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ABSTRACT

Protein tertiary structure prediction is an active research area and has attracted significant attention
recently due to the success of AlphaFold from DeepMind. Methods capable of accurately evaluating
the quality of predicted models are of great importance. In the past, although many model quality assess-
ment (QA) methods have been developed, their accuracies are not consistently high across different QA
performance metrics for diverse target proteins. In this paper, we propose MUfoldQA_G, a new multi-
model QA method that aims at simultaneously optimizing Pearson correlation and average GDT-TS dif-
ference, two commonly used QA performance metrics. This method is based on two new algorithms
MUfoldQA_Gp and MUfoldQA_Gr. MUfoldQA_Gp uses a new technique to combine information from pro-
tein templates and reference protein models to maximize the Pearson correlation QA metric.
MUfoldQA_Gr employs a new machine learning technique that resamples training data and retrains
adaptively to learn a consensus model that is better than naive consensus while minimizing average
GDT-TS difference. MUfoldQA_G uses a new method to combine the results of MUfoldQA_Gr and
MUfoldQA_Gp so that the final QA prediction results achieve low average GDT-TS difference that is close
to the results from MUfoldQA_Gr, while maintaining high Pearson correlation that is the same as the
results from MUfoldQA_Gp. In CASP14 QA categories, MUfoldQA_G ranked No. 1 in Pearson correlation
and No. 2 in average GDT-TS difference.
© 2021 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Proteins are macromolecules playing vital roles in most biolog-
ical processes [1]. Understanding their functionality is crucial in
life science. The functionality of a protein largely depends on its
unique 3D structure [2]. For example, antibody proteins take
advantage of their structures to latch onto foreign proteins and
tag them [3]. Unfortunately, determining the 3D structure of a pro-
tein from its primary amino acid sequence is difficult [4]. While
protein sequence information has been acquired at an ever-
growing rate, experimental methods, including electron micro-
scopy, protein crystallography, and nuclear magnetic resonance,
for determining protein structures are very expensive and time
consuming [5]. With the continuous growing discrepancy between
well-established sequence information on millions of proteins and
the lack of understanding of their corresponding tertiary struc-
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tures, computational protein structure prediction methods have
become increasingly important [6]. A major event in this field is
the Critical Assessment of Techniques for Protein Structure Predic-
tion (CASP) experiment, a biennial event since 1994 [7]. It serves as
a platform to provide the blind testing of the cutting-edge protein
structure prediction methods designed by researchers from all over
the world [8]. In 2020, 215 unique groups participated in CASP14
and 67,976 predictions were submitted [9].

During the past few decades, as reflected on the CASP results,
steady progress has been made in generating high-quality 3D pro-
tein models via computational structure prediction methods [10],
especially since the participation and success of AlphaFold and
AlphaFold 2 by the Google/DeepMind team [11,12]. More and more
organizations are investing substantial amounts of resources into
this area. In the meantime, ever growing number of candidate
models of various quality is making it more and more challenging
to accurately assess the quality of the predicted models. A better
way to predict the quality of a large pool of models that could keep
up with this growth on the structure prediction side is in urgent
need.

2001-0370/© 2021 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1.1. QA problem formulation

The quality assessment problem of a predicted protein model
(3D structure) can be defined as follows. Given the amino acid
sequence of a target protein and a predicted model, return a (pre-
dicted) quality assessment (QA) score that approximates the simi-
larity between the model and the native structure of the target
protein. One widely used similarity measure between two 3D pro-
tein structures is GDT-TS (Global Distance Test Total Score), which
is calculated as (P; + P, + P4 + Pg)/4 , where P, represents the per-
centage of C-alpha atoms within the threshold of nA (n =1, 2, 4, 8)
after superimposing one structure over the other structure [13,14].
The GDT-TS value ranges from 0 to 1, where 1 means the two struc-
tures are identical.

The performance metrics for evaluating different QA methods is
based on their predicted QA scores of a set of predicted models for
a target protein and the corresponding GDT-TS values between the
predicted models and the native structure of the target protein.
Two commonly used performance metrics are 1) Average GDT-TS
Difference (Abbreviated as AGD in this paper), and 2) Pearson Cor-
relation Coefficient (PCC). Specifically, let the predicted QA scores
of a set of N predicted models for a target protein be X; € [0,1]
(i=1, .., N)and the corresponding GDT-TS values between the
N predicted models and the native structure of the target protein
(i.e.,, ground truth) be Y; € [0,1] (i 1, ..., N). Then,
AGD = §37|Xi—Y;|. PCC is the Pearson correlation coefficient
between X; and Y;, fori=1, ..., N. Alow AGD means the predicted
QA scores are good approximation of the true qualities of the mod-
els, while a high PCC means that models selected based on higher
predicted QA scores are likely to be the real high-quality ones.

