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Abstract: Gap junctions are molecular structures that allow communication between neighboring
cells. It has been shown that gap junctional intercellular communication (GJIC) is notoriously reduced
in cancer cells compared to their normal counterparts. Ouabain, a plant derived substance, widely
known for its therapeutic properties on the heart, has been shown to play a role in several types of
cancer, although its mechanism of action is not yet fully understood. Since we have previously shown
that ouabain enhances GJIC in epithelial cells (MDCK), here we probed whether ouabain affects GJIC
in a variety of cancer cell lines, including cervico-uterine (CasKi, SiHa and Hela), breast (MDA-MB-
321 and MCF7), lung (A549), colon (SW480) and pancreas (HPAF-II). For this purpose, we conducted
dye transfer assays to measure and compare GJIC in monolayers of cells with and without treatment
with ouabain (0.1, 1, 10, 50 and 500 nM). We found that ouabain induces a statistically significant
enhancement of GJIC in all of these cancer cell lines, albeit with distinct sensitivity. Additionally, we
show that synthesis of new nucleotides or protein subunits is not required, and that Csrc, ErK1/2
and ROCK-Rho mediate the signaling mechanisms. These results may contribute to explaining how
ouabain influences cancer.

Keywords: gap junctions; ouabain; cancer

1. Introduction

Ouabain is a compound of remarkable interest that—because of its chemical properties
—has been useful to humans for a long time, formerly for hunting and war purposes and
later as a medicine to treat hypotension and cardiac arrhythmias. Ouabain is a cardiac
glycoside, produced as a secondary metabolite by plant species Acokanthera schimperi and
Strophanthus gratus, both native to eastern Africa [1]. It is known that ouabain induces a
positive inotropic effect on the heart because it inhibits Na/K ATPase, leading to an increase
in intracellular sodium, which in turn reduces the activity of the sodium-calcium exchanger
(NCX), which elicits an increased intracellular calcium concentration, that enhances the
cardiac output.

Ouabain has been used as a cardiotonic in the past but, due to its narrow therapeutic
index, it has now been discontinued [2]. However, two factors have again aroused interest in
this substance: firstly, the fact that ouabain has been found to be endogenously expressed in
some mammal species, including humans, has led to it being considered as a hormone [3–6]
and secondly, that Na/K ATPase has now been attributed a new role, as the receptor that
transduces the binding of ouabain to trigger one or more signaling cascades, leading to
genetic and functional modifications of various cell processes [7,8].

In addition to the well-known effects of ouabain on the cardiovascular system and
blood pressure control, compelling findings have revealed new roles in fundamental
cellular aspects, such as proliferation, apoptosis, cell adhesion, differentiation and migra-
tion [9,10]. These findings have led to ouabain being considered as a promising novel
therapeutic agent to fight cancer [11,12].
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Gap junctions are molecular structures consisting of clusters of channels co-expressed
between two neighboring cells, allowing them to exchange ions and small molecules.
A gap junction channel consists of two hemichannels (connexons), one contributed by
each cell. In turn, each connexon consists of six connexin subunits [13–15]. From the
pioneering work of Loewenstein and Kanno, which describes that cancerous liver cells
have reduced gap junctional intercellular communication (GJIC) [16,17], experimental
evidence has accumulated demonstrating a relationship between GJIC and the expression
of connexins and cancer-related properties. On the one hand, it has been described that
decreased connexin expression and loss of GJIC is, in many instances associated with
cancer onset and progression [18,19] and conversely, that re-expression of connexins in
cancer cells normalizes cell growth control and reduces tumor growth [20]; however on
the other hand, several reports show that re-expression of connexins and intense GJIC are
associated with a high invasive potential and metastatic capability of cancer cells [21–23].

We showed that ouabain, in a nanomolar range of concentration, influences several
properties of epithelial cells, including tight junctions, adherens junctions and ciliogen-
esis [24–26]. Additionally, by dye transfer assays, as well as capacitance measurements,
we have shown that it enhances GJIC within minutes of treatment, with a peak response
after one hour [27]. We have also shown that: (1) connexins 32 and 43 are involved in
this response; (2) no synthesis of new connexin subunits is required within one hour of
treatment and instead the process relies on a relocation of previously synthesized connexin
subunits; and (3) that Na/K ATPase is the primary receptor that mediates a signaling cas-
cade, involving c-Src and ERK1/2 [28]. These results prompted us to test whether ouabain
influences GJIC in cancer derived cell lines. For this purpose, we selected several cancerous
cell lines derived from distinct origins, including cervico-uterine (CaSki, SiHa and HeLa),
breast (MCF7, MDA-MB-231), lung (A549), colon (SW480) and pancreas (HPAF-II). In each
of them, we made dye transfer assays, to measure and compare GJIC at several ouabain
concentrations in the nanomolar range.

2. Results

To determine whether ouabain influences GJIC we made dye transfer assays in the
different cancer cell lines. The number of stained cells per case (SCPC) was an estimate of
GJIC. First, we made an ANOVA analysis (Kruskal—Wallis), to probe the hypothesis that
ouabain induces a significant change on GJIC. Next, we compared the results of each of the
ouabain concentrations with the control (Dunn test) to determine which concentrations
produced a statistically significant difference. In addition to this, we fitted the data, by
nonlinear regression, to a dose-response curve (Hill Equation) to obtain the parametric
values (EC50 and SCPCmax). This experimental approach and analysis were performed
separately on each of the cell lines described above. The results, as well as the analysis, are
shown in Figures 1–3 and summarized in Tables 1 and 2. Figures 1–3 consist of several sets,
one per each cell line. In turn each set shows, in the upper part, a series of representative
images of clusters of stained cells, one for each concentration of ouabain, including the
control. The bottom left part presents a bar chart comparing the mean value of SCPC
(mSCPC) at each ouabain concentration with the control group. The bottom left part shows
the same data plus the fitted curve. The results of the statistical analyses are summarized
in Table 1 and the parametric values obtained after fitting of data to Hill equation, are
summarized in Table 2. Figure 1 shows the results of cervico-uterine cancer cell lines (CaSki,
SiHa and HeLa), Figure 2 shows the results of breast cancer cell lines (MDA-MB-231 and
MCF7) and Figure 3 shows the results of lung (A549), colon (SW480) and pancreas (Hpaf-II)
cancer cell lines. As figures and Table 1 show, ouabain induced a statistically significant
increase of GJIC in all the cell lines tested. This conclusion is demonstrated by the fact that
the Kruskal-Wallis test was significant (p < 0.001) in all of them. Multiple comparison tests
(Duncan method) indicate that ouabain induced a significant change from 1 nM in almost
all cell lines, except MCF7 in which a significant change was observed from 0.1 nM and
A549 where it occurred from 10 nM. As the bar charts show, the profile of the dose-response
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relationship had similar characteristics in the different cell lines. Under control conditions,
mSCPC was between one and two, confirming scarce GJIC. In most of the cell lines, mSCPC
increased with the concentration of ouabain to a maximum, and then decreased slightly. In
SiHa, MCF7, A549, SW480 cell lines, the maximum was reached at 50 nM, while in CaSki
and Hpaf-II it was at 10 nM. In MDA and HeLa cells there was rather a sustained increase
in SCPC within the range tested.
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comparing the number of stained cell per cluster (SCPC) after one of them had been injected with 

Lucifer Yellow, from monolayers that were either untreated (0 nM) or treated for one hour with 

ouabain in the concentration indicated (nM). In the bottom part: (Left) Histogram showing the 

average (± SE) SCPC in monolayers of confluent cells that were treated with ouabain, for one hour, in 

the concentrations indicated at the bottom of the bars. At the top of each bar the number of repeats 

after three independent trials is shown. Asterisks indicate a statistically significant difference 

compared to the control group, (Dunn’s method), * indicates p < 0.05, ** indicates p < 0.001. Scale bar 

