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Abstract

Zebrafish is a useful modeling organism for the study of vertebrate development, immune response, and me-
tabolism. Metabolic studies can be aided by mathematical reconstructions of the metabolic network of zebrafish.
These list the substrates and products of all biochemical reactions that occur in the zebrafish. Mathematical
techniques such as flux-balance analysis then make it possible to predict the possible metabolic flux distributions
that optimize, for example, the turnover of food into biomass. The only available genome-scale reconstruction of
zebrafish metabolism is ZebraGEM. In this study, we present ZebraGEM 2.0, an updated and validated version
of ZebraGEM. ZebraGEM 2.0 is extended with gene-protein-reaction associations (GPRs) that are required to
integrate genetic data with the metabolic model. To demonstrate the use of these GPRs, we performed an in silico
genetic screening for knockouts of metabolic genes and validated the results against published in vivo genetic
knockout and knockdown screenings. Among the single knockout simulations, we identified 74 essential genes,
whose knockout stopped growth completely. Among these, 11 genes are known have an abnormal knockout or
knockdown phenotype in vivo (partial), and 41 have human homologs associated with metabolic diseases. We also
added the oxidative phosphorylation pathway, which was unavailable in the published version of ZebraGEM. The
updated model performs better than the original model on a predetermined list of metabolic functions. We also
determined a minimal feed composition. The oxidative phosphorylation pathways were validated by comparing
with published experiments in which key components of the oxidative phosphorylation pathway were pharma-
cologically inhibited. To test the utility of ZebraGEM2.0 for obtaining new results, we integrated gene expression
data from control and Mycobacterium marinum-infected zebrafish larvae. The resulting model predicts impeded
growth and altered histidine metabolism in the infected larvae.

Keywords: metabolism, metabolic modeling, Mycobacterium marinum, tuberculosis, genome-scale metabolic
model, flux-balance analysis

Introduction

The zebrafish (Danio rerio) has become a widely used
model organism for the study of vertebrate metabo-

lism.1,2 Its genome has been sequenced and annotated3 and
the CRIPSR-Cas technique has made it easier than ever to
study the role of specific metabolic genes.4 For example,
zebrafish have been used to test the toxicity of drugs on liver
metabolism and the effect of liver metabolism on internal

drug concentration.5 Zebrafish have also been used in studies
of metabolic diseases such as diabetes, obesity, and fatty liver
disease, often combining sequencing with visualization of
gene expression.1

Mathematical and computational techniques make it pos-
sible to use such metabolic gene expression data to predict
the flux of metabolites through single cells or even whole
organisms. Genome-scale metabolic reconstructions, or
metabolic maps for short, are models that consist of two parts:
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a metabolic network of the organism and the genes under-
lying this network. This network reconstruction is based on
the genes coding for metabolic proteins present in the ge-
nome and sometimes requires manual curation to fills in gaps
in the network.6

Metabolic maps make it possible to predict how metabo-
lites flow through a network of biochemical reactions, finally
resulting in resources for growth or the availability of energy.
Because in one network, an infinite number of alternative
flow distributions are equally likely, a sensible prediction can
only be made under the assumption of an objective, for ex-
ample, optimal biomass production or optimal production of
ATP, and a number of constraints on the possible fluxes.
Most techniques assume flux balance, meaning that all bio-
chemical concentrations are in equilibrium. Additional con-
straints can be given by known or assumed concentrations of
enzymes, leading to a maximum flux through the reaction.

Mathematical techniques to make these predictions in-
clude Flux-Balance Analysis (FBA)7 and derivate methods as
Flux Variance Analysis,8 Minimization of Metabolic Ad-
justment,9 and Expression flux.10 These predict the produc-
tion rate of biomass or of a certain metabolite, for a given
substrate, and sometimes supplemented with expression data.
These predictions are valuable for finding suitable substrates
for microorganism-based production in bioreactors. Another
feature of these methods used to predict the flux through
genome-scale metabolic models is the ability to study the
effects of gene knockouts or gene expression on metabolism
by constraining or removing reactions in the reaction net-
work.11,12 This gives insight into the metabolic routing or
rerouting of an organism and can be helpful in acquiring the
aspired phenotype of an organism, but it can also give insight
into the metabolic fluxes of different cell types.

With the increasing presence of metabolic data of healthy
and diseased zebrafish, and the availability of genetic data, a
genome-scale metabolic model of the zebrafish is tremendously
useful. So far, genome-scale metabolic models have been
proposed mainly for single-cell model organisms, such as
Escherichia coli and Saccharomyces cervesiae,13–15 as well
as pathogens such as Salmonella typhimurium16 and Myco-
bacterium tuberculosis.17 For these unicellular organisms, very
accurate growth predictions have been made. Multicellular
organisms, particularly vertebrates, are less well represented in
the list of genome-scale metabolic models. So far, reconstruc-
tions have been made for human,18 mouse,19 Chinese ham-
ster,20 fish,21,22 and recently, rat.23 Whole-organism modeling
is less common for these multicellular organisms, as metabolic
functions are distributed over different tissues. However,
modeling specific cell types has been done, such as erythro-
cytes24 and cancer cell lines,25 as well as integrating different
cell types into a larger model, such as a combined model,
including adipocytes, myocytes, and hepatocytes.26

Why do we require a specific zebrafish genome-scale
metabolic reconstruction when other vertebrate models exist?
Despite the high metabolic similarity to human and mouse,
there are subtle differences between zebrafish metabolism
and the metabolism of these mammals that affect their re-
quired nutrients. For example, inositol-3-phosphate synthase
is an enzyme present in humans and mice, but it is absent in
zebrafish, preventing it from converting glucose-6-phosphate
into inositol 3-phosphate.27 This makes inositol an essential
nutrient for zebrafish.

The difference in metabolism aside, the main reason to
make a specific zebrafish genome-scale metabolic model is
the genomic structure. The teleost lineage underwent a
whole-genome duplication event after the radiation from
their common ancestor with mammals, which resulted in
numerous genes still having duplicate copies compared to
mammals.28 As a result, there are more paralogous genes in
the zebrafish genome than in mammals. Hence, if one wants
to study the effects of genes on metabolism, translating a
human or mouse genome-scale metabolic reconstruction into a
zebrafish specific model by orthologous genes is not sufficient.
Foremost, this translation is hampered by these paralogs as it
does not make the translation one-to-one, and furthermore,
many paralogs have evolved different subfunctions, increasing
the functional difference between the zebrafish paralogs and
the human or mouse orthologs. So to model the effects of genes
on zebrafish metabolism, a zebrafish-specific genome-scale
model is necessary.