When different QA methods are evaluated based on multiple
performance metrics, such as AGD and PCC, one method may per-
form better than another method on one metric, but worse on
another metric. As illustrated in Fig. 1, the performances of the
three methods are plotted in the 2-D space of AGD and PCC. 1-
PCC is shown on the Y-axis, so that on both axes, the smaller the
value, the better the method. In this example, Method C is the best
and dominates the other two methods because it is better than or
equal to the other two methods in both AGD and PCC. Methods A
and B are non-dominating since A is better than B in PCC, but
worse in AGD.

1.2. Existing QA methods

Accurately assessing the quality of a predicted model is an
important part of protein structure prediction [15]. Ever since its
inclusion in CASP7, the model quality assessment (QA) category
has always attracted many participants [16]. Based on their input,
existing QA methods can be divided into two major categories:
single-model and multi-model. In general, the former does not
require additional models, can provide a stable score for a given
predicted protein model but the accuracy is inferior. The latter
requires reference models. And the results may vary for a given
protein depending on the accompanying reference models. But
the accuracy is usually superior.

Single-model methods only use one predicted model as input to
calculate its quality score. Some of these methods use physics or
knowledge based potential functions or predictive models built
by machine learning methods [17]. Examples are as follows.

e Ornate [18] features a 3D-CNN deep learning predictive model
with the input of density maps.

e SBROD [19] is a heuristic scoring function composed of four
terms related to different structural features: residue-residue
orientations, contacts between backbone atoms, hydrogen
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bonding, and solvent-solute interactions. It features a smooth
function with respect to atomic coordinates and thus is applica-
ble to continuous gradient-based optimization of protein
conformations.

e VoroMQA [20] calculates statistical potentials based on the fre-
quencies of observed interatomic contacts.

e OPUS-Ca [21] is a potential function based on seven representa-
tive molecular interactions in proteins: distance-dependent
pairwise energy with orientational preference, hydrogen bond-
ing energy, short-range energy, packing energy, tripeptide pack-
ing energy, three-body energy, and solvation energy.

e RWplus [22] is a pairwise distance-dependent atomic statistical
potential function using a random-walk chain as a reference
state.

e GOAP [23] is an orientation-dependent potential that only con-
siders representative atoms, or blocks of side-chain or polar
atoms, decomposed into distance and angle dependent terms.

Many recent single-model QA methods are built on top of pre-
vious QA methods. They typically use machine-learning methods
to combine the results from multiple existing QA methods or fea-
ture generation tools. A well-known example is the series of ProQ
methods that achieved good results in CASPs [24-28].

e ProQ [24] uses a neural network predictor with atom-atom
contacts, residual-residual contacts, secondary structure, and
solvent accessibility features as input.

e ProQ2 [25] uses a support vector machine (SVM) predictor with
structural and predicted features, re-weighted residue-residue
contact, surface area features, and position-specific scoring
matrix (PSSM) as input.

e ProQ3 [26] combine the results of the Rosetta software and
ProQ2 using SVM.

e ProQ3D [27] combine the results of the Rosetta software and
ProQ2 using a multilayer perceptron.

e ProQ4 [28] uses a pretrained 1D-CNN that is fine-tuned using a
set of descriptors.
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Fig. 1. Anillustration of multi-criteria performance comparison of scores generated
by three different QA methods.
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e QAcon [29] uses a two-layer neural network with 12 features,
including structural features, physicochemical properties, and
residue contact predictions.

e SMOQ [30] uses SVM with protein sequence and structural
features.

e DeepPTQA [31] features an inception network.

Multi-model QA methods require a set of models as input. They
use these models collectively to predict the quality score for each
of these models. Examples are as follows.

e The series of MULTICOM methods use different machine learn-
ing and deep learning methods to build predictors using a large
number of features or descriptors as input [32,33].

e MUfoldQA_C [34,35] is a consensus-based method using infor-
mation from both templates and reference models.

e Wallner [36] combines ProQ2 and Pcons using a linear
formulation.