Figure 1. Effect of ouabain on gap junctional intercellular communication (GJIC) of cervico-uterine cancer cell lines (CasKi,
SiHa and Hela). Each set shows, in the top part: representative images comparing the number of stained cell per cluster
(SCPC) after one of them had been injected with Lucifer Yellow, from monolayers that were either untreated (0 nM) or
treated for one hour with ouabain in the concentration indicated (nM). In the bottom part: (Left) Histogram showing the
average (± SE) SCPC in monolayers of confluent cells that were treated with ouabain, for one hour, in the concentrations
indicated at the bottom of the bars. At the top of each bar the number of repeats after three independent trials is shown.
Asterisks indicate a statistically significant difference compared to the control group, (Dunn’s method), * indicates p < 0.05,
** indicates p < 0.001. Scale bar length = 100 µM. (Right) A semi-log plot shows mSCPC ± SE (red) and the curve (blue)
resulting after fitting data to a logistic equation.
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Figure 2. Effect of ouabain on GJIC of breast cancer cell lines (MDA-MB-231 and MCF7). Each set shows, in the top part:
representative images comparing the number of stained cell per cluster (SCPC) after one of them had been injected with
Lucifer Yellow in monolayers that were either untreated (0 nM) or treated for one hour with ouabain in the concentration
indicated (nM). In the bottom part: (Left) Histogram showing mSCPC (± SE) in monolayers of confluent cells that were
treated with ouabain, for one hour, in the concentrations indicated at the bottom of the bars. At the top of each bar the
number of repeats after three independent trials is shown. Asterisks indicate a statistically significant difference compared
to the control group, (Dunn’s method), * indicates p = < 0.05. Scale bar length = 100 µM. (Right) A semi-log plot shows, the
average data and the curve (blue) resulting after fitting data to a logistic equation.

To obtain the parametric values of a dose–response relationship (EC50 and SCPCmax)
we fitted the data by nonlinear regression to a logistic, dose–response equation of three or
four parameters. In all cases, a three parameter equation fitted the data, except in the case
of MDA that required a four parameter equation, as shown in the figures and in Table 2.
Among the cell lines derived from cervico-uterine cancer, Caski was the one that showed
the greatest sensitivity, with an EC50 of 0.6 nM and an SCPCmax of 6; the least sensitive
was Hela with an EC50 of 5.8 and an SCPCmax of 5.9. In both breast cancer-derived
lines, ouabain induced an increase in SCPC which, while statistically significant, was
comparatively smaller compared to that of the other cell lines, with a SCPCmax of only
2.7 and 3.8 for MDA and MCF7, respectively, and an EC50 of 0.002 nM for MCF7 cells and
37.8 nM for MDA cells. The other cell lines had parameters somewhat comparable to that
of the cervical cancer-derived lines, with an EC50 of 0.3, 0.6 and 2.0 for SW480, Hpaf-II and
A549, respectively, and an SCPCmax of about 5 for all of them.

2.1. Octanol Suppresses the Enhancement of GJIC Induced by Ouabain

To prove that neighboring cells get stained through gap junctions, we tested, in MCF7
and MDA-MB-231 cells, the effect of octanol, a widely known gap junction blocker [29,30],
on the response observed by ouabain. In both cell types we compared mSCPC with and
without treatment of ouabain and octanol. As shown in Figure 4, treatment of MCF7 cells
with octanol, without ouabain did not produce a significant change of mSCPC (1.1 ± 0.03,
n = 96) compared to that of control condition, (1.2 ± 0.04, n = 97); treatment with ouabain,
without octanol produced a significant increase in mSCPC (4.8 ± 0.38, n = 96) compared
to control; treatment with ouabain + octanol reduced significantly mSCPC (1.3 ± 0.05)
compared to that obtained with ouabain only (Mann—Whitney Rank Sum Test, p < 0.001).
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Figure 3. Effect of ouabain on GJIC in lung (A549), colon (SW480) and pancreas (Hpaf-II) cell lines. Each set shows, in
the top part: representative images comparing the number of stained cell per cluster (SCPC) after one of them had been
injected with Lucifer Yellow in monolayers that were either untreated (0 nM) or treated for one hour with ouabain in the
concentration indicated (nM). In the bottom part: (Left) Histogram showing the mSCPC (± SE) in monolayers of confluent
cells that were treated with ouabain, for one hour, in the concentrations indicated at the bottom of the bars. At the top of
each bar the number of repeats after three independent trials is shown. Asterisks indicate a statistically significant difference
compared to the control group, (Dunn’s method), * indicates p = < 0.05, ** indicates p = < 0.005). Scale bar length = 100 µM.
(Right) A semi-log plot shows, the average data and the curve (blue) resulting after fitting data to a logistic equation.
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Table 1. Statistical analysis of the effect of ouabain on cancer lines. The columns below the pink panel show, for each concentration tested: The mSCPC, standard error, number of repeats
and the result of a paired comparison vs. control (p < 0.05). The green part shows the result of an ANOVA (Kruskal–Wallis) test, the H value, degrees of freedom, and whether or not it is
statistically significant (p < 0.001).
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Table 2. Parametric values resulting after adjusting the experimental data, by regression, to the
dose–response curve, logistics of three or four parameters, the last column shows the value of the
correlation coefficient.

Cell Line SCPCmax Hill Coef EC50 S0 R
CaSki 6.0 −0.7 0.6 0.6

SiHa 5.3 −0.4 2.1 0.7

HeLa 5.9 −0.4 5.8 0.8

MDA 2.7 −1.0 37.8 1.9 0.5

MCF7 3.8 −0.4 2.1 × 10−3 0.3

A549 5.3 −0.5 2.0 0.8

HPAF1 5.1 −0.8 0.6 0.7

SW480 5.7 −0.6 0.3 0.7
Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 2 of 21 
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Figure 4. Octanol suppresses the enhancement of GJIC by ouabain. The effect of octanol was assayed
in MCF7 (upper) and MDA-MB-231 (lower). The bar chart compares mSCPC (±SE) obtained after
three independent trials of dye transfer assays, cells were treated in the conditions indicated at
the bottom part of each bar. A representative image of each treatment is shown above the bars.
The numbers above each bar indicate the total number of repeats. Asterisks indicate a statistically
significant difference (Mann—Whitney Rank Sum Test. * indicates p < 0.05). Scale bar = 100 µm.
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Treatment of MDA-MD-231 cells with octanol showed similar results: The mSCPC
of cells treated with octanol (1.4 ± 0.07, n = 100) was not significantly different from
control (1.46 ± 0.07, n = 100); cell treated with ouabain had a mSCPC (3.06 ± 0.10, n = 100)
significantly higher than control (p < 0.001); treatment with ouabain + octanol reduced
significantly the mSCPC (1.59 ± 0.07, n = 100), compared to that obtained with ouabain
only (p < 0.001).

These results demonstrate, therefore, that neighboring cells acquire the staining of
Lucifer Yellow trough gap junctions.

