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Abstract: Mucociliary clearance is an important innate host defense of the mammalian respiratory
system, as it traps foreign substances, including pollutants, pathogens, and allergens, and transports
them out of the airway. The underlying mechanism of the actuation and coordination of cilia, the
interplay between the cilia and mucus, and the formation of the metachronal wave have been explored
extensively both experimentally and mathematically. In this mini-review, we provide a survey
of the mathematical models of mucociliary clearance, from the motion of one single cilium to the
emergence of the metachronal wave in a group of them, from the fundamental theoretical study to
the state-of-the-art three-dimensional simulations. The mechanism of cilium actuation is discussed,
together with the mathematical simplification and the implications or caveats of the results.
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1. Introduction

Mucociliary clearance is the first line of defense of the mammalian respiratory system.
The mucociliary system consists of two major parts: mucus and cilia. Mucus is a thin fluid layer that
coats the lung airway; cilia are hair-like organelles protruding from the cell surface and bathed in the
mucus. With breathing, the mammalian respiratory tract is constantly in contact with particles in the
air that could contain potentially infectious microorganisms or toxic substances. Foreign particles that
land in the lung airway through airflow will be trapped in the mucous layer. The cyclic beatings of the
cilia drive a unidirectional flow of mucus, which eventually move these particles out of the airway.

The past 60 years have seen many advances in the biological and physiological aspects of the
mucociliary system, ranging from the molecular and cellular level to the tissue level [1–4]. Inspired by
the biological discoveries, many mathematical models have been developed to explore the underlying
mechanisms of the system (e.g., [5,6]). Questions that these mathematical models have attempted to
address include the following: What is the force generation mechanism of the cilium, and how does
it lead to the observed beating pattern? How are the cilia beating patterns coordinated to achieve
the metachronal wave? Under what conditions is the metachronal wave stable? How efficient is
the mucociliary transport, and how does it depend on the cilia density, beating pattern and other
parameters? The complexity of the mathematical models has increased over the years, with the help of
the advance in computer technology, as well as the availability of biological data and insights, such
as the molecular details of an individual cilium [7,8], the multilayer composition of the mucus [9,10],
the signaling between the ciliated cells and mucus [11], and the signaling between different epithelial
cells [12,13].

This mini-review aims to highlight a few key mathematical models of the mucociliary system
which are representatives of different levels of complexity. Initially, the mathematical models considered
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only a single cilium, and the formulations were highly simplified. Later, more biological factors
were included, together with an increasing demand for computing power to solve the more complex
nonlinear equations. We will discuss the theoretical hypotheses that stem from the experimental
observations and how the mathematical models assist in examining these hypotheses.

The paper is organized as follows. Section 1 provides a general description of the biology and
physiology of the mucociliary system. Section 2 presents a few key highlights of mathematical
modeling, from hypotheses to numerical simulations, with increasing complexity. Section 3 focuses
on modeling the mechanism of force generation. Section 4 summaries the paper and discusses a few
possible future directions for modeling the mucociliary system.

2. Cilia and Mucus

Mathematical depictions of the mucociliary clearance are inspired by the structures and
physiological properties of the cilia and the airway surface fluid. The human airway epithelium is
composed of several phenotypes, including goblet cells that produce mucus and ciliated cells that
extend cilia into the periciliary layer and mucus above (Figure 1). The mucus is in contact with the air
and traps external particles inhaled into the airway. Cilia and mucus are the major components of the
clearance system. The structural and mechanical properties of the cilia and the rheology of the mucus
and periciliary layer are crucial in the mathematical model designs.

Cells 2019, 8, x FOR PEER REVIEW 2 of 15 

 

This mini-review aims to highlight a few key mathematical models of the mucociliary system 

which are representatives of different levels of complexity. Initially, the mathematical models 

considered only a single cilium, and the formulations were highly simplified. Later, more biological 

factors were included, together with an increasing demand for computing power to solve the more 

complex nonlinear equations. We will discuss the theoretical hypotheses that stem from the 

experimental observations and how the mathematical models assist in examining these hypotheses. 