The methods proposed in this paper use two existing methods,
MUfoldQA_S [34,35] and MQAPRank [37,38]. MUfoldQA_S is a
single-model QA method we tested in CASP12. In the method, each
input model is first compared with a set of selected templates and
the corresponding GDT-TS values are calculated. Then, for each C-
alpha position, use the amino acid in the target protein sequence
and those in the templates to retrieve the corresponding values
from the BLOSUM45 table. These values are used to calculate
weights through a heuristic formula. The final MUfoldQA_S local
score for each C-alpha position is the average GDT-TS values
between the predicted model and all templates weighted by the
corresponding heuristic weights.

MQAPRank is a multi-model QA method that first sorts the set
of input models using an SVM-based single-model QA method.
Then it takes the first five models as references to predict the qual-
ities of each input model in a consensus approach, i.e., averaging
the GDT-TS values between each input model and the 5 reference
models.

1.3. Our contribution

In this paper, we present MUfoldQA_G, a new multi-model
QA algorithm that uses information from native structures of
similar proteins, as well as the whole set of candidate models
to evaluate the quality of a large pool of predicted protein mod-
els. Several key innovations have contributed to its success in
CASP14:

1) MUfoldQA_Gr is a new algorithm that consists of an itera-
tive machine-learning process. It first uses a pretrained con-
sensus model to make an initial prediction of the QA scores
of the candidate models. Then, it utilizes an adaptive sam-
pling and training technique to build specialized machine-
learning models with increased prediction accuracy by
adapting to the distribution of the reference models. Empir-
ically, this algorithm achieved good results in the average
GDT-TS difference QA metric.

2) MUfoldQA_Gp is a new algorithm that takes advantage of
information from both protein templates and reference
models. It first finds a pool of suitable reference models
and calculate GDT-TS values between each candidate model
and reference models. Then it utilizes MUfoldQA_S to assign
weights to each reference model. The final output is the
weighted average of GDT-TS values. Empirically, this algo-
rithm achieved good results in the Pearson correlation QA
metric.
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3) MUfoldQA_G is a new algorithm that combines two pre-
dicted QA scores for a protein model, generated by MUfold-
QA_Gr and MUfoldQA_Gp, into one QA score in a way to
optimize both QA performance metrics (Pearson correlation
and average GDT-TS difference) simultaneously. Its results
achieve low average GDT-TS difference that is close to
results from MUfoldQA_Gr, while maintaining high Pearson
correlation that is the same as results from MUfoldQA_Gp.

In the rest of this paper, we will first present the details of
MUfoldQA_Gr, MUfoldQA_Gp, and MUfoldQA_G, and then show
experimental results.

2. Methods

Formally, the input and output of the QA algorithms presented
in this section are defined as follows. Given the amino acid
sequence S of a target protein of length U, where U is the number
of its C-alpha atoms, and a set of candidate models of the protein,
M; i=1, ..., N, where N is the number of models, output a quality
score in range [0, 1] for each model that makes a good approxima-
tion of the GDT-TS value between M; and the native 3D structure of
the target protein.

2.1. MUfoldQA_Gp

MUfoldQA_Gp improves our previously published QA method,
MUfoldQA_C [35], with a different template and reference model
selection scheme. This method performs very well in terms of
the PCC QA metric.

A = MUfoldQA_Gp (M, S)

Step 1. Calculate pairwise GDT-TS values between each input
model and each reference model.

a) Select a set of reference models from the input set of models.
Sort all input models using their MQAPRank scores [37] and
choose top Y = ceil(N*0.45) models as the reference model set
R,y =1,...Y, in which Y is the size of the reference model
set. The constant parameter 0.45 was determined experi-
mentally. We tested thresholds from 5% to 100% with incre-
ment 5% and selected the best one, 45%, based on
experimental results.

b) Calculate the GDT-TS value G,, between each input model
M, and each reference model R,.

