides the work according to the probability
that our CNN predicts the sample category as the weight.
Therefore, we use the focus loss function as a loss function
to improve the network structure to reduce the training time
of the improved model.

In the optimization of convolution, we use the idea of
grouping convolution to replace all 1 × 1 convolution
operations in the structure with the grouping convolution.
However, we have not added channel shuffle in this net-
work structure module. This is because the number of
channels in the first three convolutions of the SE module
itself is different. In the case of an inconsistent number
of channels, packet convolution comes with the function
of channel shuffle. And blindly adding channel rearrange-
ment itself will increase the memory space occupied by the
network structure and significantly reduce the network’s
applicability.

The improved Se module is shown in Figure 11. It can be
seen that when the input feature map of the previous layer is
passed to the module, it is divided into two branches in the
module. One branch borrowed the idea of shortcut to cascade
the input feature map and the output part. The other branch
borrows the idea of a bottleneck to compress and change the
feature channel.

When the input of the upper layer enters the RSE mod-
ule, it will be divided into two parts. One part uses the branch
of shortcut connects, which takes the input of the previous
layer directly as the output. Another branch of the bottleneck
part is used to reduce the dimensionality of the previous layer
input and then input convolution kernels of different sizes for
feature extraction. The RSE module uses a 1 × 1 convolution
kernel and a 3 × 3 convolution kernel. This can ensure the
diversity of receptive fields between different channels. The
features through different convolution kernels are linked.
The feature fusion of different receptive field feature channels
is performed through a 1 × 1 convolution kernel. Based on
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the RSE module, the modules are cascaded. The entire net-
work model is shown in Table 3.

5. Results and Analysis

The ORL face dataset [19] was created in 1994 by the Olivetti
Lab of the University of Cambridge, UK. There are 40 direc-
tories in the dataset. There are 10 facial expressions with dif-
ferent expressions stored in each directory. As shown in
Figure 12, the pictures are saved in PGM format. Each image
was acquired under different light and shadow, time, and
facial features (open eyes, closed eyes, smile, and not smile).
This experiment uses 300 of these pictures as the training
set and 100 as the test set. The final output category is 40
(training on an Intel Xeon processor, Radeon Pro 580x
graphics card, 32Gmemory MAC based on TensorFlow deep
learning framework).

5.1. Effect of Packet Convolution on Experimental Accuracy
and Network Quality. On the SqueezeNet, the SoftMax clas-
sifier at the end was also changed to a combination of
SoftMax-Center Loss for monitoring. In the ORL dataset, this
paper uses 4 groups on the number of NVM grouping
convolutions.

As shown in Table 4, it can be seen that in the face recog-
nition effect using the same classifier, the effect of grouping
convolution on the classification accuracy has decreased,
but it does not obviously mean that channel shuffle has com-
pleted the flow of information between channels. At the same
time, after the introduction of grouping convolution, the
parameter mount was effectively reduced by 33%. Reducing
the model quality under the condition that the recognition
effect has a limited impact indicates that the introduction of
packet convolution in SqueezeNet is an effective model light-
weighting strategy. However, because of the small number of
training samples, the experimental accuracy is not very
satisfactory.

5.2. Influence of Different Grouping Numbers on Structural
Quality and Accuracy. Also on the ORL face dataset, the
exponent of 2 can completely divide the dimension of the
image input, so 2, 4, 8, and 16 grouping convolutions are
used for training and testing, respectively. It can be seen from
Table 5 that in the process of increasing the number of
groups, the recognition accuracy is reduced by 1.2%, and
the amount of parameters is correspondingly reduced by
13%. Under the comprehensive comparison, the effect is best
when the number of current training sample groups is 4.

5.3. Realization and Effect Comparison of Lightweight Model.
This experiment trained 40 different epochs on three differ-
ent network structures on the ORL dataset. As shown in
Figure 13, the ResNet convergence speed of NVMNet and
residual networks using packet convolution and batch nor-
malization is faster than that of AlexNet using conventional
convolution. Convergence can be done in about 15 epochs.
The best classification accuracy on the ORL dataset is ResNet,
NVMNet, and AlexNet. At the same time, it can be seen in
the comparison of the parameter amount and calculation
amount in Table 6, because SqueezeNet refers to the deep

compression technology on the basis of the structure, so that
the parameter is reduced to 1.24 trillion, NVMNet continues
to reduce the number of parameters based on its original 4.6
trillion. In the case of using the same classifier at the same
time, the accuracy does not decrease. It shows that the chan-
nel shuffle after grouping convolution is more effective.