Existing genome-scale models for zebrafish are Meta-
FishNet21 and ZebraGEM.22 MetaFishNet is a metabolic
model derived from the genome of multiple fish species, in-
cluding zebrafish, and focuses on individual pathways. As
these pathways are not interconnected or divided into cell
compartments, MetaFishNet is not suitable for whole-cell or
whole-organism modeling using Flux Balance Analysis (FBA)
methods, and therefore functions mainly as a reference tool,
instead of a simulation tool. The fact that it combines multiple
fish genomes also makes it harder to compare insights gained
from this model to in vivo experimental results, as some
pathways are solely based on the genome of one of those five
fish species and do not occur in the other four fish species.

The other model, ZebraGEM, is based on the zebrafish
genome and is a whole-cell and compartmentalized recon-
struction. It contains 2911 reactions, of which 2446 are gene-
associated reactions based upon 1498 genes and can be used
for whole-cell metabolism modeling. It was reported to fulfill
a list of 160 metabolic functions, such as the production of
amino acids and biosynthesis and degradation of secondary
metabolites. The model also predicted that the synthesis of
taurine is through a metabolic pathway dependent on cysteine
sulfinic acid decarboxylase, which is in line with experi-
mental findings.29

Currently, ZebraGEM cannot be used for modeling large
screens of single gene knockouts or for the integration of
gene expression data, as it lacks GPR. GPRs describe how
gene products associated to a reaction work together, that
is, whether they form a complex enzyme, are isoenzymes,
or a combination of these. They provide a logical frame-
work to decide whether a reaction can take place when one
or more of its underlying genes are knocked out, and hence,
they are of great importance when it comes to modeling
gene knockouts.

In this article, we describe the modifications applied to
ZebraGEM to fit our modeling needs and to fit standards of
genome-scale metabolic reconstructions, as well as demon-
strate a number of ways in which the updated model can be
used. Briefly, the modifications fall into three categories.
First, we added the GPRs, to facilitate gene knockout and
gene expression modeling. Second, we renamed components
of the model according to BiGG Models standard names,30 to
ease comparison with genome-scale metabolic reconstruc-
tions of other organisms. Finally, we extended the model with
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essential reactions for pathways already present, or changed
the reversibility of reactions already present in the model.

We have validated the renewed model against the meta-
bolic functions the original model was reported to fulfill.
Using the updated model, we predicted a minimal feed
composition and were able to make predictions of mito-
chondrial function with respiration simulations. Finally, we
also proved the usefulness of the newly added GPRs: we
performed a large single-knockout and double-knockout
screening and predicted lethal knockouts, and we also inte-
grated gene expression data with the model to predict meta-
bolic differences between control zebrafish larvae and larvae
infected with Mycobacterium marinum.

Methods

The genome-scale metabolic reconstruction (‘‘metabolic
map’’) of zebrafish consists of the following: (1) a metabolic
network describing the reactions that can occur in the organism
and (2) the genes that are associated with those reactions
(Fig. 1). The network on its own can be used for modeling

metabolism, and the associated genes give extra handles to this
modeling. In this section, we give a general overview of the
metabolic network component and gene component of a
genome-scale metabolic reconstruction, as well as describe the
modeling method called FBA. We also briefly address the
representation of this model in a computer file.

Metabolic network

The metabolic network part of a metabolic map can be
represented by a matrix S (Fig. 1A, B). This matrix contains
the ratio between reactants and products, or stoichiometry,
for each reaction within the network, and is called a stoi-
chiometric matrix. The rows represent the metabolites and
the columns represent the reactions. The coefficient at the
intersection of a specific row and column indicates the con-
tribution of that metabolite to that reaction. Some of the re-
actions are of a special type, the so-called exchange reactions.
These exchange reactions either have only a reactant or only a
product, and hence do not preserve mass. They represent the
influx and efflux of metabolites in and out of the system.

Flux Balance Analysis

The standard method for constraint-based metabolic
modeling is FBA.7 For a given metabolic network and a
given objective function, FBA computes the optimal flux
through the metabolic network that minimizes or maximizes
the objective function. The first assumption upon which
FBA is based, is that an organism will adjust its fluxes such
that the internal metabolites, indicated with c, are in equi-
librium, that is

dc

dt
¼ S �~f ¼ 0 (1)

with~f the vector representing the fluxes of the reactions in the
metabolic network. Some of these fluxes can be constrained.
For example, exchange reactions can be constrained due to
limited availability of the exchanged metabolite in the envi-
ronment. Also, irreversible reactions can be constrained, as
they cannot have a negative flux. This can be formulated as
follows:

ai � fi � bi (2)

with ai and bi indicating the lower bound and upper bound of
the flux of reaction i. Sometimes an exchange reaction has a
strictly positive lower bound, indicating that the system
should at least produce that amount of the exchanged me-
tabolite. These reactions are called demand reactions.

Solving Equations 1 and 2 together can lead to an infinite
number of solutions. Within this solution space, FBA selects
for a smaller solution space based on a predefined objective,
for example, that the organism optimizes its metabolic fluxes
for a specific reaction or for biomass production. This opti-
mized reaction, or objective function fobj, can be any reaction
in the metabolic network, but most often, it is a biomass
function. The biomass function lists all the precursor me-
tabolites and energy-carrying metabolites required for the
accumulation of biomass. Unless stated otherwise, we will
use the biomass function as the objective function. The full
formulation of the FBA problem then becomes as follows:

A

B

C

FIG. 1. Important components of a genome-scale meta-
bolic reconstruction are the metabolic network (A, B) and the
GPR (C). (A) Graphical overview of a simplified metabolic
network. Reactions within the black border are part of the
system and hence have mass balance. The solid gray border
indicated the cell membrane and the dashed gray border
indicates cell organelle membranes. Reactions E1–E3 are
exchange reactions and are not mass balanced, allowing for
import and export of metabolites. Reaction BM is a biomass
reaction, taking biomass precursor metabolites and exporting
them to biomass; (B) stoichiometric matrix representation of
the network shown in (A); (C) example of how isoenzymes
and protein complexes are translated into a GPR. GPR, gene-
protein-reaction associations; gpx, gene product x.
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Optimize

fobj (3)

such that,

S �~f ¼ 0, ai � fi � bi

This forms a linear programming problem and can easily
be solved using linear programming solver software, for
example, GNU linear programming kit (GLPK) or Gurobi. In
this work, we have used CPLEX IBM ILOG CPLEX.

Once the linear programming problem is solved, the so-
lution~f gives a flux distribution of the metabolic network for
the given constraints. This gives insight into which pathways
are used and their relative contribution can be computed. By
changing the upper and lower bounds in Equation 2, one can
test the flux distribution in different scenarios, such as com-
paring the growth rate under different sets of substrates.