2.2. No Synthesis of New Units of Proteins or mRNA Is Required for Ouabain to Induce the
Change of GJIC

As we described previously, we tested the effect of ouabain on GJIC by varying the
concentration of ouabain, but maintaining a constant time of treatment of one hour, this
is because in our previous studies with MDCK cells we observed that this is the time at
which a maximum response is achieved. In the same previous studies, we showed that
during this time no synthesis of new protein units is required to achieve the response.
Therefore, in this work we wondered whether cancer derived cell lines require synthesis of
RNA, or new protein units for ouabain to induce the increase in GJIC. For this purpose, we
probed the effect of cycloheximide, a protein synthesis inhibitor, and actinomycin D, an
mRNA synthesis inhibitor, on ouabain-induced GJIC. We conducted three independent
dye transfer trials on MDA and MCF7 cells to measure and compare mSCPC under the
following conditions: control (untreated), or treated with cycloheximide, actinomycin D,
ouabain + cycloheximide, ouabain + actinomycin D. As depicted in Figure 5, MCF7 cells
treated with ouabain had a mSCPC of 5.3 ± 0.2 (n = 90) which was statistically different
(p < 0.001, Mann–Withney) compared to the control (1.5 ± 0.1, n = 90). The mSCPC of
cells treated with cycloheximide (1.4 ± 0.1, n = 90) or actinomycin D (1.5 ± 0.1, n = 91)
were not statistically different from the control (H = 1.2, p = 0.5, Kruskal–Wallis). This
indicates that neither drug has an effect per itself. The mSCPC of MCF7 cells treated with
ouabain + cycloheximide (5.4 ± 0.2, n = 90) or ouabain + actinomycin D (5.7 ± 0.2, n = 92)
were not statistically different (H = 2.1, p = 0.34) from that of ouabain (5.3 ± 0.2, n = 90),
indicating that neither synthesis of new RNA, nor proteins units are required for ouabain
to enhance GJIC. The results with MDA cells were similar, as the mSCPC of cells treated
with ouabain (4.3 ± 0.2, n = 90) was statistically different (p < 0.001, Mann–Withney) to
the control (1.5 ± 0.1, n = 90). The mSCPC of cells treated with cycloheximide (1.7 ± 0.1,
n = 86) or actinomycin D (1.6 ± 0.1, n = 90) were not statistically different from the control
(H = 1.4, p = 0.5, Kruskal–Wallis). The mSCPC values of MDA cells treated with ouabain
+ cycloheximide (5.4 ± 0.2) or ouabain + actinomycin D (5.7 ± 0.2) were not statistically
different that of ouabain (H = 3.1, p = 0.21) indicating that neither synthesis of new RNA,
nor protein subunits are required for ouabain to enhance GJIC. Therefore, these results
indicate that under the experimental conditions used, synthesis of new units of RNA or
proteins is not required for ouabain to enhance GJIC in MDA, nor in MCF7 cells.

2.3. Involvement of c-Src, ERK1/2 and Rho-ROCK in Ouabain-Induced GJIC

It has been described that, in addition to its role as an electrogenic pump, Na/K
ATPase also acts as a signal transducer, coupled to a signalosome, that activates several
intracellular signaling pathways [31,32], that may include a c-Src and an IP3-Receptor, both
of which activate ERK1/2, which in turn activate diverse cellular processes such as cell
growth, apoptosis, and cell motility [33–35]. It may also include Rho, a family of small
GTPases that participate in a wide variety of cellular functions such as vesicular trafficking,
the cell cycle, transcriptomal dynamics, cell polarity, as well as in the organization and
modulation of cell junctions by the cytoskeleton [36–39]. ROCK (Rho-associated protein
kinase) is a serine-threonine kinase that as an effector of Rho A, has been reported to be
involved in the maintenance of Tigh Junction integrity in endothelial cells [40].
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We have shown that both c-Src and ERK1/2 participate in the signaling pathways by
which the binding of ouabain to the Na/K ATPase enhances GJIC in epithelial cells [27,28].
For this reason, we considered the possibility that c-Src, ERK1/2 and Rho-ROCK are
components participating in the signaling pathway by which ouabain produces changes
in GJIC in cancer cell lines. To probe this, we conducted the same experimental approach
as already described, in order to compare the effect that ouabain has on GJIC by itself,
with that obtained when cells are also treated with specific inhibitors of c-Src, ERK1/2
and Rho-ROCK. To test the involvement of c-Src, we analyzed the effect of PP2 (10 µM
for 1 h), a compound that has been shown to be a potent and highly selective Src family
tyrosine kinase inhibitor [41–43]. To test the participation of ERK1/2, we assayed the
effect of PD98059 (25 µM, 1 h), a compound that has been demonstrated to be a potent
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(IC50 = 4 µM), highly selective and cell-permeable inhibitor of MEK1 and MEK2 [44–48].
To test the involvement of Rho-ROCK, we analyzed the effect of 1 µM Y-27632 (Y27),
a cell-permeable, highly potent and selective inhibitor of ROCK, a Rho-associated protein
kinase [49].

We assayed the effect of these inhibitors in MCF7 and MDA-MB-231 cells. As shown
in Figure 6, the mSCPC after three independent trials were, for MDA: the control (1.3 ± 0.1,
n = 88), PD (1.5 ± 0.1, n = 86), PP2 (1.5 ± 0.1, n = 89), Y27 (1.4 ± 0.1, n = 88); ouabain
(4.1 ± 0.2, n = 86), ouabain + PD (1.8 ± 0.1, n = 85), ouabain + PP2 (1.9 ± 0.1, n = 88), ouabain
+ Y27 (2.1 ± 0.1, n = 88). For MCF7: the control (1.4 ± 0.1, n = 84), PD (1.4 ± 0.1, n = 85),
PP2 (1.4 ± 0.1, n = 84), Y27 (1.4 ± 0.1, n = 83), ouabain (5.4 ± 0.2, n = 84), ouabain + PD
(2.1 ± 0.1, n = 83), ouabain + PP2 (2.1 ± 0.1, n = 84), ouabain + Y27 (2.2 ± 0.1, n = 83).
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In both cell lines, inhibitors themselves did not produce any significant effect on
GJIC. This is concluded from the fact that, when comparing the groups treated with
inhibitors only versus the control, by testing using ANOVA (Kruskal–Wallis), no statistically
significant difference was found for MCF7 (H = 0.82, p = 0.85), or for MDA (H = 4.0, p = 0.25).
However, when comparing the group treated only with ouabain with the groups treated
with the inhibitors plus ouabain, the Kruskal–Wallis test showed that there is a statistically
significant difference for both MCF7 (H = 163, p < 0.001) and MDA (H = 114, p < 0.001).
Subsequently, multiple comparison tests against the control (Dunn’s method) indicate a
statistically significant difference (p < 0.05) for all inhibitors, on both cell lines. These results
indicate that in both cell lines (MCF7 and MDA-MB-231) cSrc, ERK1/2 and Rho-ROCK are
included in the signaling mechanisms involved in the effect of ouabain on GJIC.

3. Discussion

Cancer is one of the most serious illness worldwide. Despite great medical and
scientific advances, there is still a long way to go to reduce the number of people who die
in the world as a result of this disease. It is known that cells become cancerous when they
lose control of growth and differentiation, which in normal cells is controlled—among
other things—by contact inhibition.

Recently it has been found that cardiac glycosides, in addition to their cardiotonic
action, influence a wide variety of cellular processes, many of them related to the devel-
opment and progression of cancerous tumors, such as proliferation, differentiation and
motility [1–6]. For this reason, some cardiac glycosides, including ouabain, are currently
subjects of interest as possible new therapeutic agents to fight cancer.