The paper is organized as follows. Section 1 provides a general description of the biology and 

physiology of the mucociliary system. Section 2 presents a few key highlights of mathematical 

modeling, from hypotheses to numerical simulations, with increasing complexity. Section 3 focuses 

on modeling the mechanism of force generation. Section 4 summaries the paper and discusses a few 

possible future directions for modeling the mucociliary system. 

2. Cilia and Mucus 

Mathematical depictions of the mucociliary clearance are inspired by the structures and 

physiological properties of the cilia and the airway surface fluid. The human airway epithelium is 

composed of several phenotypes, including goblet cells that produce mucus and ciliated cells that 

extend cilia into the periciliary layer and mucus above (Figure 1). The mucus is in contact with the 

air and traps external particles inhaled into the airway. Cilia and mucus are the major components of 

the clearance system. The structural and mechanical properties of the cilia and the rheology of the 

mucus and periciliary layer are crucial in the mathematical model designs. 

 

Figure 1. Schematic plots of the mucociliary system in the lung: (a) a human lung structure, (b) 

enlargement near the lung surface, from Blake [14] with permission. 

2.1. Cilia and Flagella Structure 

Cilia are organelles that are widely seen in eukaryotes such as sea urchins [15] and green alga 

Chlamydomonas reinhardtii [16], where they play a vital role in sensing, food delivery, and locomotion 

[17,18]. Because of the remarkable similarities between cilia and flagella in both structure and motion, 

similar mathematical techniques have been applied to them. Therefore, we will include flagella in 

our discussion as well. Cilia and flagella are also present in various organisms and tissues in the 

(a) 

(b) 

Figure 1. Schematic plots of the mucociliary system in the lung: (a) a human lung structure,
(b) enlargement near the lung surface, from Blake [14] with permission.

2.1. Cilia and Flagella Structure

Cilia are organelles that are widely seen in eukaryotes such as sea urchins [15] and green
alga Chlamydomonas reinhardtii [16], where they play a vital role in sensing, food delivery, and
locomotion [17,18]. Because of the remarkable similarities between cilia and flagella in both structure
and motion, similar mathematical techniques have been applied to them. Therefore, we will include
flagella in our discussion as well. Cilia and flagella are also present in various organisms and tissues in
the mammalian body. For example, cilia are found in the pancreas [19], kidney [20], and the brain [17].
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The male sperm has a long tail, and it is a flagellum [21]. Cilia in the female oviduct assist in the
transport of the ovum [22]. Cilia in the animal respiratory system stop infectious pathogenic organisms
and help move them out of the lung airway [23]. Cilia can be motile or nonmotile. The nonmotile cilia,
also called primary cilia [24,25], are key regulators of signaling pathways during development and in
tissue homeostasis [26,27]. In this mini-review, we focus on the motile cilia unless otherwise stated.

As the scanning electron micrographs of cilia (Figure 2a) and flagella (Figure 2b) show, both
the cilium and flagellum are long and thin. The cilia are generally shorter than the flagella and they
appear in groups, while the flagella usually appear in small numbers [28]. The motions of cilia and
flagella are slightly different. The cilium is fixed at the base and sweeps back and forth, as indicated
in Figure 2c; a group of cilia beating together would form a metachronal wave. The beating of a
cilium consists of two strokes, effective and recovery; the pattern is asymmetric and periodic [29,30].
Empirical observations suggest that during the effective stroke, the cilium is nearly stiff, upright,
and wipes fast from one side to the other; during the recovery stroke, the cilium appears soft, bends
down towards the cell surface, and moves back slowly. The method by which the stiffness of the
cilium is modulated remains a question. Models considering the internal cilium structure, the doublet
mechanical properties, and cilium–fluid coupling (Sections 2.2 and 3) offer some insights into possible
explanations. Conversely, the base head of a flagellum is not fixed, from which a curly wave initiates
and propagates to the tip (Figure 2d). This undulating wave drives the flagellum head forward, which
has been quite well modeled.
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Figure 2. (a) Cilia in the rabbit tracheal, from Sanderson and Sleight [31] with permission. (b) Flagella
of a normal spermatozoon, from Oliveira et al. [32] with permission. (c) The beating pattern of a cilium
can be separated into an effective stroke (left arrows) and a recovery stroke (right arrows). (d) The
beating pattern of a flagellum initiates from the base and propagates to the tip as a curly wave.

