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Abstract

Anthropogenic landscapes can be rich in resources, and may in some cases provide potential habitat for species whose
natural habitat has declined. We used remote videography to assess whether reintroducing individuals of the threatened
New Zealand falcon Falco novaeseelandiae into a highly modified agricultural habitat affected the feeding rates of breeding
falcons or related breeding behavior such as nest attendance and brooding rates. Over 2,800 recording hours of footage
were used to compare the behavior of falcons living in six natural nests (in unmanaged, hilly terrain between 4 km and
20 km from the nearest vineyard), with that of four breeding falcon pairs that had been transported into vineyards and
nested within 500 m of the nearest vineyard. Falcons in vineyard nests had higher feeding rates, higher nest attendance,
and higher brooding rates. As chick age increased, parents in vineyard nests fed chicks a greater amount of total prey and
larger prey items on average than did parents in hill nests. Parents with larger broods brought in larger prey items and a
greater total sum of prey biomass. Nevertheless, chicks in nests containing siblings received less daily biomass per individual
than single chicks. Some of these results can be attributed to the supplementary feeding of falcons in vineyards. However,
even after removing supplementary food from our analysis, falcons in vineyards still fed larger prey items to chicks than did
parents in hill nests, suggesting that the anthropogenic habitat may be a viable source of quality food. Although agricultural
regions globally are rarely associated with raptor conservation, these results suggest that translocating New Zealand falcons
into vineyards has potential for the conservation of this species.
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Introduction

Agricultural expansion and intensification is a principal

contributor to habitat change [1] and represents the ‘‘greatest

extinction threat to birds’’ [2]. Raptor species worldwide have

suffered declines [3], largely as a result of anthropogenic activities

linked with agriculture, such as land clearing and the use of

poisons for pest control [4]. Additional causes of mortality include

persecution as a result of human-wildlife conflict and electrocution

on electro-utility structures [5–7].

Raptor declines can be mitigated through the reintroduction of

individual birds from their strongholds in order to bring

threatened species back to their historic ranges [8]. Reintroduc-

tions have been successfully used to expand the ranges of a

number of threatened raptors worldwide [9–10]. However, release

sites for reintroduction programs normally comprise regions of

natural habitat from which raptors have become extirpated. With

land increasingly being put to use for anthropogenic purposes,

there is inevitably a conflict when land is set aside for conservation.

Consequently, there have been calls for increasing biodiversity

conservation outside of the traditional reserve system [11].

Conservation efforts could be considered within primary produc-

tion systems [12–13] by using farming practices that are more

wildlife-friendly [2], provided that the species in question can

survive within such agricultural landscapes.

There is extensive variability in how well raptors adjust to

human landscapes, with some species being unable to inhabit

modified habitats while others show considerable flexibility in this

regard [14]. Conservation scientists have traditionally been slow to

incorporate animal behavior when developing sustainable conser-

vation management plans and policy [15–16], and this lack of

consideration of the behavior of the animal in question has

sometimes resulted in failed reintroductions [17]. As the ability of

translocated individuals to display adaptive behavior in novel

environments can influence the success of reintroduction projects,

it should be examined closely at the onset of a reintroduction

[8,15–18]. This need to assess the behavioral ramifications of

translocation is particularly acute when animals are reintroduced

into anthropogenic landscapes. In these landscapes, translocated

individuals must be able to forage, find shelter, and reproduce in

order for a reintroduction program to succeed [9,17–18].