Step 2. Calculate local scores of reference models.

a) Create a template set using Blast [11]. Use the target protein
sequence S to query a PDB database [39] with Blast to find
similar proteins. If the number of similar proteins found is
less than 10, add them to the template set. Otherwise, score
these proteins using a heuristic formula
L= (3 -1log,E)-V-I, in which E represents the E-value
and V is defined as template length divided by the target
sequence length while I denotes the percentage of identical
sequences. All these values can be either found in or calcu-
lated from the Blast report. Then, sort the similar proteins
from highest L value to lowest and add protein one-by-one
in the sorted order to the template set if either one of these
two conditions is met: 1) The template set size is less than
10; 2) Adding this protein will cover at least one new C-
alpha position on the target sequence that is not yet covered
by the proteins in the template set.

b) Create a template set using HHsearch [12]. Repeat step (a)
with HHsearch instead of Blast.
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c) Merge the two template sets generated in (a) and (b) with-
out removing any template. Duplicates are not checked.
The rationale is that if a template has been chosen by both
Blast and HHsearch, it is likely to be good. Thus, duplication
gives good templates more weight.

d) For each reference model Ry, run our previously published
MUfoldQA_S [34]| method using templates generated in (c)
to calculate the local scores, Wy, for each C-alpha position
h on model R,.

Step 3. Calculate QA scores of input models.

a) For each C-alpha position h of an input model M,, calculate
weighted local scores based on the reference models accord-
ing to this formula:

; Z;—lc"ywﬂ'
Jon ==
y-1 W
b) For each input model M,, calculate its QA score as the aver-
age of its local scores:

A= 5 Y

Return QA score A.

In Step 3, the proposed method of combing the global GDT-TS
value with weighted local score to get an updated local score might
seem to be counter intuitive, because the deviations causing the
lower value of the global GDT-TS value could be in completely dif-
ferent fragments of the structure. Here, our idea is to encode both
the global and local structure quality information in the updated
local scores and give the local scores in good global structures
more weight. We have observed that good global structures tend
to have good local structures, although not always. This idea was
tested in the QA method MUfoldQA_C during CASP12 and it ranked
number 2 among all QA methods.

2.2. MUfoldQA_Gr

MUfoldQA_Gr is a new multi-model QA method featuring an
iterative machine-learning process. Its input and output specifica-
tions are similar to MUfoldQA_Gp except that MUfoldQA_Gr does
not require target sequence S for the input. MUfoldQA_Gr performs
well in terms of average GDT-TS difference.

The algorithm first learns a consensus model using training
CASP datasets as follows. This learned model is referred to as the
pre-trained model in the algorithm below.

MUfoldQA_Gr Pretraining:

1) For each target protein from a training CASP dataset, we sort
its CASP server models by their true GDT-TS value (i.e., GDT-
TS value to native structures) from high to low. Then, using a
sliding window of size N, e.g., N = 150, with stride K, e.g,,
K = 20, to select N models to form a reference set each time.

2) Create a training set containing training examples with an
input feature vector (real values in the range of [0, 1]) of size
N and a single scalar output in the range of [0,1]. For each
reference model set, pick one model at a time:

. Calculate the pairwise GDT-TS value between this model and
all other models in the set in the order of the naive consen-
sus score of the reference model.

. The list of pairwise GDT-TS values forms the feature vector
of this model, which is to be used as the input of a training
example for a supervised machine-learning method. The
corresponding output of the training example is the true
GDT-TS value of this model.
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3) Any supervised machine-learning algorithm can be applied
to the training set to learn the mapping from the pairwise
GDT-TS values of a model with respect to models in a refer-
ence set to its true GDT-TS value. Compared to the naive
consensus method that estimates the true GDT-TS value of
a model as the average GDT-TS values between it and all
models in a reference set, the learned model can represent
more complex relationships and generate more accurate
predictions.

In our experiments, we used CASP5 to CASP11 datasets to train
machine-learning models, and CASP12 and CASP 13 dataset sepa-
rately as the test set to evaluate its experimental performance.
For CASP14, we used CASP5 to CASP12 datasets to train
machine-learning models. We experimented with various super-
vised learning algorithms and found that Bagged Trees [40]
worked the best.

Based on the pretrained model, MUfoldQA_Gr generates new
training examples dynamically for the input model set, M, and
learns new machine-learning models on demand.

B = MUfoldQA_Gr (M)

Step 1. Calculate pairwise GDT-TS value R,, between each input
model M, and all input models (M, y =1, ..., N).

Step 2. For each input model M,, calculate its naive consensus

score Q, = %Z;":]ny

Step 3. Sort input models (My, x =1, ..., N) based on Q, from high
tolowasP,(x=1,..,N).