Table 1 lists the properties of cilia in human and rabbit. Detailed parameters for flagella can be
found in Sleigh [33].
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Table 1. Parameters of cilia that are important for mathematical modeling. Courtesy of Xu and
Jiang [34].

Parameter Values References

Cilium length 5–7 µm Sanderson & Sleigh [31]
Cilium density 6–8 µm−2 Sleigh et al. [23]

Beating frequency 13–29 Hz Sanderson & Sleigh [31]
14 Hz Low et al. [35]

15.6 Hz Marino & Aiello [36]
11–1-5 Hz (human nasal cilia without mucus) Chilvers & Challaghan [37]

Tracheal mucus velocity 5.5 mm/min−1 Foster et al. [38]
6.7–11.4mm/min−1 Friedman et al. [39]

The abilities of the cilia to propel the surrounding fluid flow and the flagella to push the base head
forward are closely related to their internal structures. The axoneme is the central strand of the cilium or
flagellum, and it is composed of an array of microtubules arranged in a ring with ‘9+2′ structure–nine
outer doublet microtubules and two central microtubules (Figure 3). These microtubules, together
with dynein arms, inter-doublet links, and sub-fibers support the typical form of a cilium or flagellum.
The axoneme is crucial to the movement of the cilia and flagella, such as the initiation of motion,
regulation, and behavioral responses [4,23,31,40–43]. Impaired ciliary motion typifies a few human
diseases [44–46]. For instance, the impaired nonmotile primary cilia would cause polycystic kidney
disease [47]; the disorder of the cilia causes primary ciliary dyskinesia [48], resulting in impaired
transport of the mucociliary clearance.
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Figure 3. Internal structure of a motile cilium. (a) A transmission electron microscopic image of
an axoneme, with permission from Dirksen & Satir [49]. (b) A schematic drawing of the “9+2”
axoneme illustrating 9 microtubule doublets connected to the central two microtubules through radial
spokes. Also shown are the nexin links connecting the doublets and the dynein motor arms expending
from doublets.

2.2. Mucus and Periciliary Layer

In the mucociliary clearance system, the cilia are bathed in a fluid that coats the lung airway
epithelium (Figure 1b). This fluid consists of two layers: a periciliary layer, the height of which is a little
less than a typical cilium, and a mucous layer [50]. During the effective stroke, the stiff and straight
cilia penetrate the mucous layer, propelling the mucus in a certain direction; during the recovery stroke,
the bending cilia immerse totally in the periciliary layer, reducing the reverse propulsion.
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The mucus is a complex mixture, consisting of 95% water and 5% mucins secreted from the goblet
cells located between patches of ciliated cells [51,52]. The mucins of a healthy young male consist of
73% carbohydrate proteins [53], which are long, cross-link polymer chains and are responsible for the
specific rheological property of the mucus. The mucus behaves as viscoelastic material [54]; in other
words, the deformation of the mucus depends not only on the external force but also on the rate of the
force. The periciliary layer, on the other hand, consists of mostly water and lacks the carbohydrate
chains; therefore, it is often modeled as a Newtonian fluid. The air layer above the mucus is rarely
considered [3,31].

In conventional models, the mucus is assumed to be a uniform blanket on top of the periciliary
layer, and the periciliary layer is passively transported at the same rate as the mucus [22,45]. More
recent experiments [55] suggested a novel idea that the periciliary layer behaves like a brush that
promotes the movement of the mucus. Depletion of the mucus or periciliary layer leads to dysfunctional
clearance and is a cause of diseases such as cystic fibrosis [56], asthma [31,57], and chronic obstructive
pulmonary disease [58].