As shown in Table 6, through comparison with several
popular network structures, it can be seen that the AlexNet
and VGG models of the conventional convolution mode
have larger parameters than other lightweight models. This
is related to the many parameters of their fully connected
layer. The amount of ResNet parameters using the global
average pooling layer is moderate, but because of its deep net-
work structure, the amount of calculation is very large. The
advantage of NVMNet in terms of parameter comparison is
obvious. This greatly increases the application scenarios of
the network model. Save application storage memory and
computing costs. Model mobile portability is more excellent.

Compared with that of SqueezeNet, on the ORL dataset,
the classification accuracy of NVMNet is decreased by
0.7%. However, the parameter amount was reduced by
33%. Therefore, NVMNet has a certain value in lightweight
models.

5.4. Experimental Results and Data Analysis on the CIFAR-10
Dataset. The CIFAR-10 [20] dataset contains 60,000 color
images with a resolution of 32 × 32. It contains a total of 10
categories: airplane, car, bird, cat, deer, dog, frog, horse, boat,
and truck. There are 6000 pictures in each category. There
are 10,000 test set pictures and 50,000 training set pictures.
As shown in Figure 14.

We use the CIFAR-10 classic dataset for efficiency com-
parison and parameter comparison of our CNN model
(training on an Intel Xeon processor, Radeon Pro 580x
graphics card, 32GmemoryMAC based on TensorFlow deep
learning framework). According to our hardware conditions
and the requirements of the network structure, the network

Table 3: Parameters of each level of the R-SeNet network structure.

Layer
Input size
(number of
parameters)

Kernel size
(number of
parameters)

Stride

Input size 224 × 224 N/A N/A

Convolution layer 1 112 × 112 7 × 7 2

Pooling layer 1 57 × 57 3 × 3 2

RSE.1 57 × 57 3 × 3 1

RSE.2 57 × 57 3 × 3 1

RSE.3 29 × 29 3 × 3 2

RSE.4 29 × 29 3 × 3 1

RSE.5 15 × 15 3 × 3 2

RSE.6 15 × 15 3 × 3 1

RSE.7 8 × 8 3 × 3 2

RSE.8 8 × 8 3 × 3 1

Pooling layer 1 × 1 N/A Global
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parameter learning rate is 0.01, the optimization strategy of
the CNN is stochastic gradient descent (SGD), the learning
rate change rate is 0.1, and the maximum number of itera-
tions is 400000.

As shown in Table 7, it is obvious that without any other
model-specific compression method, the R-SeNet size is
9.6MB. Compared with the ResNet model, the weight of
the network model is nearly 90MB smaller, but the classifica-
tion accuracy is almost the same, only 1.8% lower. If the
model is further pruned by parameters or channel depth,
the size of the network model can be further reduced to about
3MB while ensuring accuracy.

We compare the convergence of R-SeNet with other
popular lightweight CNN networks, such as MobileNet,
ShuffleNet, and SqueezeNet for network convergence. The
comparative convergence curve is shown in Figure 15. From
the convergence curve, ResNet has faster convergence speed
and less fluctuation than other CNNs in the initial training.
The converged waveform is relatively stable. From the

1. bmp 2. bmp 3. bmp 4. bmp

7. bmp 8. bmp 9. bmp 10. bmp

Figure 12: ORL dataset.

Table 4: Improved network quality nuclear accuracy comparison.

Structure
Parameter

quantity (M)

Accuracy
Batch

normalization
No-batch

normalization

SqueezeNet 4.81 N/A 0.7125± 0.0004
NVM 3.27 0.7082± 0.0002 0.7016± 0.0013

Table 5: Influence of packet convolution of different groups on
quality kernel accuracy.

Number of packets Accuracy Parameter quantity (M)

2 0:7142 ± 0:0021 3.31

4 0:7091 ± 0:0006 3.12

8 0:7069 ± 0:0009 3.01

6 0:7064 ± 0:0014 2.88

0

0.25

0.5

0.75

1

0 5 10 15 20 25 30 35 40

AlexNet
ResNet
NvmNet

Figure 13: The training process of three different network
structures on the ORL dataset.

Table 6: Comparison of different network structures.