Step 4. For each input model P,, get the pairwise GDT-TS values
between it and all other input models in the Plist (P, y =1, ..., N),
to form the feature vector of P,.

Step 5. Feed the feature vector of P, into the pretrained
machine-learning model to generate its estimated QA score T,.

Step 6. Generate a new training set from CASP datasets with
model QA score distribution mimicking the distribution of T,
(x=1,..,N).

1) For each CASP target protein, randomly select N of its CASP
server models so that the distribution of their GDT-TS values
is similar to that of T, (x = 1, ..., N).

2) Apply MUfoldQA_Gr step 1-4 on these N CASP server models
to generate their feature vectors and use the model’s true
GDT-TS as the output label of the training example.

3) Repeat (1)-(2) multiple times for each target, such as
ceil(4*(F/N)) times, to generate the training examples
corresponding to one target protein, where F is the number
of predicted models available for the current target
protein.

4) Repeat (1)-(3) for all targets in the training CASP datasets
and combine all training examples into a new training set.

Step 7. Apply any machine-learning algorithm, such as Bagged
Trees, on this new training set to learn a new model to predict
QA score.

Step 8. For each input model P,, feed its feature vector gener-
ated in Step 4 to the new predictive model to generate its predicted
QA score.

Return QA scores of all input models.

MUfoldQA_Gr contains an iterative machine learning process
to build consensus-like predictors with training sets generated
adaptively. Fig. 2 shows its execution time on each target
against the length of the target. The average time is around
24 min. Even though the time to calculate the pairwise
GDT-TS value is a function of the length of the target, the time
is relatively small compared to the machine-learning part of
the algorithm.
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MUfoldQA_Gr Time Consumption on CASP12 Targets
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Fig. 2. MUfoldQA_Gr Time Consumption on CASP12 Targets on Intel(R) Xeon(R)
Gold 6140 CPU, using MATLAB Linux R2019b.

2.3. MUfoldQA_G

MUfoldQA_G is a new multi-model QA method designed to
simultaneously optimize Pearson correlation and average GDT-TS
difference, two commonly used QA performance metrics. This
method is based on MUfoldQA_Gp and MUfoldQA_Gr. In practice,
MUfoldQA_Gp achieves high Pearson correlation, whereas MUfold-
QA_Gr achieves low average GDT-TS difference. MUfoldQA_G uses
a new transformation process to combine the results of the two
algorithms so that it achieves good performance in both Pearson
correlation and average GDT-TS difference.

The main idea of this method is as follows. Considering a set of
predicted QA values (X, € [0,1], n=1, ..., N) and their correspond-
ing ground truth values, the true GDT-TS values (Y, € [0,1], n =1,
..., N), our goal is to transform the QA values into new values such
that the Pearson correlation coefficient between the QA values and
the ground truth values is high and the average difference between
the QA values and the ground truth values is small.

Intuitively, there are two aspects to consider: a) the relative dif-
ference between a pair of QA values should be close to their corre-
sponding ground truth values, which loosely translates to a high
Pearson correlation coefficient; b) each QA value should be as close
to the corresponding ground truth value as possible, which trans-
lates to low average GDT-TS difference. In our case, MUfoldQA_Gp
algorithm performs well in Pearson correlation (in other words, the
relative position of two scores), while MUfoldQA_Gr is a top per-
former in achieving low average GDT-TS difference. We will com-
bine the two QA scores generated by these two algorithms into
one QA score to preserve their strength in both Pearson correlation
and average GDT-TS difference.

Fig. 3A shows an illustration of the method. In this artificial
example, there are 5 models with their ground truth values and
corresponding predicted QA scores from methods A and B, as
follows.

GroundTruth = [0.1,0.2,0.3,0.4,0.5].

Prediction_A = [0.2,0.4,0.6,0.8,1.0].

Prediction_B = [0.3,0.2,0.1,0.3,0.7].

When plotting predicted QA scores against the ground truth
values, a perfect prediction would have all the points on the 45
diagonal line (also known as the Y = X line). Given two predictions
by A and B, assuming Prediction A is highly correlated with the
ground truth (PCC = 1), but of high average GDT-TS difference
(AGD = 0.3). While Prediction B has a low average GDT-TS differ-
ence (AGD = 0.14), but not a very high correlation with the ground
truth (PCC = 0.62). Our new method could combine these two pre-
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dictions into Prediction_C, where C = [0.14,0.23,0.32,0.41,0.50],
achieving 1.00 PCC and 0.02 AGD.