In Marlborough, New Zealand’s largest wine-growing region,

there is an intensive monoculture of vineyards spread throughout

the valleys that were once inhabited by the now threatened New
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Zealand falcon, Falco novaeseelandiae, the country’s only remaining

endemic bird of prey [19]. To combat the decline of falcons in

Marlborough a project called ‘Falcons For Grapes’ (FFG) was

established in 2005 to reintroduce falcons into the vineyard-

dominated valleys of the region [20,21]. As its name suggests, this

project aims to use falcons to benefit the wine industry through

their release into vineyards, while at the same time benefitting

falcons through access to higher prey densities in vineyards and an

expansion of their range [21]. Recent work has shown that falcon

presence in vineyards is associated with considerable economic

savings through a reduction in grape damage caused by passerine

birds [22]. However, whether there is a simultaneous benefit to the

falcon population is, as yet, unknown. Although vineyards have

high densities of potential vertebrate prey (particularly European

birds), falcons relocated to vineyards are also enticed to stay

through supplementary feeding schemes.

The FFG project presented us with a unique opportunity to do

a comparative analysis of the breeding behavior of reintroduced

falcons in vineyards with falcons found in the nearby hills. We

use these comparative data to compare the chick-rearing

behavior and ability of falcons reintroduced into vineyards with

that of falcons breeding naturally within the surrounding hill

habitats. Falcon chicks hatch at roughly 31 g and reach full adult

weight (330 g for males, and 531 g for females) in a 35-day

rearing period [23]. This necessitates that adult falcons provision

chicks with a large amount of prey each day. Feeding rates

during the chick-rearing period dictate chick survival and

contribute heavily to breeding success rates and population

trends [24]. We therefore focused our study on comparing the

food provisioning rates and the biomass of prey items delivered

to falcons in both the vineyards and hills.

Generally, raptor species share biparental care duties during

incubation and when their altricial chicks first hatch [24]. Extrinsic

factors, such as habitat quality and prey abundance, may influence

the time budget allocated by raptors to different activities and thus

potentially affect breeding success [25]. Parents must balance the

need to feed their young against the increased exposure of young

to potential nest predation while their parents are foraging. New

Zealand falcons nest in scrapes on the ground, and their nests are

vulnerable to high levels of predation, mainly by introduced

mammals such as feral cats (Felis felis) and stoats (Mustela erminea)

[Kross SM, Tylianakis JM, Nelson XJ unpublished manuscript].

Areas of high prey density may therefore benefit falcons

considerably through a reduction of time spent searching for

prey, with a concomitant increase in nest attendance rates which

may be associated with higher nesting success, as found in

peregrine falcons (Falco peregrinus) [25].

Here, we provide evidence of the impact of anthropogenic

habitat on prey provisioning rates, parental nest attendance, and

brooding rates at nests of the threatened New Zealand falcons. By

examining how the parental behavior of the New Zealand falcon

differs between hill and anthropogenic vineyard habitats, we

provide further evidence that behavioral studies should be

inextricably tied to the implementation of sustainable conservation

management plans.

Methods

Ethics Statement
This research was conducted according to relevant national and

international ethics guidelines and permits were provided by the

University of Canterbury (2008/27R) and the New Zealand

Department of Conservation (NM-23677-FAU).

Study Species
Despite its threatened status, little is known about the breeding

behavior of the New Zealand falcon. New Zealand falcons evolved

in the absence of land-dwelling mammals, and therefore lack the

morphological and behavioral adaptations necessary to deal with

mammalian predators [26]. For example, they often nest in

‘scrapes’ on the ground, making them prone to high levels of nest

predation [23,27–28]. In the New Zealand falcon, incubation lasts

for 30 days, followed by a 30–35 day rearing period during which

chicks develop the ability to thermoregulate (at approximately 12

days), reach full adult weight (at approximately 20 days), and

develop feathers. Adult females undertake the majority of nest

attendance, nest defense, and feeding of chicks, while male falcons

assume most of the foraging and provision females and chicks with

food [23]. As chicks grow, female falcons begin to take part in

foraging and food provisioning [23].