3. Phylogeny of Mathematical Models of Mucociliary System

We describe the evolution of the mathematical modeling of the mucociliary system using a few
key models. These models usually have three major compartments: the motile body (cilia), the fluid
flow (mucus and periciliary layers), and the bottom surface (epithelium). The techniques used in cilia
motion can be applied to the flagella in general. Models for the motile body (cilium, flagellum) fall into
three key categories: the over-simplified shape (rod/cylinder), a line of singular force elements (slender
body theory, stokeslet), and an internal complex spring-network (Hook’s law). As with the order
of these three categories, the model becomes more complex as more details of the cilium/flagellum
biological structure are included. For fluid flow, the mucus is usually considered as a Newtonian or a
viscoelastic network; the periciliary layer is either not included or modeled as Newtonian. The bottom
surface is usually assumed to be fixed and no-slip or to be a chain of elastic springs that is deformable.

3.1. G1: Analytic Mathematical Formulation for Cilium/Flagellum Morphology and Motion

The early work on modeling the cilia and flagella, which we term G1 for the first generation,
focused on capturing the wavy motions and tried to elucidate the mechanism of the locomotion.
The axonemal structure and dynein motors were not considered in these models. Gray [59] was the
first, to our knowledge, to study the undulatory locomotion in the motile body of the polychaete
worm Nereis diversicolor. Later, Gray and Hancock [60,61] used the mathematical sinusoidal wave to
describe the motion of the sea-urchin spermatozoa. Brokaw [62] further examined the bending wave
along the flagellum body obtained for the spermatozoa of a sea urchin, a tunicate, and an annelid.
The author stated that although the bending wave looked similar to the sinusoidal wave, it should
be better depicted as a combination of circular arcs and straight lines. The author also observed that
the bending wave was persistent in the flagellum’s propagation, and there might be an ‘on-or-off’
activation generator in the body elements.

Based on these observations, Brokaw proposed two bending mechanisms ([63], Figure 4a). The first
one suggested that the bending was caused by the contraction of the sides of a flagellum [64]. In this case,
the body-propagating wave and the local bending wave were in phase. The second one considered that
the bending was induced by the shear of the internal doublets [65]. In this case, the body propagating
wave and the local shear wave were in different phases. Satir [4] and Horridge [51] supported the
shear mechanism in their study of the cilium bending waves. In all these models, the influence of the
fluid flow on the cilium/flagellum was not considered.



Cells 2019, 8, 736 6 of 15
Cells 2019, 8, x FOR PEER REVIEW 6 of 15 

 

 

Figure 4. Illustration of (a) the curvature and shear waves approximating the flagellum undulating 

motion, with permission from Brokaw [63], (b) the tangential and normal forces (resistance forces) 

along the flagellum motile body, with permission from Gray [66]. 

3.2. G2: Computer-Assisted Modeling for Mechanisms of Wave Propagation 

Around the same time as the analytic mathematical models, another line of study incorporated 

the effects of fluid flow in modeling the motile body. This approach, called the resistance theory, is a 

predecessor of the slender body theory. The resistance theory assumes an over-simplified shape of 

the motile body; e.g., a rod or a cylinder. The force exerted on the cilium or flagellum is proportional 

to the fluid flow velocity in the vicinity, and the force is approximated by a local resistance coefficient. 

Although the resistance theory ignores hydrodynamics in the problem as no feedback from the fluid 

flow to the motile body is considered, it has shed light on the motion of cilia and flagella with the 

presence of fluid flow. 

Taylor [67] was a pioneer in analyzing the swimming of microscopic organisms under the 

influence of the fluid flow. He modeled the organism body as a long thin sheet. The temporal motion 

of the sheet was prescribed, and the resistance of the sheet due to the surrounding fluid was included. 

The swimming sheet can achieve a net translating motion. Gray [66] partitioned the flagellum into a 

chain of rigid short cylinders. The force on each cylinder segment was tangent to its local velocity, 

such that the resistance was the friction force (Figure 4b). The flagellum undulated; thus, the tangent 

friction force would result in a forward motion of the flagellum head. Barton & Raynor [68] modeled 

the cilium as a rigid rod, which was straight during the effective stroke and shortened automatically 

during the recovery stroke. The resistance coefficient was used to approximate the impacts from 

mucous flow to the cilia. 