Some common variations on FBA are parsimonious FBA31

(pFBA) and Flux Variability Analysis (FVA),8 which are
multiobjective linear programming problems. After solving
the original FBA problem, they then optimize a second ob-
jective. For pFBA, the secondary objective is to minimize the
total sum of fluxes, that is, min + fij j, while maintaining the
same constraints as in the FBA problem, together with
keeping the previous objective fobj at its optimum. FVA is a
method that explores more of the solution space, by searching
for the minimum and maximum flux of each reaction. So after
doing FBA, a new linear programming problem first mini-
mizes and then maximizes each fi, while also maintaining fobj

at its optimum and regarding all the previous constraints.
Multiple software packages for FBA exist. These function

as an interface between the user and the linear programming
solver. They allow for easy manipulation of bounds, easy
addition and removal of reactions in the metabolic network,
and modification of the GPRs, without having to keep track of
the linear programming problem manually. The software
used in this study is CobraPy,32 combined with the CPLEX
solver.

Genes and constraint-based modeling

The second part of the metabolic map consist of the as-
sociated genes. These genes, responsible for the enzymatic
reactions in the metabolic network, are represented using
GPR. In its simplest form, the GPR links each enzyme with a
biochemical reaction. If two enzymes catalyze the same re-
action, the GPR becomes a logical expression. If they are
isoenzymes, for example, they can both independently cata-
lyze the reaction, an ‘‘OR’’ function is used. If the two en-
zymes form a complex such that both must be present to
catalyze the reaction, an ‘‘AND’’ function is used. More
complex GPRs can be described by nested logical expres-
sions (Fig. 1C). In case multiple, equivalent logical expres-
sions are possible, the disjunctive normal form is used, that is,
a summation of all possible isoenzymes.

Using the GPRs, gene knockouts or gene expression data
can be integrated into constraint-based models. A standard
way of integrating gene knockouts is to set each occurrence of
the knocked-out gene in a GPR to False and evaluate the GPRs.
If any of these GPRs also evaluates to false, then constrain the

corresponding reaction to 0 flux by setting its upper and lower
bound to 0. Gene expression data can be integrated into
constraint-based modeling in alternative ways.33–36

Although details vary, these methods either penalize fluxes
over reactions with no or low expression and minimize the
penalty or they set the lower and upper bound of fluxes de-
pending on the expression level. The gene expression data
integration method used in this study is Gene-centric flux
(GC-flux).37 In this study, the linear programming problem is
slightly altered from the original stoichiometric matrix-based
linear programming problem. Using the GPRTransform
package,38 we split up each reaction into multiple versions of
the same reaction, one for every possible isoenzyme. The sum
of the fluxes of all the reactions containing a certain gene in
their GPR is then constrained by the expression level of that
gene. Although many choices exists for how the expression
level gives an upper bound, the simplest one is to take the
expression level itself. So if we rephrase Equation 3 with the
altered stoichiometric matrix S¢, the new programming prob-
lem becomes as follows:

First optimize

fobj (4)

such that,

S¢ �~f ¼ 0, ai �~fi � bi

+
r2Rg

~f r

�
�
�

�
�
� � Eg 8g 2 G

Here Rg denotes the reactions belonging to gene g, Eg the
expression of that gene, and G the total gene set. Basically,
this algorithm distributes the gene expression among the
different enzyme complexes, and hence the related reactions,
of that gene, assuming that each molecule of a gene product
can only take part in one complex at a time.

The GC-flux algorithm originally also minimized the
length of the flux vector, to obtain the most parsimonious flux
distribution that optimizes the objective. We did not mini-
mize the flux vector length, but applied FVA together with
computing the relative flux range change (RFRC) to compare
between the different gene expression data sets. With FVA,
we determine for each fi its minimum and maximum value
that still allow for the objective to be optimized. To compare
the flux ranges between different conditions, we compute the
RFRC of reaction i as follows39:

RFRCi¼
c2, i� c1, i

1
2

r2, iþ r1, ið Þ
,

with cn, i the center (1
2

(fi, maxþ fi, min)) of the flux range of re-
action i in condition n, and rn, i the range width (fi, max� fi, min).

Data standards for representation of metabolic maps

To facilitate exchange of computational models, such as
metabolic models, in systems biology, the Systems Biology
Markup Language (SBML) has been developed.40 Different
elements of a metabolic map, such as metabolites, reactions,
genes, and GPRs, are represented by their own class in SBML.
For this, we use the fbc package, the Flux Balance Constraints
extension of SBML. This package is especially designed to
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describe these genome-scale metabolic reconstruction ele-
ments, and has specified guidelines on how an entity should be
represented in an SBML file.41 The original model was already
an SBML file, but predates the fbc package’s release. Therefore,
we adapted the model to fit with the fbc package guidelines.

Metabolite, reaction, and gene nomenclature. Aside
from the file structure, there are also standards for the names
of metabolites and reactions. This facilitates comparison and
interfacing with metabolic maps of other organisms. We re-
named the metabolites, reactions, and genes. Genes were
renamed with their Entrez id.42 The metabolites and reactions
were renamed using, if possible, the data standard from BiGG
Models, a knowledgebase of genome-scale metabolic net-
work reconstructions.30 Metabolites without BiGG name
were renamed to their corresponding identifier in the Kyoto
Encyclopedia of Genes and Genomes (KEGG) to facilitate
easy lookup.43–45 Reactions without BiGG name were not
renamed, as no standardized names exist for these reactions
yet, making up 689 of not-renamed reactions.

The reactions that did not need renaming can be catego-
rized into three groups. The first group includes transport
reactions of metabolites without BiGG name. These reactions
can be identified by the description of the reaction. The
second group consists of reactions involved in the exchange
of fatty acids between metabolites. The third group contains
reactions involved in oxidation and reduction of metabolites
using NADH/NAD+ or NADPH/NADP+. The second and
third group kept their original annotation, linking the reaction
to a KEGG entry.

Results

In this section, we first describe the alterations in the
model. These include alterations to the metabolic network, as
well as the part of the model describing the relationships
between genes and reactions. After that, we present the re-
sults validating our updated model. We first tested the met-
abolic expansion of the model by checking it for a list of
metabolic functions, determining a minimal feed, and pre-
dicting mitochondrial function in respiration simulations.
Next, we tested the GPRs in the model by doing knockout
simulations. Finally, we apply the model to predict metabolic
changes due to infection with M. marinum.

Reaction network

The alterations to the metabolic network encompassed the
following five issues: (1) improvement of the biomass function
and addition of reactions to enable synthesis of biomass pre-
cursor metabolites; (2) addition of oxidative phosphorylation;
(3) correction of starch metabolism; (4) correction of the re-
versibility of reactions and their catalyzed or spontaneous na-
ture; and (5) validation of the list of metabolic functions
ZebraGEM was reported to be able to fulfill. Figure 2 summa-
rizes the update in ZebraGEM, categorized into subsystems
following the subsystem reaction associations from Virtual
Metabolic Human (VMH), a human- and microbe-specific da-
tabase on metabolism and metabolism modeling.46,47 The sub-
systems are sorted according to the number of reactions changed
in each subsystem. Changes are of three types: ‘‘reaction ad-
ded,’’ ‘‘reaction deleted,’’ and ‘‘reversibility changed.’’