Falcon nests were located by interviewing local farmers and

forestry workers. Non-vineyard falcon nests (‘hill nests’) were found

either in hillside forestry plantations (Pinus radiata) or in steep-sided

valleys dominated by a mix of native and introduced grasses and

dense scrub [28]. In contrast, vineyard falcon nests (‘vineyard

nests’) were near the valley floor, usually within a vineyard,

although on one occasion, within a forestry plantation adjacent to

a vineyard. The key differences between the nest types were that

vineyard adults were manipulated by the FFG project, whereas hill

adults were not manipulated. Vineyard adults had been translo-

cated into the vineyards as juveniles, were offered supplementary

food on a daily basis (one-day-old poultry chicks), and had their

nests raised from the ground into artificial nests in order to reduce

the chances of predation by invasive mammals. Over 50 falcons

were released by the FFG project in the valleys of Marlborough

between 2005 and 2011, and eight have been confirmed to breed

within the vineyard region, including the four vineyard nests that

we monitored for this study (R. Seaton, pers. comm.).

Data Collection
Our data were based on footage obtained from six hill nests (101

days or 1473 recording hours) and four vineyard nests (88 days or

1333 recording hours) monitored between 2008 and 2011. We

were only able to monitor five of the eight confirmed breeding

falcons that were released as part of the FFG project because the

remaining nesting events were before our study period, were

outside of the vineyard region, or failed before we could monitor

them. We used a portable remote videography system with a near-

infrared camera placed at the edge of the nest or mounted to the

side of nest barrels in the case of vineyard nests. The system was

set to record (at 30 fps) based on a motion-detection threshold of

10–15%, and has been shown to lose only 16% of potential

recording hours, primarily due to battery failure or camera

dislodgement [28]. For these data, if over 50% of recording hours

in any given day were missed, that day was excluded from the

dataset. Video was reviewed using Quick-Time Player (version

7.6.4; Apple Inc, Cupertino, CA, USA) at a maximum speed of

four times normal speed to a minimum speed of frame-by-frame,

allowing quick review of non-important files and detailed review of

important events, such as feeding.

Monitored nests during the chick rearing stage had 1, 2, or 3

chicks. The number of chicks in these nests did not differ

significantly between hill (n = 13) and vineyard (n = 8) nests (Mann

Whitney U = 12.0, P = 0.91; for both habitats median = 2.0; 1st

and 3rd quartiles are 1.0 and 3.0). In the rare (i.e. ,10% of

recordings) cases where one or more of the chicks had moved

outside of the recording area, we stipulated that at least one chick

had to be fully visible to the camera to be included in the dataset.

Falcon Breeding Behavior in Vineyards and Hills
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We recorded the duration of parental behaviors (see Table 1) by

scoring the start and end time of each behavior, and used these

numbers to calculate duration. In all cases we recorded the sex of

the individual engaged in the behavior. Additionally, we recorded

the number of nest disturbances by people or other animals per

day, and used an ordinal scale of 0–10 (with 10 being the highest

and equivalent to something entering the falcon’s nest) to measure

the level of each disturbance to the nesting falcons (Table S1). The

disturbances were considered to be additive per day; for example,

if a nest was entered two times in one day, the disturbance level for

the day would be equal to 20.

Over half of the prey items delivered to the nest could not be

identified to species and we estimated the biomass of these items

by comparing the size of the prey item with previous, positively

identified prey items. The one-day-old poultry chicks (c. 40 g)

provided as supplementary food were larger than the finch and

bunting species commonly consumed by falcons [Kross SM,

Tylianakis JM, Nelson XJ unpublished manuscript] and, because

they were easily identifiable due to their bright yellow color, all

were identified when they were delivered to chicks. We collected

information on the amount of prey handling that occurred prior to

items being delivered to the nest by the parents. Avian prey were

aged according to feather structure: birds with completely

sheathed feathers were considered nestlings, those with partially

sheathed feathers were considered fledglings, and those with

unsheathed feathers were considered adults [29]. The amount of

prey handling done prior to parents delivering the item to chicks

was noted, with prey being either completely plucked (no wing or

tail feathers remaining), partially plucked (some wing or tail

feathers remaining) or not plucked (all wing and tail feathers

intact). We also noted the presence or absence of the preys’ head at

the time of delivery to the nest.