Lighthill [69] used the fact that the diameter of the flagellum/cilium was much smaller than their 

lengths, considered the motile body as a thin line, and introduced the slender body theory. The 

assumption of the slender body allows the modeling of the swimming body as a line of singular 

forces, which is advantageous in mathematical analysis. A ramification of this approach is the 

popular stokeslet model, which we will discuss later. Blake [70,71] improved the slender body theory 

by introducing an ‘envelope’ such that the beating cilia were replaced by a wavy ‘patch’ with the 

(a) 

(b) 

    

    

    

    

    

Figure 4. Illustration of (a) the curvature and shear waves approximating the flagellum undulating
motion, with permission from Brokaw [63], (b) the tangential and normal forces (resistance forces)
along the flagellum motile body, with permission from Gray [66].

3.2. G2: Computer-Assisted Modeling for Mechanisms of Wave Propagation

Around the same time as the analytic mathematical models, another line of study incorporated
the effects of fluid flow in modeling the motile body. This approach, called the resistance theory, is a
predecessor of the slender body theory. The resistance theory assumes an over-simplified shape of the
motile body; e.g., a rod or a cylinder. The force exerted on the cilium or flagellum is proportional to
the fluid flow velocity in the vicinity, and the force is approximated by a local resistance coefficient.
Although the resistance theory ignores hydrodynamics in the problem as no feedback from the fluid
flow to the motile body is considered, it has shed light on the motion of cilia and flagella with the
presence of fluid flow.

Taylor [67] was a pioneer in analyzing the swimming of microscopic organisms under the influence
of the fluid flow. He modeled the organism body as a long thin sheet. The temporal motion of the
sheet was prescribed, and the resistance of the sheet due to the surrounding fluid was included.
The swimming sheet can achieve a net translating motion. Gray [66] partitioned the flagellum into a
chain of rigid short cylinders. The force on each cylinder segment was tangent to its local velocity, such
that the resistance was the friction force (Figure 4b). The flagellum undulated; thus, the tangent friction
force would result in a forward motion of the flagellum head. Barton & Raynor [68] modeled the cilium
as a rigid rod, which was straight during the effective stroke and shortened automatically during the
recovery stroke. The resistance coefficient was used to approximate the impacts from mucous flow to
the cilia.

Lighthill [69] used the fact that the diameter of the flagellum/cilium was much smaller than
their lengths, considered the motile body as a thin line, and introduced the slender body theory.
The assumption of the slender body allows the modeling of the swimming body as a line of singular
forces, which is advantageous in mathematical analysis. A ramification of this approach is the popular
stokeslet model, which we will discuss later. Blake [70,71] improved the slender body theory by
introducing an ‘envelope’ such that the beating cilia were replaced by a wavy ‘patch’ with the resistance
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force spreading over it. This method has been shown to mimic the symplectic metachronal cilia
wave patterns.

Computer-assisted modeling also enabled solutions for the optimization problems. Osterman
& Vilfan [72] tried to determine the optimal beating pattern based on energetic efficiency. They
proposed a criterion that contained a fast and effective stroke and a slow sweeping recovery stroke.
This optimization problem was then solved using the computer for both one single cilium and for a
carpet of cilia. They found that the metachronal wave was crucial to achieving the highest efficiency.
Eloy & Lauga [73] followed the same line of study with the goal of determining the kinematics of the
most efficient cilium. In the study, the cilium was depicted as an inextensible elastic filament attached
to a wall. An analytic formulation of the optimal function in the mechanical power was proposed
and numerically solved. It was found that the cilium bending rigidity was essential to achieve the
optimal kinematics.

Computer-assisted modeling can solve highly nonlinear analytic equations and is used as a
tool to test and constrain biological hypotheses. These analytic equations are still subject to serious
simplifications. For example, the full hydrodynamics were not considered, the interaction between
cilia and the fluid flow was oversimplified, and the total number of cilia in the model is small, which
makes it hard to explore the metachronal waves of cilia groups.