Biomass function and biomass precursors. FBA and re-
lated modeling approaches7,34,48,49 assume that an organism
or cell channels the metabolic fluxes to optimize a metabolic
function, called the objective function. This objective func-
tion is often a biomass function, describing the relative
amounts of precursor metabolites required for biomass pro-
duction. Realistic biomass functions improve the realism of
model predictions.50 In the absence of exact data for zebra-
fish, we based the updated biomass function upon data from
other vertebrates.

The biomass function coefficients were taken to be the
average of the coefficients of biomass function of a human
genome-scale reconstruction (Recon 218) and a mouse
genome-scale reconstruction (iMM141519), so far the only
other vertebrates with genome-scale reconstructions, together
with Chinese hamster20 and rat.23 If a metabolite was a pre-
cursor in only one of Recon 2 and iMM1415, the coefficient
was taken directly from the model in which the metabolite
was present. If a metabolite was not present in both models,
the coefficient was the average of a third, human three-tissue
model, which had a biomass function for each tissue type.26

Of the biomass precursors, 14 reactants and 2 products
originally had stoichiometry coefficient 0 and were put in the
biomass reaction for future work. Three of the reactants were
cysteine, proline, and tyrosine, and with addition of reactions
to their synthesis pathways, they could be produced. Nine of
the reactants were membrane lipids, like cholesterol, sphin-
gomyelin, and phosphatidylinositol, which also could be pro-
duced after the addition of reactions involved in their synthesis.
We updated their coefficients in the same way as the other
metabolites taking part in the biomass function. The remaining
four metabolites were NAD, NADP, NADH, and NADPH.
These were omitted from the biomass function, following
Recon 2, iMM1415 and the human three-tissue model.
iMM1415 nor the three-tissue model contained these metab-
olites in their biomass function. The resulting coefficients and
their origin can be found in Supplementary Table S1.

Oxidativephosphorylation and starchmetabolism. Oxidative
phosphorylation in the model is an essential pathway for
respiration. The corresponding reactions and genes were
added to the model, using the human metabolic model Recon
2 as a template. Along with oxidative phosphorylation, it was
also necessary to update ‘‘Ubiquinone synthesis,’’ as well as
to add the reactions CATm and SPODMm, represented in
‘‘reactive oxygen species (ROS) detoxification,’’ to have a
functional oxidative phosphorylation pathway.

We have also revised glycogen metabolism, using Recon 2
as a template, as the stoichiometry in the original model led to
mass imbalance. The original reactions were replaced with
those from Recon 2, replacing the genes within the GPRs for
zebrafish orthologs. Changes in glycogen metabolism are
shown in Figure 2 under subsystem ‘‘Starch and sucrose
metabolism’’ according to VHM.

Reaction reversibility and reaction nature. All reactions
in the model were checked for reaction reversibility. This
corrected two types of unrealistic behavior. First, ZebraGEM
produced essential nutrients through backward reactions
(Supplementary Table S2). This was solved by correcting
nonbiological reversible reactions in the corresponding
pathways. Second, several metabolites were tunneled over
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membranes, as the same reaction occurred on both sides of a
membrane that involved a membrane metabolite. If at least
one of these reactions was reversible, this could result in
spurious transport of the nonmembrane metabolites, often
NAD or NADP. By checking the reversibility of the reactions
with the reaction databases BiGG, VMH, and KEGG com-
bined, this free transport cycle could be broken. The fraction
of reactions with reversibility changed per subsystem is
shown in Figure 2. In total, the reversibility of 543 out of
3023 reactions was changed.

A final check was done to ensure that all reactions in the
updated model do occur in zebrafish metabolism. Reactions
without gene regulation were checked using the KEGG da-
tabase, a database containing information on genes and re-
actions. Their KEGG entries were tested for two conditions:
(1) whether the reaction could occur nonenzymatically, and if
not, then (2) it was checked whether the reaction has an en-
zyme associated to vertebrates, thus excluding reactions that

occur in bacteria only. If any of these two conditions was met,
the reaction was kept; otherwise, we deleted the reaction. The
subsystems with deleted reactions are also shown in Figure 2.

Metabolic functions. The original model was reported to
fulfill 160 metabolic functions, ranging from amino acid
metabolism to pyrimidine and purine metabolism. In our
hands, using the downloadable SBML file of the original
model in the supplements, only 92 of these functions were
fulfilled (Supplementary Table S3). Twenty-seven of the
failed functions required metabolites in compartments that
were absent in those compartments in the model. The other
failed functions were checked manually using From Meta-
bolite to Metabolite (FMM51) and KEGG for missing reac-
tions, or for missing transport reactions that should be present
in zebrafish. The missing reactions and their corresponding
genes were added to the model. An overview of the subsys-
tems with reactions added is shown in Figure 2.

FIG. 2. Subsystem overview of
the adaptations made to Zebra-
GEM. For each subsystem, the total
number of reactions, including the
removed and added reactions, is
noted in between brackets.

GENE EXPRESSION IN ZEBRAFISH METABOLIC MODEL 353



Genes and gene-protein-reaction associations

The original model already had 2446 gene-associated reac-
tions coded for by 4988 genes (1498 unique genes). We extended
the model by putting these gene products into a GPR, and added
this to the model according to the SBML guidelines. As a result,
the full model can now be read and run using constraint-based
modeling software, and is now suitable for gene knockout sim-
ulations and simulations with gene expression data integration.

In summary, 95 reactions were removed and 140 were
added to the model, and 543 reactions had changed reaction
reversibility. The updated model now contains 3023 reac-
tions with 2810 metabolites, of which 1557 were unique, and
1636 genes. Two thousand five hundred and twenty-three
reactions are gene regulated and 1678 reactions are blocked,
that is, are unable to carry any flux due to dead-end metab-
olites. A comparison between the original ZebraGEM model
and the updated model is shown in Table 1.

Model validation

To check whether the changes in the model network im-
proved the performance of the model, we tested the model
predictions as follows: (1) we checked whether the model
performed the metabolic functions reported in Bekaert 22; (2)
we checked for biological validity of the minimal set of
metabolites required for model growth; (3) we checked
whether the model could reproduce pharmacological inter-
ference with respiration. We utilized the addition of the GPR
by doing single- and double-knockout experiments, and ul-
timately by gene expression data integration.