Data Analysis
Data from individual nests were analyzed with increasing chick

age in days as a predictor variable, defined using the hatching date

as chick age 0. In order to maximize data collection for all chicks,

data were collected until day 30; the age at which chicks begin to

fledge from the nest [23]. Daily data recording began at 05:00 and

ended at 21:00. These times were chosen because feeding events

never occurred prior to 5 am, and out of a total of 2026 feeding

events recorded, only 11 occurred after 9 pm (i.e., 99.5% of

feeding events occurred during these hours).

We examined parental time budgets by calculating the

proportion of the recorded daylight hours adult falcons spent

feeding chicks, in attendance at the nest, brooding chicks, or

performing nest maintenance. These data were then transformed

using a logit transformation [30], and modeled using generalized

linear mixed effects models (GLMMs) with Gaussian errors in the

lme4 package [31] in R (v.2.7.2) [32]. We were unable to use

binomial errors because our proportion time data were not derived

from proportions of successes/failures in a fixed number of

independent binary trials. Separate models were analyzed for male

and female adult falcons, and for both parents combined. The

average time between feeding events, the average biomass of prey

items, and the average total biomass fed to chicks per day were all

modeled using GLMMs with Gaussian errors.

Counts for the amount of nest activity (occasions where parents

left the nest), the number of feeding events, and the level of

disturbances per day were all modeled using GLMMs with Poisson

errors. Feeding data were first analyzed including items identified

as supplementary food, and then were analyzed excluding items

identified as supplementary food.

Site (i.e. nest identity), the identity of the female and the identity

of the male parent were fitted as random effects in all GLMMs.

The identity of the parents was included as a random effect to

control for non-independence of data between nests containing the

same individual male or female falcon (across years, no two nests

contained the same pair of adult falcons, but in a few cases either a

male or female was paired with a different mate at a different nest

site location). We included habitat type, the number of chicks in

the nest, and level of disturbances as categorical fixed effects in the

models. Chick age in days was included as a continuous fixed effect

in the models. We also included an interaction term between chick

age and habitat type, as well as quadratic and cubic polynomial

terms for chick age in the models to account for potential

nonlinear effects of chick age (e.g., asymptotes or step-changes in

behavior once a threshold age is reached).

Models were simplified by sequentially removing non-significant

polynomial and interaction terms then main effects until no

improvement in model fit (measured using the Akaike Information

Criterion, AIC) was obtained. We tested all Poisson models for

evidence of overdispersion (on the basis of the ratio of residual

deviance to degrees of freedom) and re-fitted overdispersed models

using penalized quasi likelihood (the ‘glmmPQL’ function) in the

MASS package [33] in R. For models fitted using Gaussian errors

Table 1. Parental behavior recorded at each falcon nest.

Behavior Description Data obtained for analysis

Nest attendance Time spent by adults in the nest, including being engaged in all of the behaviors
below, as well as when in the nest, but not touching chicks or engaging
in other defined behavior.

Proportion of the daily total(s).

Nest activity Number of times adult falcons departed the nest; used as a proxy for activity
at the nest entrance (see [25]).

Counts.

Brooding Adult falcon is physically touching at least one chick with breast, tail, or wings.
Also applies if falcon is standing over chicks to provide shade
(stress brooding).

Proportion of the daily total(s). Count of brooding bouts.
Average length of brooding bouts.

Nest maintenance Adult falcon is pulling at substrate within scrape. Also applies to removing
items such as prey remains.

Proportion of the daily total(s).