3.3. G3: Hydrodynamic Coupling between Cilium and Fluids

This generation of models takes the full hydrodynamics into account and is distinct from the
computer-assisted models in G2. The models include intrinsic feedback among the motile body and
the fluid flow, and thus better approximate the real biological environment. In addition, the usage of
supercomputers has enabled simulations of hundreds of cilia with reasonable computational time.
These models vary, based on their respective focuses of the mucociliary system, in levels of detail
in representing the structure of the motile body, fluid flow rheology, and numerical techniques to
handle hydrodynamics.

In hydrodynamics, one key parameter that discriminates different fluid flow characteristics is the
Reynolds number, Re = ρLU/µ, where ρ, L, and U are the fluid density, characteristic size, and the
characteristic flow velocity, respectively, and µ is the fluid viscosity. Re measures the ratio of inertial
forces to viscous forces. As a frame of reference, the typical Re value for a swimming bacterium (e.g.,
E. coli in water) is in the order of 10−4, the smallest fish is about 1, a human swimmer is 104, and a blue
whale is 4× 108. The value of Re in the mammalian respiratory tract is around 0.01 [34], suggesting a
dominating viscous force in the mucociliary system. Mathematically, the Navier–Stokes equations [74]
make up the standard model that governs the fluid flow dynamics. Neglecting the inertia effect, the
Navier–Stokes equations lead to Stokes equations. The stokeslet method [75] is often used to solve the
Stokes equations.

3.3.1. Viscous Force Alone (Re = 0)

If we neglect the small inertia effect in the mucociliary system, the Reynolds number becomes
zero, and the nonlinear Navier–Stokes equations are then reduced to Stokes equations [74]. This
approximation yields a great convenience in computation, since the fluid flow can be represented as a
superposition of stokeslets [75]. Different geometries or other constraints in the practical applications,
which are difficult to solve in Navier–Stokes equations, now become more amenable using various
arrangements of the stokeslets.

The stokeslet method stems from the slender body theory, in which a set of singular force elements
is postulated along the axonemal central line. Cortez [76] introduced the method of regularized
stokeslets to remove the singularity. The method of regularized stokeslets is widely applied to simulate
swimming micro-organelles; e.g., the helical motion of swimming [77] (Figure 5a) and bundling [78] of
bacterial flagella (Figure 5b).
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from Cortez et al. [77], and (b) bundling of flagella, with permission from Flores et al. [78].

Recently, Guo et al. [79] used the stokeslet method to investigate the existence of multiple modes
of synchronization of the elastic micro-filaments. In their study, each filament was represented as an
array of regularized stokeslets, which were positioned in such a way that the filament was inextensible
and the bottom surface satisfied the no-slip boundary condition. The strength of the stokeslets can be
considered as the internal bending force and tension. Such a setup can be viewed as an extension of
the geometric clutch model proposed in Lindemann [80,81]. The simulations of two filaments placed
side-by-side showed the bistability of the in-phase and anti-phase synchronization, indicating that
the observed transition between different synchronization modes can have a dynamic explanation.
The same method is also adopted by Ling et al. [82] to explore various beating patterns of one
single microfilament.

Linearized Navier–Stokes equations lead to Oseen’s equation [74], and the oseenlet is its
fundamental solution of the Oseen equation in free space. Efforts have been devoted to using
the oseenlet to model translating objects in a viscous flow [83,84], and this approach could be a potential
alternative to the stokeslet method for solving the swimming body motions in a slightly viscous
fluid flow.

3.3.2. Viscous and Inertial Forces (Re > 0)

At Re > 0, the full Navier–Stokes equations are considered. Mitran [85] introduced a model that
simulated rows of pulmonary cilia in 3D. The “9+2” internal microtubule structure of an individual
cilium was modeled as a finite-element beam that was curved and able to sustain a large deflection
(Figure 6a). Moreover, the cilium membrane was considered to be elastic and subject to fluid stresses
and internal forces transmitted from the microtubule skeleton. A two-layer fluid flow was considered:
the periciliary layer was modeled using the Navier–Stokes equations and solved using the finite volume
method [86], while the mucous layer was treated as a viscoelastic fluid. The model has simulated as
many as 256 cilia and provided a starting example to look into the metachronal waves of cilia groups.