It is known that there is a relationship between GJIC and cancer, however until now,
whether cardiac glycosides influence GJIC in cancer cells has not been explored. For this
reason, in this work we tested whether ouabain influences GJIC in a variety of cell lines
derived from cancer of cervical origin, breast, lung, colon and pancreas. In each of these
cell lines, we evaluated the effect that treatment with ouabain, in concentrations within the
nanomolar range (0.1, 1, 10, 50 and 500), produces on GJIC. For each of these concentrations,
we injected a certain number of cells with luc ifer yellow, counted the number of cells
dyed as a result of injection and statistically compared the average number of cells stained
against the control (untreated) group. The fact that the ANOVA (Kruskal–Wallis) test
produced significant values (p < 0.001) for all selected lines leads us to conclude that ouabain
influences GJIC in all these cancer-derived cell lines. Subsequently, multiple comparison
tests (Dunn’s method), for each of the ouabain concentrations against the control, indicate
that the increase in GJIC begins to be significant from different concentrations, which in
most cell lines starts from 1 nM, except for MCF7 cells where this is observed from 0.1 nM.
It is interesting to note that in most cell lines, the average number of stained cells increases
with concentration to a maximum and then seems to be reduced. In MCF7 cells the average
number of stained cells increases at 0.1 nM, then decreases at 1 nM and then increases
back to a maximum of 50 nM, followed by a noticeable reduction to 500 nM. Additionally,
the behavior of MDA cells is remarkable; the response progressively increased with the
dose, without reaching a maximum or a subsequent decrease. Additionally, the EC50
value—calculated from a data regression analysis to fit a dose–response logistic curve, was
variable, with the smallest values noted for MCF7 cells (2 pM) and the largest for MDA
(37 nM).

Our results are remarkably interesting, considering the background that relates gap
junctions, GJIC and cancer: since the first observations made by Loewestein and Kanno
more than 60 years ago [15,16], the hypothesis of a relationship between GJIC and cancer
has been strengthened with a considerable amount of evidence. On the one hand, an
inverse relationship has been shown, i.e., that lack of communication or poor expression
of conexins is related to the manifestation of carcinogenic characteristics, but on the other
hand, evidence has also been described that shows a direct relationship, i.e., that intense
GJIC or overexpression of conexins promotes the development of tumors and even helps
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migrating tumor cells to invade the surrounding tissue and intra or extravasate. It would
appear that the stage of tumor development determines the role that gap junction play [21].
In support of an inverse relationship, it has been described, for instance that: (1) cancer cells,
derived from several distinct tissues, notoriously decrease GJIC, as compared to normal
tissue [50–53]; (2) chemical agents that block GJIC also have carcinogenic properties [54];
(3) experimental suppression of connexin expression makes cells more susceptible to
becoming carcinogenic [55–57]; and (4) transfection of heterologous connexins in cancer
cells causes normalization of cell growth control and reduced tumor growth [19,58]. While
it is strongly evident that a relationship between GJIC and cancer exists, it is unclear
whether this is due to the lack of communication itself or the reduced expression of the
connexins that produce it. There are diverse studies showing that it is the lack of GJIC that
leads to cancer [15,16,59,60]. There is also a remarkable amount of evidence showing an
association between the downregulation of connexins and carcinogenesis [19]. Additionally,
there are studies suggesting that connexins have a role as tumor suppressors, regardless of
their role as subunits of connexons [61,62]. While the vast majority of the evidence indicates
an indirect relationship between gap junctions and cancer, several cases, reported more
recently, indicate that intense GJIC or overexpression of connexins in some tumors—or
at later tumor stages—encourages tumor growth and their malignity [18,21–23]. Some
studies indicate that the diapedesis/extravasation process may depend on communication
between cancer and endothelial cells [63–65].

GJIC is due to expression of gap junction channels or connexons, which in turn consist
of six connexins (Cx). There are 21 known connexin isoforms in the human genome, which
are named according to their molecular weight (in kD). Most cells and tissues express
several connexin isoforms [65,66].

It has been described that lung tissue expresses Cx26, Cx32, Cx37, Cx40, Cx43, and
Cx45 [67]; breast tissue: Cx26, Cx32, and Cx43 [68,69]; cervical tissue expresses Cx26,
Cx30, Cx40, and Cx43 [70] and prostate tissue has been shown to express Cx26, Cx32, and
Cx43 [71,72]. It is worthy to note that, within this variety of expressed connexins, Cx43
appears almost invariably. It is also interesting that when cells become malignant, there is a
marked reduction in the expression of various connexins, among them, again connexin 43
stands out (Cx43) [73,74]. Therefore, it is likely that Cx43 plays a special role in the context
of the relationship between gap junctions, GJIC and cancer. Because in this work we use a
purely functional approach, we cannot determine the types of connexins involved in the
increase in ouabain-induced GJIC, or even if the mechanisms involved are common to all
types of cancer cells tested here but, in view of the similarity of the results described here
with those found in MDCK epithelial cells, in which we showed that the Cx43 is a main
player [28], it is possible that Cx43 could be involved in the response obtained from some
of the cell types tested here.

Another important fact to highlight is that ouabain was able to induce GJIC in all cell
lines, regardless of their phenotype. As already described, in this study we included several
cell lines derived from different types of cancer that, although classified as epithelial, differ
markedly in their morphological and functional properties, among them MDA-MB-231
stands out. These cells, which have a mesenchymal-like phenotype, have lost their epithelial
phenotype, instead exhibiting an elongated spindle-like shape, casting intertwining cellular
processes. In addition to their obvious morphology, it has been reported that MDA-MB-
231 cells do not express E-cadherin, one of the most representative proteins of epithelial
cells [75]. In addition, component proteins of tight junctions, such as occludins and claudins
are downregulated or silenced [76]. On the other hand, studies suggest that, in epithelial
cells, gap junctions operate in a dependent and coordinated manner on the other cell–cell
contact structures (tight junctions, adherens junctions and demosomes [77–83].

For this reason, we assumed that the MDA-MB-231, would not respond by increasing
GJIC in response to treatment with ouabain but, as shown, they did. This leads us to
believe that the expression of an epithelial phenotype is not an indispensable requirement
for ouabain to exert its inducing effect on GJIC.
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The fact that no synthesis of mRNA nor proteins is required, leads us to suggest that
ouabain produces this effect through the relocation of subunits of previously synthesized
connexins, or to a change in the opening kinetics of the gap junctions already assembled
in the membrane. On the other hand, the change in GJIC induced by ouabain, although
statistically significant was not very conspicuous. This suggests that ouabain is not a
decisive factor influencing GJIC, but rather it has a contribution that may have to be
synergized by other molecular mechanisms still not characterized. It should also be noted
that in these studies we used a time range of only one hour, in which, as we describe, we
found that no synthesis of mRNA or proteins is required, but that does not exclude the
possibility that, with longer treatment times, ouabain will operate other mechanisms that
induce protein synthesis and therefore could produce a more conspicuous response.

Finally, we must realize that, while in this work we have shown that ouabain induces
an increase in GJIC, this does not necessarily imply that it is one of the mechanisms involved
in therapeutic action against cancer, although it is a precedent worth considering to address
subsequent studies.

4. Materials and Methods
4.1. Cell Culture

CaSki is an epithelial cell line derived from epidermoid carcinoma of the cervix
metastatic to the small bowel mesentery. It was obtained from a 40 year old Caucasian
female who had previously undergone irradiation and surgical treatment of the malig-
nancy [84]. CaSKi cells were obtained from ATCC (CRL-1550) and cultured in RPMI1640
medium, supplemented with penicillin-streptomycin 10,000 U/µg/mL (Cat. 15140122,
Thermo Fisher Scientific, Waltham, MA, USA) and 10% GIBCO FBS (Thermo Fisher,
A4766801).

SiHa is an epithelial, adherent cell line, derived from an Asian, 55 year old female who
suffered from human papillomavirus-related cervical squamous cell carcinoma [85]. SiHa
cells were obtained from ATCC (HTB-35) and cultured in DMEM medium, supplemented
with penicillin–streptomycin 10,000 U/µg/mL and 10% GIBCO FBS. Hela cells were obtained
from Dr. Camacho (Department of Pharmacology, CINVESTAV, Mexico City, Mexico).