Feeding Adult falcon is feeding food to chicks or is eating. Proportion of the daily total(s). Counts of feeding events.
Average time(s) between feeding events. Average
biomass (g) of individual prey items. Sum of prey
biomass (g)

doi:10.1371/journal.pone.0038679.t001
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we used a Markov chain Monte Carlo (MCMC) resampling

method with 10,000 simulations to estimate P values for the fixed

effects (carried out using the ‘pvals.fnc’ function in the languageR

package [34] in R). We used Student’s t-tests to compare the prey

handling behavior and the age classes of prey for falcons in the two

habitats, as well as to compare the number and level of

disturbances by people or animals at the nests. In our results,

where relevant, we present the mean (6 SD) for untransformed

data (as a measure of effect size) in addition to P and 6 SE values

from model estimates.

Results

Feeding Behavior
The number and level of nest disturbances by people or animals

did not differ significantly between the two habitats (t = 20.51,

P = 0.63). In vineyard nests, supplementary food items represented

17.89%68.94% of prey items adults provisioned to their chicks.

At three of the vineyard nests, supplementary food items

represented ,10% of the prey items brought to chicks. However,

at the fourth nest, supplementary food items represented 44.53%

of prey items brought to chicks.

Falcons from nests in the hills spent a significantly lower

proportion of their time feeding chicks than did falcons nesting in

vineyards (Table 2; Figure 1). Feeding decreased as chicks aged,

although more so in hill nests than in vineyard nests (habitat x

chick age interaction: Table 2; Figure 1). In hill nests, parents

increased the proportion of the day spent feeding from chick

hatching until chicks were approximately 9 days old, after which

they began to decrease. In vineyard nests, this switch occurred

later, when chicks were approximately 12 days old (quadratic

polynomial term; Table 2; Figure 1).

Vineyard and hill nests did not differ significantly in the interval

between feeding bouts (Table 2). Regardless of habitat type or

chick age, nests containing a greater number of chicks experienced

less time between feeding bouts (Table 2). The number of feeding

events per day was also influenced by habitat type and chick age.

In both habitats, as chick age increased, male falcons delivered

more food items to the chicks, starting at an average of 0.03

feedings per day when chicks first hatched and increasing by 0.04

feedings for each day as chicks aged (Table 2). Female falcons in

vineyard nests also increased their number of feeding events as

chick age increased, starting at an average of 8.89 feedings per day

when chicks first hatched and increasing by 0.10 feedings per day

as chick age increased (Table 2). In contrast, females in hill nests

started at an average of 9.44 feeding events per day when chicks

first hatched, but decreased the number of feedings by 0.20 per

day as chick age increased (Table 2). When supplementary food

was excluded from the analysis, nests in the hills had an average of

1.41 more feeding events per day (Table 2) compared with

vineyard nests. Removing supplementary food from the analysis

did not change the fact that, compared with nests with one chick,

nests containing 2 chicks and 3 chicks received more food (2.44

and 4.73 more feeding events per day, respectively; Table 2). The

quadratic polynomial for chick age was retained in the final model

for the number of feeding events, suggesting a nonlinear

relationship, but was removed from the final model excluding

supplementary food, suggesting a linear relationship.

At the time of hatching, there was no effect of habitat type

(Table 2) on the average biomass of each individual prey item

consumed by chicks (hill, 23.5663.31 g; vineyard, 20.0062.51 g).

However, as chick age increased, the average biomass of prey

items in vineyard nests increased, while the average biomass of

prey items in hill nests decreased slightly (chick age x habitat

interaction, Table 2). Excluding supplementary food (mean

biomass of a day-old poultry chick was 40 g) from this analysis

reduced the average biomass slightly in vineyard nests

(17.9862.55 g) at the time of hatching, but there remained no

significant effect of habitat type in our model (Table 2). Even with

supplementary food excluded from the analysis, the average

biomass of prey items increased in vineyard nests, but decreased in

hill nests (chick age x habitat interaction, Table 2).