Yang, Dillon, & Fauci [87] explored the relationship between the cilia’s internal force generation
and the resulting synchrony of cilia beating. In their study, the cilium axonemal structure was replaced
by a spring network (Figure 6b). The microtubule, dynein, and nexin links were all modeled by the
cross-linked springs. The internal contraction and elongation of the springs indirectly controlled
the effective and recovery strokes. The mucus was assumed to follow the Navier–Stokes equation.
The couplings among the cilia, mucus, and the cell surface were realized using the immersed boundary
method [89]. The simulations displayed the sweeping motion of two cilia, as well as the formation of
their synchrony and metachrony due to hydrodynamic couplings.
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Figure 6. (a) The cilium modeled as a finite element beam and the nearby body-fitted grid, from
Mitran [85] with permission; (b) the cilium modeled as an elastic spring network, from Yang, Dillon and
Fauci [87] with permission; (c) streamlines in the fluid flow induced by five cilia (rods) at a sequence of
times, from Xu and Jiang [34] with permission; (d) snapshot of an large array of beating cilia, from
Elgeti and Gompper [88] with permission.

Xu and Jiang [34] aimed to identify key factors in the cilia motion that influence the ability of
fluid transport in mucociliary clearance. In their simulations, the rod-propel-fluid model (Figure 6c)
treated cilia as stiff rods that followed prescribed motions. This approach made it possible to separate
and examine the effects of cilia density, beating frequency, and the metachronal wavelength on fluid
transport. The mucous flow was governed by the Navier–Stokes equations. The cilia–fluid interactions
were also handled using the immersed boundary method. The key finding of this study was that the
maximum cilium height difference between strokes has the strongest effect on the net transport of fluid.

Elgeti and Gompper [88] studied the emergence of metachronal waves and introduced a mesoscopic
model of 2D cilia arrays in a 3D fluid medium (Figure 6d). They focused on the stability of
the metachronal waves and the resulting transport efficiency. In their model, each cilium was a
semi-flexible rod that was allowed to beat independently. The cilium was activated by a bending force,
determined by the neighboring fluid velocity. One highlight of this model was the inclusion of various
kinds of biological noises; e.g., thermal fluctuation and molecular motors [90,91]. In their simulations,
the metachronal wave has a demonstrated robustness to the biological noises.

4. Models of Force Generation Mechanisms

As we try to understand the single or collective beating patterns of cilia and flagella and how
they change upon external stimuli, one central question is as follows: what is the mechanism of the
force generation in cilium and flagellum? Three primary force generation mechanisms have been
proposed for cilium and flagella: curvature-driven, internal timing, and the geometric clutch. These
mechanisms are the core part of the mathematical formulations as they provide explicit ways to model
motile body actuation.
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The curvature-driven mechanism assumes that the entire flagellum or cilium acts as an elastic
filament, possessing resistance to bending and elongation. Machin [64,92] was one of these pioneers
who used mathematical formulas to study the control mechanism of the flagellum. The author
hypothesized that the central line of the flagellum was composed of a series of contractile elements
that were sensitive to the length and curvature changes of the flagellum. The bending at the tip of
the flagellum could initiate a propagating wave. Changes in length and curvature yielded a linear
tension, which delays feedback. Brokaw [65] supported the curvature-driven bending mechanism and
extended the analysis by including the mechanism of microtubules sliding in the flagellum. Gueron
and coworkers [93,94] applied this mechanism to a multi-cilia simulation. The authors first obtained
data from one beating cilium and then incorporated the data into a two-dimensional dynamical system.
The resulted simulation was able to capture essential features of the motion such as the metachronal
pattern of cilia.