Specifically, given any QA predictions A and B, MUfoldQA_G
outputs is QA score C in [0, 1] for each model. It performs a linear
mapping from A to C so that the final score C will have the same
PCC value as score A. We use the following formula to calculate
C, in which overbar indicates arithmetic mean:

__ AB-AB
bi(Z)zfA_z
a=B-DbA
C=a+bA

In our case, MUfoldQA_G performs a linear transformation of
MUfoldQA_Gp scores. Therefore, the Pearson correlation between
MUfoldQA_G scores with the ground truth is the same as that
between MUfoldQA_Gp scores with the ground truth. In terms
of average GDT-TS difference, Fig. 4 compares the result of
MUfoldQA_Gr and MUfoldQA_G for each CASP 12 target protein.
It shows that MUfoldQA_G is better on 48.61% of the targets.
On 41.67% of the targets, MUfoldQA_G is slightly worse, within
0.005. On 4.17% of the target, the performance difference is
between 0.005 and 0.01. On 5.56% of the targets, the performance
difference is larger than 0.01. Overall, the performance of MUfold-
QA_G is very close to MUfoldQA_Gr on average GDT-TS
difference.

Fig. 3B demonstrates how MUfoldQA_G transforms the results
from MUfoldQA_Gp and MUfoldQA_Gr on target T1019s1. The x-
axis is the true GDT-TS value, and the y-axis is the predicted score
using corresponding algorithms mentioned in the respective figure
title. MUfoldQA_G achieves the highest PCC and lowest AGD.

3. Results

In our experiments, we tested MUfoldQA_Gr pretraining with
leave-one-out cross-validation (LOOCV). And for the complete
pipeline, we tested the methods using different CASP datasets.
During algorithm development, we tested the methods on CASP12
dataset. Then, we froze the code and tested it on CASP13 dataset.
Finally, we participated in CASP14 and submitted our results under
the group name MUfoldQA_G.

3.1. MUfoldQA_Gr pretraining leave-one-out cross-validation results

To evaluate the performance of MUfoldQA_Gr pretraining, we
performed leave-one-out cross-validation in the following manner.
Given datasets from CASP5 to CASP12, each time we used a single
CASP dataset as the test set, while using the rest CASP datasets as
the training set. The training and test errors (in terms of RMSE)
from MUfoldQA_Gr pretrain pipeline are shown in the Table 1.

Table 1
MUfoldQA_Gr pretraining cross-validation results measured in RMSE.

Test set  Training error (RMSEx100) Test error (RMSEx100)
Consensus  MUfoldQA_Gr Pre  Consensus  MUfoldQA_Gr Pre
CASP5 9.84 2.56 14.12 15.22
CASP6 10.92 2.74 9.54 8.74
CASP7 10.90 2.78 7.49 7.06
CASP8 10.37 2.69 11.95 11.22
CASP9 10.80 2.77 9.79 8.54
CASP10  10.74 2.72 9.87 9.07
CASP11  10.76 2.78 8.28 8.27
CASP12  10.70 2.78 8.98 8.00
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Fig. 3. An illustration of how the MUfoldQA_G process merges two sets of predictions. (A) Using smaller artificial data to intuitively show how the merging process works. (B)
MUfoldQA_G transforms the results from MUfoldQA_Gp and MUfoldQA_Gr using real-word target T1019s1. The x-axis is the true GDT-TS value, and the y-axis is the
predicted score. (B1) Results from MUfoldQA_Gp. (B2) Results from MUfoldQA_Gr. (B3) Results from MUfoldQA_G, which is calculated using the results from MUfoldQA_Gp

and MUfoldQA_Gr.

AGD(MUfoldQA_G) - AGD(MUfoldQA_Gr)
LOWER THE BETTER

(0.01, Inf), 5.56%

(0.005,0.01], 4.17%

(~Inf,0], 48.61%

(0.0.005], 41.67%

Fig. 4. Performance comparison between MUfoldQA_Gr and MUfoldQA_G in terms
of average GDT-TS difference.

They are then compared with those of naive consensus. The results
show that our method has lower training errors across the board
and lower test errors in all but CASP5 case.
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Table 2

Performance comparison between Naive Consensus, MUfoldQA_Gr, MUfoldQA_Gp,
and MUfoldQA_G on CASP12 dataset.