HeLa is an epithelial, adherent cell line, derived from a cervical adenocarcinoma,
taken from a black, 31 year old female. It was the first human cell line to prove successful
in vitro [86]. Hela cells were cultured in DMEM medium, supplemented with penicillin-
streptomycin 10,000 U/µg/mL and 10% GIBCO FBS.

MDA-MB-231 is an adherent, epithelial cell line derived from a pleural effusion of a
51 year old Caucasian female with a metastatic mammary adenocarcinoma. It is a highly
aggressive, invasive and poorly differentiated triple-negative breast cancer (TNBC) cell
line, as it lacks oestrogen receptor (ER) and progesterone receptor (PR) expression, as well
as HER2 (human epidermal growth factor receptor 2) amplification [87]. MDA-MB-231
were obtained from ATCC (HTB 26) and cultured in RPMI 1640 media supplemented with
10,000 U/µg/mL penicillin-streptomycin and 10% FBS.

MCF7 is an adherent cell line with characteristics of differentiated mammary epithe-
lium, derived from an invasive breast ductal carcinoma, taken from a Caucasian, 67 year
old female [88]. MCF-7 cells were obtained from ATCC (HTB-22) and cultured in DMEM
F-12 media, supplemented with 10,000 U/µg/mL penicillin–streptomycin and 10% FBS.

A549 is an adherent, epithelial cell line, derived from explant of a biopsy of lung
carcinoma of a 58 year old caucasian male [89]. A549 cell line was kindly donated by
Dr. Javier Camacho (Department of Pharmacology, CINVESTAV). A549 cells were cultured
in F12K medium, supplemented with penicillin–streptomycin 10,000 U/µg/mL and 10%
GIBCO FBS.

SW480 is an adherent, epithelial cell line, isolated from a primary adenocarcinoma
arising in the colon [90]. The SW480 cell line was kindly donated by Dr. Camacho (Depart-
ment of Pharmacology, CINVESTAV). A549 cells were cultured in DMEM/F12 medium
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(Invitrogen, 12400024, Thermo Fisher Scientific, Mexico City, Mexico), supplemented with
penicillin-streptomycin 10,000 U/µg/mL and 10% FBS.

HPAF-II is an adherent, epithelial cell line, derived from the ascitic fluid of a male,
44 year old, Caucasian patient with pancreatic adenocarcinoma [91,92]. The HPAF-II
cell line was kindly donated by Dr. Jose Segovia (Department of Physiology, CINVES-
TAV). HPAF-II cells were cultured in RPMI1640 medium, supplemented with penicillin–
streptomycin 10,000 U/µg/mL and 10% FBS. All cell lines were cultured in a 5% CO2
atmosphere at 36.5 ◦C.

For dye transfer assays, cells were seeded at 80% confluence on sterile glass coverslips,
deposited on 24-well multiwall plates (Corning, Costar plates-Merck, Darmstadt, Germany).
Once confluence was reached, cells were depleted, by reducing FBS to 1% during 24 h
before ouabain treatments.

4.2. Measurement of Gap Junctional Intercellular Communication by Dye Transfer Assays

Cells to be tested were seeded at 80% confluence on glass coverslips and incubated
with a medium containing 10% Fetal Bovine Serum. After 24 h the FBS in the culturing
media was reduced to 1%, to avoid the possibility of contaminating ouabain, and the cells
were kept in this, depleted media, for 24 h before treatments. Subsequently, the coverslips
were incubated for one hour with depleted media plus ouabain at different concentrations
in the nanomolar range (0, 0.1, 1, 10, 50 and 500 nM). Micropipettes were elaborated from
borosilicate glass capillaries tubes (Kimax, 34500-99) on a vertical David-Kopf puller (DKI-
700c). Those with a tip electrical resistance of 5–10 MOhms were backfilled with a saline
solution containing 120 mM KCl, 5 mM NaCl, 1 mM MgCl2, and 5 mM HEPES, (pH 7.4)
and Lucifer Yellow (1%). After filling up, pipettes were attached to holder device, which
was mounted to a micromanipulator (PCS-750; Burleigh Instruments, NY, USA). Coverslips
on which cell monolayers had been grown, were placed in a translucent chamber, filled
with PBS plus Ca2+ (1.8 mM) solution, at room temperature. For impalement of cells the
chamber was mounted on the stage of an inverted microscope (Diaphot 300; Nikon, Tokyo,
Japan) equipped with epifluorescence. Three independent trials were made on each cell
line. On each trial, about 30 repeats were made per coverslip. In each repeat, cells were
randomly chosen, from among those constituting the monolayer, then impaled and injected,
one at a time, using a pneumatically driven microinjecting device (IM300; Narishige, NY,
USA). After about 30 to 50 cells injected, the coverslips were rinsed with PBS and fixed
by dipping into 4% paraformaldehyde, then rinsed (3 ×) with PBS and mounted using
VECTASHIELD® (H-1000; Vector Laboratories, Burlingame CA, USA). Eight-bit images
of the fluorescent cells were acquired at room temperature using a Zeiss M200 inverted
microscope equipped with a Plan-NeoFluar 63 × N.A. 1.25 objective lens, an AxioCam
MRm camera and Axovision 4.8 software (www.axovision.com). The captured images were
imported into FIJI Is Just ImageJ software (release 2.8, NIH, Bethesda, MD, USA) to adjust
the brightness and the contrast and GIMP (release 2.8.10, NIH) to compose the figures.

4.3. Chemicals

Ouabain (O-3125; Sigma-Aldrich, St. Louis, MO, USA) was prepared in DMSO. Lucifer
Yellow was obtained from Sigma-Aldrich (67764-47-5). In the corresponding assays cells
were exposed to 10 µM PP2, an inhibitor of c-Src kinase (MEK-1; 513000; Merck Millipore,
Darmstadt, Germany) and 25 µM PD98059, an inhibitor of mitogen extracellular kinase-1
(529573; Merck Millipore). Y-27632 (Merck KGaA, Cat 688000, Darmstadt, Germany), was
prepared as a 10 mM stock in water, and used at a concentration of 1 µM.

4.4. Statistical Analyses

The data collected in this work was processed and analyzed statistically using the
Microsoft Office 365 Excel application and Sigmaplot 12.5. The data were generated by
counting the stained cells of each cluster, the product of the injection of a single cell. The
results shown are the product of three independent experimental trials. The number of
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data points is indicated in the figures and in the text. The data are represented as the
average values and dispersion as the standard error of the mean (SE). Statistical analysis,
as indicated in the text and figures, was contained in a ONEWAY test, followed by multiple
comparison tests, in the event that the data did not meet the normality criterion required
for a parametric analysis, the Kruskal–Wallis non-parametric test was used, followed by a
paired comparison test with respect to a control (Dunn’s method). A minimum criterion of
p < 0.01 was considered for a statistically significant difference.

Author Contributions: Conceptualization, M.C. and A.P.; data curation, M.S.-R. and A.P.; formal
analysis, M.S.-R., M.C. and A.P.; funding acquisition, M.C. and A.P.; investigation, M.S.-R., L.J. and
A.P.; methodology, M.S.-R., L.J. and A.P.; supervision, M.C. and A.P.; writing—original draft, M.C.,
J.M.-R. and A.P.; writing—review and editing, M.C. and A.P. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was supported by The Sectoral Fund for Education Research, CONACYT Grant
285263.