The total biomass of prey fed to chicks each day was the sum of

all prey items. When chicks first hatched there was no statistically

significant difference in the total biomass fed to them in the

different habitat types, but as chicks became older, there was an

increasing difference between hill and vineyard nests, with

vineyard nest parents feeding chicks an additional 7.58 g per

day (chick age effect: Table 2), while parents from the hill nests

only fed an additional 2.42 g per day (habitat x chick age

interaction: Table 2; Figure 2). Nests with more chicks were also

given more food. Keeping all other variables constant, nests with 1

chick received a daily mean 6 SEM of 101.59637.54 g, those

with 2 chicks 256.04663.25 g, while those with 3 chicks received

250.55627.84 g of food (Table 2). Excluding supplementary food

items from the analysis for total biomass reduced the overall

estimates for biomass fed to chicks, but did not change the lack of

statistically significant differences between habitat types (Table 2).

Excluding supplementary food resulted in a non-significant

relationship between habitat type and chick age (Table 2).

Disregarding supplementary food did not change the positive

effect of chick age, or number of chicks in the nest on total

biomass, but did slightly reduce the scale of these estimates

(Table 2).

Prey handling (i.e. whether the parents had plucked the feathers

or fur from their prey or decapitated their prey) was influenced by

habitat. A greater proportion of the bird prey delivered to

vineyard nests was completely plucked (70.3862.97%) compared

with hill nests (56.1063.92%, t = 2.90, P = 0.02). Hill falcons

brought their chicks a greater proportion of partially plucked

(21.4862.88%) and unplucked (17.0864.54%) avian prey com-

pared with vineyard falcons (15.6762.96% and 12.3262.41%

respectively) although these differences were not statistically

significant (partially plucked: t = 1.41, P = 0.2; not plucked:

t = 0.92, P = 0.4). Falcons in vineyard nests decapitated more of

the prey items delivered to chicks (68.5963.29%) than falcons in

hill nests (56.3162.22%, t = 3.10, P = 0.02).

Only 42.45% of prey items delivered to nests were identified to

age class. The diet of falcons in vineyards consisted of a higher

proportion of juvenile avian prey (vineyard mean = 5.1961.94%,

hill mean = 1.2860.73%, t = 3.86, P = 0.02), but the two habitats

were similar in the proportion of adult (mean = 27.98611.27%,

P.0.30) and nestling (mean = 10.9165.23%, P.0.80) prey items

in the diets fed to chicks.

Chick-rearing Behavior
Nest attendance, the proportion of the day that at least one

adult was present within the nest scrape (Table 3), was 3.3% lower

for parents in hill nests than in vineyard nests (Table 3, Figure 3)

and significantly decreased as chicks aged in both habitat types

(Table 3, Figure 3). This relationship with age was nonlinear, with

the rate of this decline tending to slow after chicks reached

approximately 20 days old, and both polynomial terms for chick

age were retained in the simplified model (Table 3, Figure 3). This

effect was largely due to the behavior of female parents, which

were responsible for the majority of nest attendance over the

chick-rearing period (Table 3, Figure 3).

Falcon Breeding Behavior in Vineyards and Hills
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There was no effect of habitat on the time parents spent

brooding chicks. Immediately after hatching, parents in both

habitats spent 93.70% of the day brooding (Table 3). In both

habitat types, adults significantly decreased the proportion of time

spent brooding as chicks aged (Table 3), although this effect was

nonlinear, with the slope of the decline leveling out at close to zero

once chicks reached approximately 18 days old (quadratic and

cubic polynomials Table 3).

The amount of nest activity (the number of times parents left the

nest) at vineyard nests was significantly higher than at hill nests,

with parents at vineyard nests leaving the nest more frequently

(21.8468.12 daily nest exits) than in hill nests (17.1066.01 daily

exits; Table 3). When chicks first hatched, parents in vineyard

nests averaged 33.6 nest exits/day, while those in hill nests

averaged 26.1 nest exits/day. However, as chick age increased,

parents in both habitats significantly decreased activity around the

nest (Table 3), particularly after chicks reached approximately 11

days old (second order polynomial for chick age, Table 3).