Method Average GDT-TS Difference Pearson Correlation
Naive Consensus 0.06222 0.7899
MUfoldQA_Gr 0.04930 0.8183
MUfoldQA_Gp 0.05520 0.8401
MUfoldQA_G 0.04948 0.8401

3.2. CASP12 results

In CASP 12, a total of 85 targets were released for QA, among
which 13 targets (T0908, T0916, T0919, T0924, T0925, T0926,
T0927, T0935, T0936, TO937, T0938, T0939, and T0O940) were can-
celed, and 2 (T0865, T0929) did not show up in the official assess-
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Fig. 5. Performance comparison between MUfoldQA_G and other top QA methods including DeepFold-Boom, ModFOLD6_cor, and Wallner.

Table 3
Performance comparison between Naive Consensus, MUfoldQA_Gr, MUfoldQA_Gp,
and MUfoldQA_G on CASP13 dataset.

Method Average GDT-TS Difference Pearson Correlation
Naive Consensus 0.07365 0.8792
MUfoldQA_Gr 0.05677 0.8818
MUfoldQA_Gp 0.05837 0.8938
MUfoldQA_G 0.05760 0.8938

ment. We used the remaining 70 to evaluate our methods. We used
the database generated in April 2016, the month before CASP 12,
for Blast and HHsearch template search, and used CASP5-11 targets
to train machine-learning models.
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We gather the ground truth by extracting the “GDT_TS” field of
https://predictioncenter.org/download_area/CASP12/results_LGA_
sda/[TargetName].SUMMARY.Iga_sda.txt and matching them back
based on the group name-group code lookup table extracted from
the official website. Then, we calculate the Person correlation as
well as GDT-TS difference and average them across all 70 targets.

Table 2 shows that MUfoldQA_G achieves a high Pearson corre-
lation, the same as MUfoldQA_Gp, and at the same time, low aver-
age GDT-TS difference. It outperforms Naive consensus
significantly: 20% better in terms of average GDT-TS difference
and 6% better in Pearson correlation.

Fig. 5 compares MUfoldQA_G with several top QA methods in
CASP12, including DeepFold-Boom, ModFold6_cor, and Wallner.
We downloaded their performance scores for each target directly
from the CASP website. MUfoldQA_G outperformed DeepFold-


https://predictioncenter.org/download_area/CASP12/results_LGA_sda/
https://predictioncenter.org/download_area/CASP12/results_LGA_sda/
https://predictioncenter.org/download_area/CASP12/results_LGA_sda/
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Table 4
Pearson correlation coefficient between predicted and observed in CASP14 averaged over all targets (top 20 groups).
Ranking Group No Group Name Pearson Sample Size
1 QA446 MUfoldQA_G 0.7460 67
2 QA433 DAVIS-EMAconsensus 0.7426 67
3 QA263 DAVIS-EMAconsensusAL 0.7392 67
4 QAO075 MULTICOM-CLUSTER 0.7313 67
5 QA035 ModFOLDclust2 0.7310 67
6 QA214 MESHI_consensus 0.7279 66
7 QA032 MESHI 0.7276 65
8 QA216 EMAP_CHAE 0.7218 67
9 QA149 Bhattacharya-Server 0.7046 67
10 QA460 Yang_TBM 0.7029 67
11 QA198 MULTICOM-CONSTRUCT 0.6962 67
12 QA140 Yang-Server 0.6894 67
13 QA187 MULTICOM-HYBRID 0.6851 67
14 QA379 Wallner 0.6785 67
15 QA409 UOSHAN 0.6652 67
16 QA275 MULTICOM-AI 0.6557 67
17 QA167 ModFOLD8 0.6185 67
18 QA209 BAKER-ROSETTASERVER 0.6107 67
19 QA183 tFold-CaT 0.6009 67
20 QA024 DeepPotential 0.5810 66

Many more groups omitted. . .

*Seder2020 and Seder2020hard only submitted 1 prediction, making it an unfair comparison when other groups submitted at least 65 predictions. As a result, we removed

these two groups from the ranking.

Table 5
GDT-TS differences between predicted and observed in CASP14, averaged over all
targets (top 20 groups).