Acknowledgments: We thank Aida Castillo and Lorena Hinojosa for their technical assistance on
culturing cell lines and Eduardo Méndez and Teresa Avelino for their technical support.

Conflicts of Interest: The authors declare that they have no conflict of interest. The funders had no
role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of
the manuscript, or in the decision to publish the results.

References
1. Hollman, A. Plants and cardiac glycosides. Br. Heart J. 1985, 54, 258–261. [CrossRef] [PubMed]
2. Haustein, K.O. Therapeutic range of cardiac glycosides. In Cardiac Glycoside Receptors and Positive Inotropy; Erdmann, E., Ed.;

Steinkopff: Heidelberg, Germany, 1984.
3. Hamlyn, J.M.; Lu, Z.R.; Manunta, P.; Ludens, J.H.; Kimura, K.; Shah, J.R.; Laredo, J.; Hamilton, J.P.; Hamilton, M.J.; Hamilton,

B.P. Observations on the nature, biosynthesis, secretion and significance of endogenous ouabain. Clin. Exp. Hypertens. 1998,
20, 523–533. [CrossRef] [PubMed]

4. Hamlyn, J.M. Natriuretic hormones, endogenous ouabain, and related sodium transport inhibitors. Front. Endocrinol. 2014, 5, 199.
[CrossRef] [PubMed]

5. Schoner, W.; Bauer, N.; Müller-Ehmsen, J.; Krämer, U.; Hambarchian, N.; Schwinger, R.; Moeller, H.; Kost, H.; Weitkamp, C.;
Schweitzer, T.; et al. Ouabain as a mammalian hormone. Ann. N. Y. Acad. Sci. 2003, 986, 678–684. [CrossRef] [PubMed]

6. Bagrov, A.Y.; Agalakova, N.I.; Kashkin, V.A.; Fedorova, O.V. Endogenous cardiotonic steroids and differential patterns of sodium
pump inhibition in NaCl-loaded salt-sensitive and normotensive rats. Am. J. Hypertens. 2009, 22, 559–563. [CrossRef] [PubMed]

7. Xie, Z. Molecular mechanisms of Na/K-ATPase-mediated signal transduction. Ann. N. Y. Acad. Sci. 2003, 986, 497–503.
[CrossRef] [PubMed]

8. Li, Z.; Xie, Z. The Na/K-ATPase/Src complex and cardiotonic steroid-activated protein kinase cascades. Pflugers Arch. 2009,
457, 635–644. [CrossRef] [PubMed]

9. Contreras, R.G.; Flores-Beni Tez, D.; Flores-Maldonado, C.; Larre, I.; Shoshani, L.; Cereijido, M. Na+,K+-ATPase and hormone
ouabain:new roles for an old enzyme and an old inhibitor. Cell. Mol. Biol. 2006, 52, 31–40.

10. Aperia, A. New roles for an old enzyme: Na, K-ATPase emerges as an interesting drug target. J. Intern. Med. 2007, 261, 44–52. [CrossRef]
11. Al-Ghoul, M.; Valdes, R., Jr. Mammalian cardenolides in cancer prevention and therapeutics. Ther. Drug Monit. 2008,

30, 234–238. [CrossRef]
12. Newman, R.A.; Yang, P.; Pawlus, A.D.; Block, K.I. Cardiac glycosides as novel cancer therapeutic agents. Mol. Interv. 2008,

8, 36–49. [CrossRef] [PubMed]
13. Willecke, K.; Eiberger, J.; Degen, J.; Eckardt, D.; Romualdi, A.; Güldenagel, M.; Deutsch, U.; Söhl, G. Structural and functional

diversity of connexin genes in the mouse and human genome. Biol. Chem. 2002, 383, 725–737. [CrossRef] [PubMed]
14. Sáez, J.C.; Berthoud, V.M.; Brañes, M.C.; Martínez, A.D.; Beyer, E.C. Plasma membrane channels formed by connexins: Their

regulation and functions. Physiol. Rev. 2003, 83, 1359–1400. [CrossRef] [PubMed]
15. Loewenstein, W.R.; Kanno, Y. Intercellular communication and tissue growth. I. Cancerous growth. J. Cell Biol. 1967, 33, 225–234.

[CrossRef] [PubMed]
16. Loewenstein, W.R.; Kanno, Y. Intercellular communication and the control of tissue growth: Lack of communication between

cancer cells. Nature 1966, 209, 1248–1249. [CrossRef] [PubMed]
17. Cronier, L.; Crespin, S.; Strale, P.O.; Defamie, N.; Mesnil, M. Gap junctions and cancer: New functions for an old story. Antioxid.

Redox Signal. 2009, 11, 323–338. [CrossRef]
18. Aasen, T.; Mesnil, M.; Naus, C.C.; Lampe, P.D.; Laird, D.W. Gap junctions and cancer: Communicating for 50 years. Nat. Rev.

Cancer 2017, 17, 74. [CrossRef]

http://dx.doi.org/10.1136/hrt.54.3.258
http://www.ncbi.nlm.nih.gov/pubmed/4041297
http://dx.doi.org/10.3109/10641969809053230
http://www.ncbi.nlm.nih.gov/pubmed/9682908
http://dx.doi.org/10.3389/fendo.2014.00199
http://www.ncbi.nlm.nih.gov/pubmed/25520702
http://dx.doi.org/10.1111/j.1749-6632.2003.tb07282.x
http://www.ncbi.nlm.nih.gov/pubmed/12763918
http://dx.doi.org/10.1038/ajh.2009.22
http://www.ncbi.nlm.nih.gov/pubmed/19229192
http://dx.doi.org/10.1111/j.1749-6632.2003.tb07234.x
http://www.ncbi.nlm.nih.gov/pubmed/12763870
http://dx.doi.org/10.1007/s00424-008-0470-0
http://www.ncbi.nlm.nih.gov/pubmed/18283487
http://dx.doi.org/10.1111/j.1365-2796.2006.01745.x
http://dx.doi.org/10.1097/FTD.0b013e31816b90ff
http://dx.doi.org/10.1124/mi.8.1.8
http://www.ncbi.nlm.nih.gov/pubmed/18332483
http://dx.doi.org/10.1515/BC.2002.076
http://www.ncbi.nlm.nih.gov/pubmed/12108537
http://dx.doi.org/10.1152/physrev.00007.2003
http://www.ncbi.nlm.nih.gov/pubmed/14506308
http://dx.doi.org/10.1083/jcb.33.2.225
http://www.ncbi.nlm.nih.gov/pubmed/6039367
http://dx.doi.org/10.1038/2091248a0
http://www.ncbi.nlm.nih.gov/pubmed/5956321
http://dx.doi.org/10.1089/ars.2008.2153
http://dx.doi.org/10.1038/nrc.2016.142


Int. J. Mol. Sci. 2020, 22, 358 16 of 18

19. Leithe, E.; Sirnes, S.; Omori, Y.; Rivedal, E. Downregulation of gap junctions in cancer cells. Crit. Rev. Oncog. 2006, 12, 225–256. [CrossRef]
20. Kandouz, M.; Batist, G. Gap junctions and connexins as therapeutic targets in cancer. Expert Opin. Ther. Targets 2010,

14, 681–692. [CrossRef]
21. Czyz, J. The stage-specific function of gap junctions during tumourigenesis. Cell. Mol. Biol. Lett. 2008, 13, 92–102. [CrossRef]
22. Naus, C.C.; Laird, D.W. Implications and challenges of connexin connections to cancer. Nat. Rev. Cancer 2010, 10, 435–441.