There was no effect of habitat on the small proportion of the

time per day spent maintaining nests (hill, 0.0160.02; vineyard,

0.0160.01) and the habitat term was removed from the simplified

model. In both habitat types, adults significantly decreased the

time spent maintaining nests as chicks aged (Table 3).

Discussion

Reintroducing the New Zealand falcon into the vineyards of

Marlborough has previously been shown to successfully provide

vineyards with a natural form of pest control, by reducing the

abundance of pest birds (starlings Sturnus vulgaris; song thrushes

Turdus philomelos; and blackbirds Turdus merula) and the amount of

damage found on vineyard grapes [22]. However, without

evidence of a benefit to the falcons themselves, the effort and

cost of translocating individuals of this threatened species to

vineyards may be unjustified. Our results show that, within an

intensive agricultural area, falcons are capable of feeding their

chicks more often and with larger food items, and of spending

more time in attendance at the nest, both of which are factors that

are associated with increased nesting success [24–25].

In addition to spending more time attending and feeding their

chicks, vineyard falcons provided better quality food. They

provided significantly more plucked and decapitated prey to their

nestlings. By completely removing these indigestible food parts,

parents provide chicks with food items that are more energy

efficient to digest, and that potentially reduce the risk of

ectoparasite exposure to chicks [35]. This behavior may also

reduce the chances of attracting predators to the nest by avoiding a

buildup of prey remains around the nest area [35].

While the differences observed between habitats in this study

may have been due in part to the supplementary food provided to

the falcons living in vineyards, removing these feeding events from

our models still indicates that falcons living in vineyards are at least

as good, if not better, at provisioning nestlings with food as those in

the hills. Furthermore, removing the supplementary food from our

analysis revealed that falcons in vineyards tend to increase the size

of average prey items as chick age increases, whereas those in the

hills actually catch smaller prey. Therefore, removing these data

provides a highly conservative estimate of differences between the

habitat types, as vineyard falcons would likely find other food if

supplementary food was unavailable. Further experimentation

into the effect of supplementary food on falcons in the vineyards

will provide the link necessary to distinguish the quality of the two

habitats for falcons. Our results provide evidence that New

Zealand falcons are capable of displaying the behavioral plasticity
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necessary to survive and rear their offspring in a highly altered

anthropogenic landscape. This concurs with recent results that

suggest that this species is capable of nesting in Pinus radiata

plantation forestry [27], whereas forestry habitat was previously

thought to be deleterious to the falcon [23].

Reproduction is an energetically costly phase in the annual cycle

of all breeding birds, and a lack of food over any portion of the

reproductive cycle can have limiting effects on both parents and

their offspring [36–37]. Nesting birds of prey must balance the

relatively low-cost behaviors of caring for their young in the nest

(activities such as brooding) with the need to forage away from the

nest - a behavior high in metabolic cost. The availability of prey in

the areas surrounding the nest therefore has a direct effect on the

breeding success of raptors, as is the case with peregrine falcons,

Falco peregrinus, where increased nest attendance by females is

associated with increased nesting success [25]. Providing supple-

mentary food to altricial birds during breeding can therefore

positively affect reproduction rates, fledging condition and parent

survival [36,38–39]. Similarly, areas of high prey densities are

associated with higher reproductive rates [36,38]. In our study

area, vineyards have a higher density of avian prey compared with

hills [Kross SM, Tylianakis JM, Nelson XJ unpublished manu-

script], and falcons were additionally provided with supplementary

food. It is therefore difficult to tease out the effect of habitat alone,

or supplementary food alone, on nesting falcons. While some other

raptors (e.g. kestrels, Falco tinninculus [40]) have been shown to

benefit from supplementary feeding, our results go further,

showing that supplementary feeding alone does not fully explain

the positive ramifications that we have demonstrated for vineyard

habitat.