Model metabolic functions. ZebraGEM was published
with a list of 160 metabolic functions it was reported to fulfill
(Supplementary table 3 of Bekaert22). A metabolic function
on this list consists of one or multiple starting metabolites and
one or more end metabolites, indicating that a metabolic
route between these metabolites fulfills this function. We
tested these functions by setting an import reaction for the
starting metabolites and an export reaction for the end me-
tabolites. The export reaction for the end metabolites was
chosen as the objective function, and a function was deemed
successful if the model imported the starting metabolites and
exported the end metabolites. Some of these metabolic
functions could not be tested, as the starting or end metabolite
was not present in the model. Metabolic functions that did not

result in a success immediately were checked by hand to see
whether the model has an alternative path to fulfill the de-
mand for the end metabolite.

Out of the 160 metabolic functions, after the corrections,
ZebraGEM 2.0 was able to perform 123 functions success-
fully and still failed to perform 12 functions. Of the re-
maining 25 metabolic functions, the starting or end
metabolite was absent in the model and the corresponding
function could not be tested (Table 1).

Minimal feed composition. To validate the new biomass
function and the changes to the reaction reversibility, which
corrected spurious production of essential amino acids, we
determined a minimal feed composition that would allow for
growth. The model was set to produce 1 arbitrary unit of
biomass flux. As the model objective, we minimized the
uptake of metabolites from the environment. The source
metabolites include amino acids, the fatty acids linoleic acid
and linolenic acid, minerals, oxygen, and inositol (Fig. 3). We
chose glucose as the sole carbohydrate source.

The updated model predicts that the amino acids arginine,
histidine, and threonine are essential for biomass production,
whereas they were nonessential in the original model (Fig. 3).
The updated model also predicts additional uptake of glu-
cose. In the original model, spurious glucose was produced
from imbalanced glycogen reactions, leading to increased
glucose uptake in the updated model. The updated model now
also predicts uptake of oxygen, due to the updated model for
oxidative phosphorylation (data not shown). The ratio be-
tween the metabolite species taken up from the environment
has also changed in the updated model, due to the updated
stoichiometry of the biomass function. This is most clearly
the case for phosphate uptake (Fig. 3), which dropped from
71% of total metabolite uptake to 3%.

Thanks to the updated biomass function, inositol is now
also an essential metabolite for growth in the model. Inositol
is thought to be essential for zebrafish as no gene for inositol-
3-phosphate synthase has been found. Inositol essentiality
has been experimentally confirmed in other fish species, even
in fish species with de novo synthesis of inositol.52–54 The
model currently does not require the essential fatty acid li-
nolenic acid to grow, as the lipid metabolism in the model
uses a generic fatty acid and the correct conversion of lino-
lenic acid into this generic fatty acid is not present in the
model. Further improvements connecting and specifying the
used fatty acid in the lipid metabolism subsystem are re-
quired; see also in the Discussion.

Respiration. We next tested if ZebraGEM 2.0 correctly
predicts oxidative phosphorylation. The mitochondrial oxi-
dative function of zebrafish can be tested in vivo by mea-
suring the oxygen consumption rate, which has been done in
zebrafish embryos.55 In Gibert et al.,55 the consumption rate
of oxygen has been measured under the addition of three
different compounds disrupting oxidative phosphorylation.
We have simulated the effects of these compounds using the
updated ZebraGEM model with pFBA. The site of action of
these compounds and the model reactions active in oxidative
phosphorylation are shown in Figure 4.

First, the basal respiration rate is determined. In the ex-
perimental setup, this was done by measuring the oxygen
consumption flux of embryos in the absence of disrupting

Table 1. Comparison of the Original ZebraGEM

Model with the Updated Version

No. of ZebraGEM ZebraGEM 2.0

Reactions 2911 3023
Metabolites 2742 2810
Unique metabolites 1554 1557
Genes 1498 1636
Gene-regulated reactions 2446 2523
Blocked reactions 1572 1678
Successful metabolic

functions
92 123

Failed metabolic functions 41 12
Metabolic functions missing

metabolites
27 25
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chemicals. In our simulations, we optimize the model for
biomass production with pFBA. Because the cellular envi-
ronment within zebrafish is unknown, we used 1000 ran-
domly created environments. For each of these environments,
we sampled the upper bounds of metabolite uptake from
selected ranges, such that the uptake was the constraining
factor in biomass optimization. We used the same random
environments for simulations of disruptive compounds.

Second, in Gibert et al.,55 the maximal respiration rate was
measured after exposure to the proton uncoupler FCCP. This
uncoupler allows for proton flux over the inner mitochondrial
membrane, bypassing ATPase. We simulated this by block-
ing the model reaction ATPS4m (Fig. 4), the model equiva-
lent of ATPase, and again optimizing for biomass production
with pFBA. The experimental results show a 29% increase in
respiration compared to basal respiration. Our FCCP simu-
lations, Figure 5, second column, show a 10-fold increase in
mean value compared to our basal respiration simulations
mean value.

After that, a new assay was performed in Gibert et al.,55

exposing the embryos alternatively to oligomycin, an ATPase
inhibitor, and rotenone, a complex I inhibitor. By comparing
the respiration rate after oligomycin addition, the respiration
related to ATP production can be derived. We simulated the
effect of oligomycin by again blocking ATPS4m, together
with limiting the flux through the uncoupling reaction that
transports protons over the inner membrane (Htim, Fig. 4).
The latter constraint is necessary as proton gradients cannot
develop in FBA. The Htim flux upper bound was set equal to
the Htim flux from the basal respiration simulations to reflect
the maximal buildup of proton gradient. The experimental
results show that ATP turnover-related respiration contrib-
utes about 60% to basal mitochondrial respiration; in our
simulations, this would be about 90%. This is due to a side
effect of blocking ATPS4m together with the limit on Htim.
As the proton back flow is limited, ubiquinone cycling is also
limited. Ubiquinone is required for the reaction catalyzed by
dihydroorotate dehydrogenase, an essential part of pyrimidine

FIG. 3. Minimal required metabolite uptake fluxes
for the production of 1 arbitrary unit of biomass flux
for both the original model and the updated model.
Metabolite excretion fluxes are also shown, but were
not constraining the minimization.

FIG. 4. Overview of oxidative phosphorylation, with the site of action of the disrupting compounds rotenone, Antimycin
A, oligomycin, and FCCP. The model reaction names are next to the corresponding enzyme, except for Htim, which
represent, the proton leak and hence has no corresponding enzyme.
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synthesis. With limited pyrimidine synthesis, the biomass
production is also limited. As the upper bound for Htim is
often 0, the model does not grow at all, and hence requires no
oxygen.