[CrossRef] [PubMed]
23. Defamie, N.; Chepied, A.; Mesnil, M. Connexins, gap junctions and tissue invasion. FEBS Lett. 2014, 588, 1331–1338. [CrossRef] [PubMed]
24. Larre, I.; Lazaro, A.; Contreras, R.G.; Balda, M.S.; Matter, K.; Flores-Maldonado, C.; Ponce, A.; Flores-Benitez, D.; Rincon-Heredia,

R.; Padilla-Benavides, T.; et al. Ouabain modulates epithelial cell tight junction. Proc. Natl. Acad. Sci. USA 2010, 107, 11387–11392.
[CrossRef] [PubMed]

25. Castillo, A.; Ortuño-Pineda, C.; Flores-Maldonado, C.; Larre, I.; Martínez Rendón, J.; Hinojosa, L.; Ponce, A.; Ogazón, A.;
Serrano, M.; Valdes, J.; et al. Ouabain Modulates the Adherens Junction in Renal Epithelial Cells. Cell Physiol. Biochem. 2019,
52, 1381–1397. [CrossRef]

26. Larre, I.; Castillo, A.; Flores-Maldonado, C.; Contreras, R.G.; Galvan, I.; Muñoz-Estrada, J.; Cereijido, M. Ouabain modulates
ciliogenesis in epithelial cells. Proc. Natl. Acad. Sci. USA 2011, 108, 20591–20596. [CrossRef]

27. Ponce, A.; Larre, I.; Castillo, A.; García-Villegas, R.; Romero, A.; Flores-Maldonado, C.; Martinez-Rendón, J.; Contreras, R.G.; Cereijido,
M. Ouabain increases gap junctional communication in epithelial cells. Cell. Physiol. Biochem. 2014, 34, 2081–2090. [CrossRef]

28. Ponce, A.; Larre, I.; Castillo, A.; Flores-Maldonado, C.; Verdejo-Torres, O.; Contreras, R.G.; Cereijido, M. Ouabain Modulates the
Distribution of Connexin 43 in Epithelial Cells. Cell. Physiol. Biochem. 2016, 39, 1329–1338. [CrossRef]

29. Weingart, R.; Bukauskas, F.F. Long-chain n-alkanols and arachidonic acid interfere with the Vm-sensitive gating mechanism of
gap junction channels. Pflugers Arch. 1998, 435, 310–319. [CrossRef]

30. Manjarrez-Marmolejo, J.; Franco-Pérez, J. Gap Junction Blockers: An Overview of their Effects on Induced Seizures in Animal
Models. Curr. Neuropharmacol. 2016, 14, 759–771. [CrossRef]

31. Wang, H.; Haas, M.; Liang, M.; Cai, T.; Tian, J.; Li, S.; Xie, Z. Ouabain assembles signaling cascades through the caveolar
Na+-K+-ATPase. J. Biol. Chem. 2004, 279, 7250–17259. [CrossRef]

32. Zhang, S.; Malmersjö, S.; Li, J.; Ando, H.; Aizman, O.; Uhlén, P.; Mikoshiba, K.; Aperia, A. Distinct role of the N-terminal tail of
the Na, K-ATPase catalytic subunit as a signal transducer. J. Biol. Chem. 2006, 281, 21954–21962. [CrossRef] [PubMed]

33. Abramowitz, J.; Dai, C.; Hirschi, K.K.; Dmitrieva, R.I.; Doris, P.A.; Liu, L.; Allen, J.C. Ouabain- and marinobufagenin-induced
proliferation of human umbilical vein smooth muscle cells and a rat vascular smooth muscle cell line, A7r5. Circulation 2003,
108, 3048–3053. [CrossRef] [PubMed]

34. Wang, X.Q.; Yu, S.P. Novel regulation of Na, K-ATPase by Src tyrosine kinases in cortical neurons. J. Neurochem. 2005,
93, 1515–1523. [CrossRef]

35. Barwe, S.P.; Anilkumar, G.; Moon, S.Y.; Zheng, Y.; Whitelegge, J.P.; Rajasekaran, S.A.; Rajasekaran, A.K. Novel role for
Na,K-ATPase in phosphatidylinositol 3-kinase signaling and suppression of cell motility. Mol. Biol. Cell. 2005, 16, 1082–1094.
[CrossRef] [PubMed]

36. Heasman, S.J.; Ridley, A.J. Mammalian Rho GTPases: New insights into their functions from in vivo studies. Nat. Rev. Mol. Cell.
Biol. 2008, 9, 690–701. [CrossRef] [PubMed]

37. Mack, N.A.; Georgiou, M. The interdependence of the Rho GTPases and apicobasal cell polarity. Small GTPases 2014, 5, 10. [CrossRef]
38. Vasioukhin, V.; Bauer, C.; Yin, M.; Fuchs, E. Directed actin polymerization is the driving force for epithelial cell-cell adhesion. Cell

2000, 100, 209–219. [CrossRef]
39. Kovacs, E.M.; Goodwin, M.; Ali, R.G.; Paterson, A.D.; Yap, A.S. Cadherin-directed actin assembly: E-cadherin physically

associates with the Arp23 complex to direct actin assembly in nascent adhesive contacts. Curr. Biol. 2002, 12, 379–382. [CrossRef]
40. Wojciak-Stothard, B.; Ridley, A.J. Rho GTPases and the regulation of endothelial permeability. Vascul. Pharmacol. 2002,

39, 187–199. [CrossRef]
41. Hanke, J.H.; Gardner, J.P.; Dow, R.L.; Changelian, P.S.; Brissette, W.H.; Weringer, E.J.; Pollok, B.A.; Connelly, P.A. Discovery of a

novel, potent, and Src family-selective tyrosine kinase inhibitor. Study of Lck- and FynT-dependent T cell activation. J. Biol. Chem.
1996, 271, 695–701. [CrossRef]

42. Bain, J.; Plater, L.; Elliott, M.; Shpiro, N.; Hastie, C.J.; McLauchlan, H.; Klevernic, I.; Arthur, J.S.; Alessi, D.R.; Cohen, P. The
selectivity of protein kinase inhibitors: A further update. Biochem. J. 2007, 408, 297–315. [CrossRef] [PubMed]

43. Brandvold, K.R.; Steffey, M.E.; Fox, C.C.; Soellner, M.B. Development of a highly selective c-Src kinase inhibitor. ACS Chem. Biol.
2012, 7, 1393–1398. [CrossRef] [PubMed]

44. Reiners, J.J., Jr.; Lee, J.-Y.; Clift, R.E.; Dudley, D.T.; Myrand, S.P. PD98059 is an equipotent antagonist of the aryl hydrocarbon
receptor and inhibitor of mitogen-activated protein kinase kinase. Mol. Pharmacol. 1998, 53, 438–445. [CrossRef] [PubMed]

45. Alessi, D.R.; Cuenda, A.; Cohen, P.; Dudley, D.T.; Saltiel, A.R. PD 098059 is a specific inhibitor of the activation of mitogen-activated
protein kinase kinase in vitro and in vivo. J. Biol. Chem. 1995, 270, 27489–27494. [CrossRef] [PubMed]