Figure 1. Proportion of the day that parents spent feeding chicks in vineyard and hill nests. Dark lines are the fitted model estimates
from a GLMM with a second-order polynomial fitted for chick age. Pale lines are raw data (+/2 SEM). Falcons in vineyard nests spent a significantly
greater proportion of the day feeding chicks compared with falcons in hill nests (P,0.05).
doi:10.1371/journal.pone.0038679.g001

Figure 2. The total biomass of prey brought into nests in vineyards and hills. A The minimum, lower quartile, median, upper quartile, and
maximum observations for vineyard nests with supplementary food items excluded (V), for vineyard nests including supplementary food items (VS)
and for hill nests (H). B The fitted model estimates from a GLMM with a significant second order polynomial fitted for chick age, including
supplementary food for vineyard nests (VS) and excluding supplementary food (V) and for hill nests (H). Model estimates indicated that as chick age
increased falcons in vineyard nests brought in more total prey each day than did falcons in hill nests (P,0.001).
doi:10.1371/journal.pone.0038679.g002
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Females were present within the nest for much more of the day

than males. Females therefore took on the majority of the nest-

based behaviors that were the focus of this study, and it is likely

that males took on the majority of foraging, and provisioned

females with prey items with which to feed chicks. This most likely

occurs because female falcons, as the physically dominant

individual in a pair, remain within or near the nest, and intercept

males approaching with food in order to feed the chicks

themselves, especially prior to chicks being able to thermoregulate,

a pattern that has been shown in the peregrine falcon [41]. If

males were unable to forage efficiently and females were forced to

forage in order to provision chicks, especially when chicks were not

yet able to thermoregulate, this could result in lower nesting

success. In our study, supplementary food was only relied upon as

a food source by one of the vineyard pairs: the remaining 3 pairs

used supplementary food for ,10% of their feedings. Interestingly,

in these 3 pairs, 98.25% of the supplementary food items were

brought to the nest after chicks had reached 14 days of age, by

which time adult females had drastically reduced the amount of

time they spent in the nest (Figure 3) and were likely to have joined

their mates in foraging and food provisioning. Male kestrels have

been shown to avoid provisioning their chicks with supplementary

food items, whereas females feed both themselves and their chicks

with supplementary food when it is available [40], and our results

indicate that it is possible this is also the case in New Zealand

falcon. Experimentally providing only some of the vineyard falcons

with supplementary food in the future will lead to further

understanding of the effect of habitat alone in the breeding

behavior of the threatened New Zealand falcon.

Parents in nests with more chicks fed their chicks a greater total

biomass per day, and fed them more often. However, these

increases did not fully compensate for the sharing of food items

amongst chicks. On average, single chicks received more food per

day (174 g), than each of two chicks (131 g) or three chicks (97 g),

and this effect remained even after removing supplementary food

from the analysis. These results indicate that removing chicks from

hill nests (as carried out by the FFG project) may benefit the

remaining chick through increased food provisioning. However,

this assumption does not take into account the behavioral impact

of removing siblings on the remaining chick [42], or the impact of

this harvest of individuals on the falcon population in the hills [18].

One important caveat to the conservation implications of this

study is mortality as a consequence of electrocution, which may

increase due to the prevalence of power lines in anthropogenic

habitats. There is some evidence [43] to suggest that falcons

residing in vineyards are suffering significant losses due to

electrocution, a common pattern among raptors [5]. However, it

has recently been demonstrated that if political will can be found,

initiatives to mitigate these effects are both effective and affordable

[7].

Our results suggest that there is considerable potential in the

idea of reintroducing falcons into vineyards. We have previously

demonstrated significant economic benefits for vineyards contain-

ing falcons due to a reduction in damaged or destroyed grapes

[22]. Here, we showed that there may also be beneficial effects for

falcons breeding within vineyards, as falcons in vineyards had

higher nest attendance, spent more time feeding chicks, and fed

chicks more often and with more food compared with falcons in

hill nests.
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