The internal-timing mechanism was suggested by Brokaw [95] to approximate the effects of the
fluid viscosity on the behavior of sperm flagella. This mechanism says that there is an internal threshold
that controls the switch point of dynein arms in the cilium and flagellum beating. This threshold is not
necessarily mechanical; it could also be chemical, e.g., ATP concentration. Hill et al. [96] examined this
mechanism by measuring the response in individual human airway cilia to the transmitted force. They
observed that the axoneme kept switching beat direction with the same timing regardless of whether
there was an external force or not. This observation rejected the assumption of a curvature-driven
mechanism, at least in the case of cilia beating, and suggested that an internal timer may exist to sustain
the fixed period.

The last mechanism is the geometric clutch, proposed by Lindemann [81,97,98]. The dynein arms
in the axoneme generate force based on the relative displacements among microtubules. The mechanism
assumed that the ‘9+2′ microtubule arrangement acted as a ‘clutch’ to turn the dynein motors on and
off. In this model, bending and sliding patterns of the flagellum or cilium are consequences of dynein
motors, providing a molecular regulation of the motile body.

Implementing the geometric clutch mechanism to compute the mucociliary system is not trivial
as it requires a large number of dynein motors. Yang, Dillon & Fauci [87] managed to model hundreds
of dynein motors and nexin links that connect microtubules (Figure 6b) as a complicated elastic spring
network. Adopting the same idea of the spring network, Han and Peskin [99] allowed the dynein
motors to evolve independently, each following a dynamical law for tension generation. With this
improved model, the simulated 3D cilia array was able to beat spontaneously upon the fluid motion,
obey cyclical oscillations, and undergo a smooth transition from synchronized motions to multiple
phases. Oriola et al. [100] proposed a model using nonlinear amplitude dynamics to explore how the
dynein-driven sliding yields the bending of cilia and flagella. Chakrakarti and Saintillan [101] extended
the formulation of Oriola et al. [100] by including biochemical noise and hydrodynamic interactions.

5. Summary and Future Directions

As the famous quote by George Box states, “All models are wrong, but some are useful.” A model
that encompasses every possible aspect is impossible. All mathematical models make necessary
simplifications in order to focus on a certain set of features of the reality or to support certain
hypotheses about the underlying mechanisms. In this mini-review, we have presented a brief survey
of classical mathematical models of the mucociliary system over the last six decades, with particular
attention to the cilia–fluid coupling and force generation machinery. These mathematical models were
somewhat useful in helping to test hypotheses and facilitated our understanding of the fundamental
mechanisms of the mucociliary system. With the advancement of technology, it gradually becomes
possible to simulate a large enough number of cilia and make this physiologically relevant.

There is still a great deal of room for the improvement of the mathematical models. Most of the
models of the axoneme have assumed linear elastic mechanics for the molecular structures. Such
assumptions can be tested with either carefully designed single molecular mechanical experiments or
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by systematically screening all possible mechanics models to determine the best one. When we write
the governing equations as differential equations, we already assume that the system is continuous.
All molecule dynamics in the length scale of 10−8 to 10−5 were not directly described. The biochemical
signaling transduction is not considered; the nexin linkages and dynein arms within the axoneme are
not explicitly modeled. It would be interesting to examine the range of applicability for this continuity
assumption. Also, when we start to simulate physiologically relevant carpets of cilia, it would be worth
considering the spatial variations of epithelium composition as well as mucus properties in the airway.
All the models eventually rely on high-quality quantitative data for validation. It would be helpful if a
standardized set of data would become available as benchmarks for the modeling community.

One might also speculate how such an improved understanding of mucociliary clearance could be
useful in practice. One instance could be the more effective delivery of inhaled drugs to the lung airway;
e.g., an asthma inhaler or dry powder insulin inhaler. A second possibility is to help design synthetic
cilia or cilia mimetics for patients with impaired lung cilia, such as magnetically or acoustically actuated
cilia [102–104]. Synthetic molecular motors [105,106] have become available, which transfer chemical
energy to motion at the nanoscale. Therefore, it is exciting to foresee the realization of grafted cilia
using those molecular motors [107]. In these examples, mathematical modeling can serve as a perfect
tool to examine the parameters and mechanisms characterizing the biological system and provide
guidance in the engineering design; e.g., for optimal fluid transport.
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