Ranking Group No Group Name AGD(x100)
1 QA433_2 DAVIS-EMAconsensus 6.737
2 QA446_2 MUfoldQA_G 7.233
3 QA214_2 MESHI_consensus 7.240
4 QA032_2 MESHI 7.254
5 QA035_2 ModFOLDclust2 7.358
6 QA216_2 EMAP_CHAE 7.396
7 QA460_2 Yang_TBM 8.044
8 QA409_2 UOSHAN 8.365
9 QA140_2 Yang-Server 8.553
10 QA075_2 MULTICOM-CLUSTER 8.886
11 QA263_2 DAVIS-EMAconsensusAL 9.230
12 QA198_2 MULTICOM-CONSTRUCT 9.240
13 QA379_2 Wallner 9.993
14 QA187_2 MULTICOM-HYBRID 10.573
15 QA275_2 MULTICOM-AI 11.100
16 QA257_2 P3De 12.020
17 QA073_2 RaptorX-QA 12.060
18 QA024_2 DeepPotential 12.239
19 QA081_2 MUFOLD 12.557
20 QA209_2 BAKER-ROSETTASERVER 12.682

Many more groups omitted. ..

Boom, ModFOLD6_cor and Wallner by 41%, 27% and 49%, respec-
tively, in terms of average GDT-TS difference and by 7%, 7% and
2%, respectively, in terms of Pearson correlation.

3.3. CASP13 results

Testing on CASP 13 dataset is challenging because only one
fourth of the targets had their true structures publicly released
after the event. Fortunately, the true GDT-TS values of the pre-
dicted models for some targets were publicly released. Addition-
ally, many targets only contain a single domain. The true GDT-TS
value of the predicted model on that domain is also included in
the public release, which could approximate the true GDT-TS value
for the whole structure for the ones that lack of such information.
By using information from multiple sources, we collected a test set
of 79 targets.
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We tested our methods on this data set using a protein database
generated in April 2018, the month before CASP 13, for Blast and
HHsearch template search. We used CASP5-11 datasets for training
machine-learning models. Table 3 shows that MUfoldQA_G per-
formed the best in Pearson correlation and the second best in the
average GDT-TS difference. Again, it outperformed Naive Consen-
sus significantly, with 21.8% better on average GDT-TS difference
and 1.7% on Pearson correlation coefficient.

3.4. CASP14 results

Finally, as an ultimate blind test and comparison with other
state-of-the-art methods worldwide, we participated in CASP14
in 2020. We used the May 2020 Protein Database for Blast and
HHsearch template search and used CASP5-12 datasets for training
machine-learning models. Table 4 shows the performance compar-
ison of the top 20 QA groups in terms of Pearson correlation. Since
the average among all targets is unavailable on CASP official web-
site, we downloaded the per-target Pearson correlation from the
official website [41] and calculated the average ourselves. For the
GDT-TS difference, the averages among all targets are directly
available on the official website [42], as shown in Table 5.

MUfoldQA_G performed very well in CASP14 and ranked No. 1
in Pearson correlation coefficient and No. 2 in average GDT-TS dif-
ference, respectively. It is one of the few methods that achieved
high ranking on both performance metrics.

4. Conclusions

This paper presented three new QA algorithms, MUfoldQA_Gp,
MUfoldQA_Gr and MUfoldQA_G. MUfoldQA_Gp effectively combi-
nes information from template and reference models. MUfold-
QA_Gr employs a new two-stage prediction method and
performs iterative resample-and-retrain that allows the informa-
tion from the distribution of the reference models being used dur-
ing training and prediction to create improved consensus-like
predictors. MUfoldQA_G effectively combines the results of
MUfoldQA_Gp and MUfoldQA_Gr through simultaneously optimiz-
ing two QA performance metrics, Pearson correlation and average
GDT-TS difference.
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We tested these methods on the CASP12 and CASP13 datasets,
and eventually participated in CASP14. On CASP12 and CASP13
datasets, the methods outperformed existing state-of-the-art QA
methods. In CASP 14 in 2020, MUfoldQA_G ranked No. 1 in Pearson
correlation coefficient and No. 2 in the average GDT-TS difference
among all QA teams.

Just like other consensus-based QA algorithms, our algorithm
will not perform well when all reference models are of low quality.
To reduce the impact of the reference model pool quality, further
work could be done on introducing independent models generated
by one or more protein structure prediction software. Using
variable-sized adaptive reference model selection instead of a
fixed-percentage of top models could also potentially improve
the performance of the algorithm.
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