The final compound rotenone can be used to measure the
nonmitochondrial respiration, as the electron transport chain
is blocked and no oxygen is consumed by complex IV. We
modeled the effect of rotenone by blocking the reaction
associated to complex I: NADH2_u10m (Fig. 4). The exper-
imental results show that nonmitochondrial respiration con-
tributes to about 40% of basal respiration. Our simulations
show a different picture, as the oxygen consumption flux is
larger in the rotenone simulation than in the basal simulation.
(Fig. 5, column 4). The rotenone simulation should represent
respiration where the entire electron transport chain has been
blocked, resulting in nonmitochondrial respiration. However,
by only restricting the flux of NADH2_u10m, the electron
transport chain is not entirely blocked in the model, allowing
for respiration similar to the basal case. An extra compound
that can be used to study nonmitochondrial respiration is An-
timycin A, which inhibits complex III. Although not used in
Gibert et al.,55 we tried simulating the effects by blocking the
complex III corresponding reaction CYOR_u10m. However,
in this case, the model fails to grow at all.

Overall, the model is able to simulate the qualitative be-
havior of basal, FCCP-influenced, and oligomycin-influenced
respiration. It is impossible to use FBA to describe the proton
gradient. Our choice to describe the proton gradient with Htim
flux from the basal simulation proved too strict, and choosing a
higher Htim upper bound could improve the model outcome.
The rotenone/Antimycin A simulations also exposed some
problems with the model that are still open, such as alternative
electron transport routing and total biomass dependency on the
reaction CYOR_u10m.

Gene-knockout simulations. Next, we validated the util-
ity of the GPRS by performing an in silico screen for gene
knockouts. To simulate a gene knockout, we set gene activity
to ‘‘false’’ in each GPR that contains the gene. The other
genes in the GPRs were set to ‘‘true,’’ and the logical ex-
pression of the GPR was evaluated. If the GPR evaluated as
‘‘false,’’ the flux through the associated reaction was blocked.

Using FBA, we optimized biomass production in the pres-
ence of the additional constraint. The procedure was repeated
for each gene. We also screened for double gene knockouts.
In this case, each pair of genes in the network was set to
‘‘false’’ and the same procedure was applied for double
knockouts. The resulting knockout biomass production rate
was expressed as a fraction of the wild-type biomass pro-
duction rate, that is, we divide to optimal biomass production
rate in the knockout case over the optimal biomass produc-
tion rate in the ‘‘wild-type’’ control.

Out of the 1636 genes in the model, 74 single knockouts
completely blocked biomass production. For further 30
genes, single knockout reduced biomass production rates.
Out of these 30 single knockouts, 13 single knockouts re-
sulted in a biomass production rate ranging from 0.4038 to
0.8 of the optimal biomass production rate and 17 have a
slightly reduced biomass production rate ranging from 0.8 to
0.95 of the optimal rate. A further 42 single knockouts re-
sulted in a very minor reduction in biomass production,
ranging from 0.95 to 0.9998 of that of the wild type. All these
genes are listed in Supplementary Table S4A. The model was
robust to single knockout of the 1490 other genes in the
model, yielding a biomass production rate identical to that of
the wild type. The genes resulting in a nonoptimal phenotype
were mostly involved in oxidative phosphorylation (37 of
146), followed by cholesterol metabolism (14), nucleotide
interconversion (8), and synthesis (11). We see a good cor-
relation of the essential and partial-essential genes and the
pathways for biomass precursors that we added to the bio-
mass function as well as oxidative phosphorylation.

To validate our single-gene knockout simulation results,
we searched the literature for mutagenesis screens in zebra-
fish screening for visible defects (Fig. 6).56–63 Thirty-six of all
our model genes had at least one record in these screens. Out
of these 36 genes, 6 knockouts were among the 74 knockouts
with fully blocked biomass production (paics, tyms, cdipt,
rrm1, and cad). One knockout (atp5po) resulted in a reduced
biomass production rate of 0.509 of the wild-type rate. For the

FIG. 5. Oxygen exchange for the four modeling condi-
tions shown in box plots.

FIG. 6. Venn diagram of genes present in the model that
result in a phenotype in the single knockout simulation
(model phenotype), are present in the genetic screen studies
(screens),55–62 and have a knockdown abnormal phenotype
registered in the Zebrafish Information Network (ZFIN)
(knockdown).
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remaining 29 knockouts from these in vivo screens, Zebra-
GEM 2.0 did not predict a reduced biomass production.
These genes without model phenotype are also included in
Supplementary Table S4A.

We next used ZebrafishMine to extract single-gene
knockdown non-normal phenotypes from the Zebrafish In-
formation Network (ZFIN).64 Around 232 genes present in
ZebraGEM 2.0 had a knockdown phenotype in ZFIN. Of
those 232 genes, 18 genes also had reduced biomass pro-
duction in the single knockout simulations (Supplementary
Table S4A and Fig. 6), 8 had no growth, 1 had rate 0.647 of
wild-type rate, 5 had a rate in the range 0.8–0.95 of wild-type
rate, and 4 had a rate ranging from 0.95 to 0.9998 of wild-type
rate. The low number in overlap between model knockout
phenotypes and in vivo phenotypes can be caused by open
problems within the model.

On the other hand, not every gene has been extensively
studied in zebrafish, which might also explain part of the
model knockouts with reduced biomass production rate, but
no record in the zebrafish literature. For this reason, we also
used ZebrafishMine to check the remaining 123 genes that
have a phenotype in the model for diseases associated with
their human orthologs. Of these 123 genes, 69 have a meta-
bolic disease associated to their human ortholog, with the
exception of sod2 and got1 that are associated with micro-
vascular complications of diabetes and low serum levels of
aspartate aminotransferase, respectively (Supplementary
Table S4A). Of the remaining 54 genes without associated
disease, there is still the possibility that they point to prob-
lems in the model, or that they are associated with rare mu-
tations that have not been studied yet. Twenty-five of these
genes were related to oxidative phosphorylation, which
might indicate the latter.

In total, 228 genes appeared in Refs.55–62 and ZFIN with a
non-normal phenotype, but showed no phenotype in the single-
gene knockout simulation. We categorized the effects of the
knockout of these genes. One hundred and seven genes were
involved in blocked reactions only, so knocking those out re-
sults in no change in the model. For 59 genes, the corre-
sponding reactions of the genes would divert flux from the
biomass production; thus, if wild-type model is optimized for
biomass production, those reactions are already minimized to
0 flux. Next, there were also 42 genes that are redundant in our
model: knocking those out does not block any reaction. It
could be that subfunctionalization on the level of enzyme ki-
netics causes the in vivo phenotype, which cannot be re-
presented with FBA modeling. Finally, there are 20 remaining
genes that do not fit any of the three categories mentioned.
Their associated reactions might be redundant within the net-
work or do not contribute to biomass production.