Structure Parameter quantity (M) Amount of computation

SqueezeNet 1.24 0.70

AlexNet 61.18 0.73

ResNet 11.69 3.49

ShuffleNet 1.32 0.32

Vgg-16 138 72

NVMNet 3.21 0.3

Airplane
Automobile
Bird
Cat
Deer
Dog
Frog
Horse

Ship
Truck

Figure 14: Overview of 10 categories and their respective pictures
on the CIFAR-10 dataset.
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perspective of accuracy, the accuracy of the four network
models is almost equal: SqueezeNet, ResNet, ShuffleNet,
and MobileNet. Among them, ShuffleNet is still unstable
after convergence, and the network fluctuates greatly, which
may be related to the parameter optimization during CNN
group convolution. Through verification, it can be seen that
the improved ResNet has a certain improvement in conver-
gence speed and model weight with a precision of only 1.3%.

Based on the comparison of different lightweight CNN
structures, we compare the improved parts of ResNet sepa-
rately to observe the impact of each method on the perfor-
mance of the network structure. As shown in Table 8, it can
be seen that after the RMAC pooling layer is improved, the
network extracts more feature information, so the perfor-
mance of the network structure is slightly improved by
0.8%. The change of the loss function has the greatest impact
on structural performance, which has increased by 2.5%
before and after the improvement. This may be due to the
redundancy of the network during the calculation. The sys-
tem repeatedly calculates many classifications that are better
distinguished without targeted training. Therefore, with the
introduction of the focus loss function, the entire CNN can
dynamically allocate training resources along with the output
probability value, allowing the system to learn more about
those indistinguishable classes. After the introduction of
packet convolution, network performance decreased slightly
by 1.1%. It may be related to the information circulation
between the packet convolution channels.

6. Conclusions

Berkeley and Stanford proposed SqueezeNet to reduce
parameter dimensionality with the AlexNet and VGGNet

models. The 1 ∗ 1 convolution kernel has been used to reduce
the number of input channels of the network, thereby reduc-
ing the number of network parameters. It compresses the
CNN, from hundreds of megabytes in original size, to 4.5
megabytes without affecting the accuracy of image classifica-
tion.When deep compression network compression technol-
ogy mentioned above is used, the amount of network
parameters can be further reduced to about 0.5 trillion. The
core of the model is a module called Fire Module. This paper
introduces packet convolution to optimize the Fire Module.
In order to solve the problem that the channel information
does not circulate after the group convolution, a channel
shuffle operation is added between the channels, and the clas-
sifier is optimized and improved according to the complexity
of the face features.

The BCI system based on the convolutional neural net-
work includes functional modules including visual triggering
device, EEG acquisition device, EEG preprocessing module,
classifier based on convolutional neural network, and classi-
fication result display. There are successive dependencies
among various modules. The system will first receive the
EEG signal data from the EEG collector and then filter and
normalize it through EEG signal preprocessing and then
use the data as the input of the EEG signal classifier. After
these EEG data are recognized and classified by the classifier,
the recognition results are displayed in the result output
module of this system. Based on the predecessors, this paper
makes lightweight improvements based on the Fire Module
of the SqueezeNet convolutional network structure. This
paper introduces batch normalization and the SoftMax-
Center Loss classifier to improve the recognition accuracy
and efficiency of the network structure under the face. In
the case of refining the overall structure of the network, the
classification effect on the ORL dataset has also improved.
However, because the ORL dataset has relatively few training
samples, data samples can be added for further verification in
future experiments. The lightweight model structure has

Table 7: Weight and resolution of CNN model on CIFAR-10 classic data.

CNN model
Network model
weight (MB)

Network model compression
ratio (%)

Network model
accuracy (%)

Network model error
distribution (%)

ResNet-50 98.1 N/A 95.1 N/A

ResNet-50@2.5 16.5 16.1% 93.1 -2.0

ResNet-50@.5 7.2 7.2% 93.1 -2.0

R-SeNet 9.6 10.1% 93.3 -1.8

0
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0.4
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0.8

1

1 5 9 13 17 21 25 29 33 37 41

ResNet
ShuffleNet

SqueezeNet
MobileNet

Figure 15: Comparison of training convergence of SqueezeNet,
ResNet, ShuffleNet, and MobileNet.

Table 8: The influence of each compression thought segmentation
on the accuracy of CNN.

R-SeNet

Grouped
convolution

√ √ √

RMAC pooling √ √
Focus loss function √
CNN model
accuracy (%)

88:1 ± 0:3 87:0 ± 0:5 87:8 ± 0:1 90:3 ± 0:1
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functional application scenarios. In the future, we plan to
explore the feasibility of vision fields other than human faces,
including applications in the BCI and BMI fields.
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If necessary, you can contact the author of this article for
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