46. Di Paola, R.; Galuppo, M.; Mazzon, E.; Paterniti, I.; Bramanti, P.; Cuzzocrea, S. PD98059, a specific MAP kinase inhibitor,
attenuates multiple organ dysfunction syndrome/failure (MODS) induced by zymosan in mice. Pharmacol. Res. 2010, 61, 175–187.
[CrossRef] [PubMed]

http://dx.doi.org/10.1615/CritRevOncog.v12.i3-4.30
http://dx.doi.org/10.1517/14728222.2010.487866
http://dx.doi.org/10.2478/s11658-007-0039-5
http://dx.doi.org/10.1038/nrc2841
http://www.ncbi.nlm.nih.gov/pubmed/20495577
http://dx.doi.org/10.1016/j.febslet.2014.01.012
http://www.ncbi.nlm.nih.gov/pubmed/24457198
http://dx.doi.org/10.1073/pnas.1000500107
http://www.ncbi.nlm.nih.gov/pubmed/20534449
http://dx.doi.org/10.33594/000000097
http://dx.doi.org/10.1073/pnas.1102617108
http://dx.doi.org/10.1159/000366403
http://dx.doi.org/10.1159/000447837
http://dx.doi.org/10.1007/s004240050517
http://dx.doi.org/10.2174/1570159X14666160603115942
http://dx.doi.org/10.1074/jbc.M313239200
http://dx.doi.org/10.1074/jbc.M601578200
http://www.ncbi.nlm.nih.gov/pubmed/16723354
http://dx.doi.org/10.1161/01.CIR.0000101919.00548.86
http://www.ncbi.nlm.nih.gov/pubmed/14638550
http://dx.doi.org/10.1111/j.1471-4159.2005.03147.x
http://dx.doi.org/10.1091/mbc.e04-05-0427
http://www.ncbi.nlm.nih.gov/pubmed/15616195
http://dx.doi.org/10.1038/nrm2476
http://www.ncbi.nlm.nih.gov/pubmed/18719708
http://dx.doi.org/10.4161/21541248.2014.973768
http://dx.doi.org/10.1016/S0092-8674(00)81559-7
http://dx.doi.org/10.1016/S0960-9822(02)00661-9
http://dx.doi.org/10.1016/S1537-1891(03)00008-9
http://dx.doi.org/10.1074/jbc.271.2.695
http://dx.doi.org/10.1042/BJ20070797
http://www.ncbi.nlm.nih.gov/pubmed/17850214
http://dx.doi.org/10.1021/cb300172e
http://www.ncbi.nlm.nih.gov/pubmed/22594480
http://dx.doi.org/10.1124/mol.53.3.438
http://www.ncbi.nlm.nih.gov/pubmed/9495809
http://dx.doi.org/10.1074/jbc.270.46.27489
http://www.ncbi.nlm.nih.gov/pubmed/7499206
http://dx.doi.org/10.1016/j.phrs.2009.09.008
http://www.ncbi.nlm.nih.gov/pubmed/19819333


Int. J. Mol. Sci. 2020, 22, 358 17 of 18

47. Rojewska, E.; Popiolek-Barczyk, K.; Kolosowska, N.; Piotrowska, A.; Zychowska, M.; Makuch, W.; Przewlocka, B.; Mika, J. PD98059
Influences Immune Factors and Enhances Opioid Analgesia in Model of Neuropathy. PLoS ONE 2015, 10, e0138583. [CrossRef]

48. Huang, P.; Sun, Y.; Yang, J.; Chen, S.; Liu, A.D.; Holmberg, L.; Huang, X.; Tang, C.; Du, J.; Jin, H. The ERK1/2 Signaling Pathway
Is Involved in Sulfur Dioxide Preconditioning-Induced Protection against Cardiac Dysfunction in Isolated Perfused Rat Heart
Subjected to Myocardial Ischemia/Reperfusion. Int. J. Mol. Sci. 2013, 14, 22190–22201. [CrossRef]

49. Ishizaki, T.; Uehata, M.; Tamechika, I.; Keel, J.; Nonomura, K.; Maekawa, M.; Narumiya, S. Pharmacological properties of Y-27632,
a specific inhibitor of Rho-associated kinase. Mol. Pharmacol. 2000, 57, 976–983.

50. Saunders, M.; Seraj, M.J.; Li, Z.; Zhou, Z.; Winter, C.R.; Welch, D.R.; Donahue, H.J. Breast cancer metastatic potential correlates
with a breakdown in homospecific and heterospecific gap junctional intercellular communication. Cancer Res. 2001, 61, 1765–1767.

51. Yano, T.; Hernandez-Blazquez, F.-J.; Omori, Y.; Yamasaki, H. Reduction of malignant phenotype of HEPG2 cell is associated with
the expression of connexin 26 but not connexin 32. Carcinogenesis 2001, 22, 1593–1600. [CrossRef]

52. Aasen, T.; Hodgins, M.; Edward, M.; Graham, S.V. The relationship between connexins, gap junctions, tissue architecture
and tumour invasion, as studied in a novel in vitro model of HPV-16-associated cervical cancer progression. Oncogene 2003,
22, 7969–7980. [CrossRef]

53. Toler, C.R.; Taylor, D.D.; Gercel-Taylor, C. Loss of communication in ovarian cancer. Am. J. Obstet. Gynecol. 2006, 194, e27–e31. [CrossRef]
54. Rosenkranz, H.S.; Pollack, N.; Cunningham, A.R. Exploring the relationship between the inhibition of gap junctional intercellular

communication and other biological phenomena. Carcinogenesis 2000, 21, 1007–1011. [CrossRef] [PubMed]
55. Avanzo, J.L.; Mesnil, M.; Hernandez-Blazquez, F.J.; Mackowiak, I.I.; Mori, C.M.C.; Da Silva, T.C.; Oloris, S.C.S.; Gárate, A.P.;

Massironi, S.M.G.; Yamasaki, H.; et al. Increased susceptibility to urethane-induced lung tumors in mice with decreased
expression of connexin43. Carcinogenesis 2004, 25, 1973–1982. [CrossRef]

56. Dagli, M.; Yamasaki, H.; Krutovskikh, V.; Omori, Y. Delayed liver regeneration and increased susceptibility to chemical
hepatocarcinogenesis in transgenic mice expressing a dominant-negative mutant of connexin32 only in the liver. Carcinogenesis
2004, 25, 483–492. [CrossRef] [PubMed]

57. King, T.J.; Lampe, P.D. Mice deficient for the gap junction protein Connexin32 exhibit increased radiation-induced tumorigenesis
associated with elevated mitogenactivated protein kinase (p44/Erk1, p42/Erk2) activation. Carcinogenesis 2004, 25, 669–680.
[CrossRef] [PubMed]

58. Bigelow, K.; Nguyen, T.A. Increase of gap junction activities in SW480 human colorectal cancer cells. BMC Cancer 2014, 14, 502.
[CrossRef] [PubMed]

59. Enomoto, T.; Yamasaki, H. Lack of intercellular communication between chemically transformed and surrounding nontrans-
formed BALB/c 3T3 cells. Cancer Res. 1984, 44, 5200–5203.

60. Yamasaki, H.; Hollstein, M.; Mesnil, M.; Martel, N.; Aguelon, A.M. Selective lack of intercellular communication between
transformed and nontransformed cells as a common property of chemical and oncogene transformation of BALB/c 3T3 cells.
Cancer Res. 1987, 47, 5658–5664.

61. Qin, H.; Shao, Q.; Curtis, H.; Galipeau, J.; Belliveau, D.J.; Wang, T.; Alaoui-Jamali, M.A.; Laird, D.W. Retroviral delivery of
connexin genes to human breast tumor cells inhibits in vivo tumor growth by a mechanism that is independent of significant gap
junctional intercellular communication. J. Biol. Chem. 2002, 277, 29132–29138. [CrossRef]

62. Zhang, Y.W.; Kaneda, M.; Morita, I. The gap junction-independent tumor-suppressing effect of connexin 43. J. Biol. Chem. 2003,
278, 44852–44856. [CrossRef] [PubMed]

63. Piwowarczyk, K.; Paw, M.; Ryszawy, D.; Rutkowska-Zapała, M.; Madeja, Z.; Siedlar, M.; Czyż, J. Connexin43 high prostate cancer
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