For the double knockouts, we looked at two sets of genes
pairs. First, we looked for pairs of genes with lower growth
rates, which do not involve genes with phenotype in the
single knockout simulation. The gene pairs with lowered
growth rate (44 in total, 22 of which show no growth at all)
are shown in Supplementary Table S4B, and are often para-
logous genes. We also checked gene pairs involving at least
one gene with a lowered growth rate in the single knockout
experiment, which resulted in no growth, and found 36 pairs,
also shown in Supplementary Table S4B. Lethal double
knockouts are mainly involved in lipid metabolism, amino
acid metabolism, and the citric acid cycle. In contrast to the

single knockout simulation, the gene pairs that are lethal only
in double knockouts do not account for much of the newly
added reactions, with the exception of gene pairs involved in
oxidative phosphorylation.

Integration of expression data

Thanks to the GPRs, ZebraGEM 2.0 can predict metabolic
changes driven by changes in gene expression. We demon-
strate this application of ZebraGEM 2.0 with a published
dataset of infection with the fish tuberculosis bacterium
M. marinum.65 Briefly, zebrafish larvae were injected in the
yolk with M. marinum at 2 h postfertilization.65 Gene expres-
sion in infected and control larvae was measured at 4 and
5 days postfertilization using RNA deep sequencing. This
yielded a data set containing the expression of 31,388 genes.

Of these 31,388 genes, 1608 genes are present in Zebra-
GEM 2.0. Although this is a small fraction of the total gene
set, it covers 98% of the model genes. From these 1608 genes
present in ZebraGEM 2.0, we selected genes with differential
expression in the infected and control groups at 4 and 5 days
postinfection (dpi). Genes were considered ‘‘differentially ex-
pressed’’ if they had a fold change > 2 or a fold change
< � 2, together with an adjusted p-value threshold < 0:05
(Fig. 7). We thus identified 24 metabolic genes in ZebraGEM
2.0 that were differentially expressed both at 4 dpi and 5 dpi
(Tables 2, and 3).

We next predicted the metabolic changes caused by dif-
ferential expression of these 24 expressed genes. We made
use of GC-flux.37 The GC-flux algorithm constrains the rate
of the metabolic reaction in the model based on the expres-
sion levels of the genes coding for the corresponding en-
zymes. GC flux distributes the gene expression of a single
gene over all reactions associated with that gene, such that the
total sum of those reaction fluxes cannot exceed maximum
flux associated with the gene expression value. We per-
formed this analysis for control and infected larvae at 4 and
5 days dpi.

FIG. 7. Volcano plots of the gene expression data set
for both 4 and 5 dpi. Total data set on the left, the
model subset on the right. Dashed lines indicate cutoff
values: � log10 pð Þ >1:301, log2 fold changeð Þj j >1. dpi,
days postinfection.
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After the model was constrained with the gene expression
data, a method called FVA was applied.8 FVA predicts the
minimum and maximum possible flux ranges for each reac-
tion, given an objective function; in this study, we used
biomass production rate. To compare the flux ranges between
control infected at 4 and 5 dpi, we used the RFRC.39 The
RFRC is a measure that indicates how much the flux ranges
differ between the control and infected simulations. When the
RFRC is greater than 1 or smaller than -1, the centers of the

compared flux ranges are separated by more than the aver-
aged width of those flux ranges, with negative values indi-
cating that the infected case has a range lower than the control
case.

An important reaction with an absolute RFRC greater than
1 is the biomass function BIO_L_2 and it appears in the list
for both 4 and 5 dpi. The RFRC of BIO_L_2 is negative in
both cases, -18.371 for 4 dpi and -17.421 for 5 dpi, sug-
gesting that infection reduces biomass production rate. When
comparing the maximal growth rates, the growth rate of the
infected simulation was 83% of the control growth rate at
4 dpi, and at 5 dpi, the infected group reached 84% of the
growth rate of the control. Further examination of the list
with reactions with absolute RFRC greater than one (Sup-
plementary Table S5) shows that affected reactions (with
RFRCj j > 1) at 5 dpi (46 reactions in total) are also affected

at 4 dpi (56 reactions in total). Most of these 46 reactions were
essential reactions involved in biomass precursor production
and their knockouts are lethal (Supplementary Table S4A).
The fluxes of the biomass precursor reactions co-vary, be-
cause they contribute, often in parallel, to the biomass reac-
tion. If one of the fluxes is reduced, biomass production rate is
also reduced. Due to flux balance, all the other biomass pre-
cursor fluxes must be reduced as well.

To gain insight in which genes give rise to such restricting
reactions, and hence are limiting growth in our simulations,
we identified the genes that restricted biomass production by
comparing the flux corresponding to each gene with the ex-
pression level of each gene (Table 4). In total, 17 genes re-
stricted biomass production in at least one of the four cases
(condition x dpi). Aside from essential biomass precursor
reaction-associated genes (essential genes for the model), 9

Table 2. Number of Differentially Expressed

Genes in the Total Gene Expression Dataset

and the Subset of Genes Present in the Model

Total gene set Model gene set

4 dpi 408 35
5 dpi 1714 106
Both dpi 226 24

dpi, days postinfection.

Table 3. List of Genes Differentially

Expressed at Both 4 and 5 dpi That Are

Present in the Model

Gene symbol Gene name

acsl5 Acyl-CoA synthetase long-chain
family member 5

ampd3b Adenosine monophosphate deaminase 3b
anpepb Alanyl (membrane) aminopeptidase b
asah2 N-acylsphingosine amidohydrolase 2
dpys Dihydropyrimidinase
elovl8b ELOVL fatty acid elongase 8b
enpp7.1 Ectonucleotide pyrophosphatase/

phosphodiesterase 7, tandem duplicate 1
ftcd Formimidoyltransferase cyclodeaminase
gch2 GTP cyclohydrolase 2
ggt1b Gamma-glutamyltransferase 1b
mboat2a Membrane bound O-acyltransferase

domain containing 2a
neu3.3 Sialidase 3 (membrane sialidase),

tandem duplicate 3
neu3.4 Sialidase 3 (membrane sialidase),

tandem duplicate 4
pfkfb3 6-Phosphofructo-2-kinase/fructose-

2,6-biphosphatase 3
ptgs2a Prostaglandin-endoperoxide synthase 2a
sat1a.2 Spermidine/spermine N1-acetyltransferase

1a, duplicate 2
slc13a3 Solute carrier family 13 (sodium-dependent

dicarboxylate transporter), member 3
slc26a3.2 Solute carrier family 26

(anion exchanger), member 3,
tandem duplicate 2

slc7a7 Solute carrier family 7 (amino acid
transporter light chain, y+L system),
member 7

tdo2a Tryptophan 2,3-dioxygenase a
tyms Thymidylate synthetase
ugt1ab UDP glucuronosyltransferase 1

family a, b
uroc1 Urocanate hydratase 1
zgc:92040 zgc:92040

Table 4. Genes with Gene Expression

Restricting Biomass Production in the Model

with Their Fold Change and Their Essentiality

Within the Model, According to Lethal

Phenotypes (Essential) and Reduced Growth

Phenotypes (Semiessential) in Supplementary

Table S4A

Gene FC 4 dpi FC 5 dpi Essentiality

acacb 0.522 0.036 Essential
arg1 -0.402 -0.837 Semiessential
atp5s 0.358 0.088 Semiessential
bdh2* -0.403 -0.810 Semiessential
cox6a2 -0.437 -0.633 Essential
ftcd -1.061 -1.353 Semiessential
galk1 -0.173 -0.669 —
galk2 -0.314 -0.315 —
gart -0.262 -0.016 Essential
gck 1.871 24.162 —
hkdc1 -0.529 -1.469 —
nme4 20.548 21.147 —
nme6 -0.548 -0.267 —
si:ch1073-100f3.2* -0.492 -0.277 Semiessential
slc2a11a 0.068 21.014 —
slc5a9 -0.788 -0.791 —
tha1* 0.489 0.686 —

Genes marked with an asterisk are not restrictive for 5 dpi. Bold
face genes have differential expression for 5 dpi, bold and italic font
both 4 and 5 dpi.

FC, fold change.
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genes out of 17 are not essential to the model. Among these
are si:ch1073-100f3.2, slc5a9, and tha1, all associated to
monosaccharide transporters. The differential expression
of slc2a11a, also associated to a monosaccharide trans-
porter, together with limited availability of flux for the other
monosaccharide transporters, puts a large restriction on the
model. The low number of only four genes with differential
expression (namely ftcd at both 4 and 5 dpi, and gck, nme4,
and slc2a11a at 5 dpi only) points toward a drawback of this
data integration method: it only looks at the mean values of
each case, but ignores whether these means are significantly
different.

We observed that there was a reduction in growth rate in
the infected case, and could ascribe this to a number of re-
stricting genes. However, growth reduction might not be the
only difference in metabolic activity; which metabolic
pathways are contributing to biomass production can also
differ between control and infected. To see if there was also a
shift in which metabolic pathways contribute to biomass
production, the flux ranges were normalized with the biomass
flux. The RFRC was then again computed with the normal-
ized ranges, and only for 4 dpi were there reactions with
jRFRCj > 1. These reactions are HISD, IZPN, URCN, and
EX_his__L_e, and are involved in the pathway converting
histidine into glutamate. The high jRFRCj of these reactions
can be directly linked to the differential expression of uroc1.

Overall, the addition of GPRs to ZebraGEM 2.0 together
with GC-flux allowed us to integrate gene expression data
into ZebraGEM 2.0, providing us with novel insights into
potential metabolic changes due to M. marinum infection.
First of all, there is a reduction in growth in the infected cases.
This can be attributed to differences in the expression of some
essential genes as well as monosaccharide transporter genes.
When looking at qualitative changes in metabolism, histidine
metabolism is reduced at 4 dpi, due to reduced expression of
uroc1. Together with the restrictive gene ftcd (Table 4),
which is also involved in the histidine pathway, this could
make the histidine pathway an interesting starting point for
more research on changes in metabolism upon M. marinum
infection.

Discussion

In this work, we have presented ZebraGEM 2.0, an im-
proved version of the genome-scale metabolic reconstruction
ZebraGEM.22 We have made the model available through an
xml-file, see Supplementary Data. The improvements were
the addition of GPRs, significant changes to the stoichiom-
etry by the addition of oxidative phosphorylation and
checking the reversibility of reaction, and adhering to the
existing standards of genome-scale metabolic reconstruc-
tions. To validate the new model, we have shown that it
performs better than the previous version on a predetermined
list of 160 metabolic tasks. We also determined a minimal
feed. ZebraGEM assigns more nutrients to be essential,
which is in agreement with what is known about zebrafish
nutrition. To test the added GPRs, we did an in silico
knockout screening, and found a large agreement between
genes causing a phenotype in the model and genes that are
known to have a phenotype in vivo in zebrafish or in human.

Altogether, ZebraGEM 2.0 is now suitable to be used with
gene expression, which we demonstrated by integrating a

gene expression data set of M. marinum-infected and
noninfected embryos. In this study, our simulations pre-
dicted a lowered growth rate for the infected embryos due
to changes in essential gene expression as well as mono-
saccharide transporter gene expression, and a change in his-
tidine metabolism.

Here, we will discuss further improvements and limita-
tions of ZebraGEM 2.0, and briefly discuss the future work.

Blocked reactions

Blocked reactions are reactions that cannot carry any flux
due to absence of some or all pathways carrying metabolites
toward or away from the reactions. Currently, 1675 out of
3018 (55.5%) of the reactions remain inactive in ZebraGEM
2.0. This number is high in comparison with similar meta-
bolic reconstructions: in Recon 2, 2123 out of 7440 (28.5%)
reactions are blocked,18 and in iMM1415, 1294 out of 3726
(34.7%) reactions are blocked.19 Even if the blocked reac-
tions are currently nonfunctional, we have decided to leave
them in ZebraGEM 2.0. This prepares the model for future
improvements that can unblock these reactions.

To unblock these reactions, we will need to add a number
of missing exchange reactions. These allow the model to
import metabolites and excrete waste metabolites. Due to flux
balance, the whole metabolic pathway is blocked if excretion
or further processing of a metabolite is impossible. One ex-
ample of such a missing exchange reaction is the exchange
reaction for urea; after we added it to the model, it allowed for
the production and incorporation into biomass of arginine.
For our current needs, further addition of exchange reactions
was not needed. Besides that, improvements in the import
and export reactions are complicated by three facts. First,
there is the food composition, which is not predetermined for
free-feeding larvae and adult fish; a solution here would be to
add all possible exchange reactions and open or close them
depending on fodder composition. Second, there is the un-
known factor of exchange with the environment by other
means than diet, such as excretion and uptake of metabolites
through the skin. Third, there is exchange among cells and
tissues of metabolites, such as the uptake of nutrient from the
yolk in developing embryos.

Further unblocking of reactions will be achieved by
identifying unconnected parts of the network and add the
missing metabolic pathways. Such gap-filling can, in part, be
automated by finding the minimal set of addition to the
network,66–68 or using novel topology-based methods that
can pinpoint missing essential reactions.69 Such automized
gap-filling should be done with care, because the gaps often
require reactions that have no or little literature that clearly
supports those reactions.

Lipid metabolism

ZebraGEM 2.0 and its predecessor have applied a number
of simplifications in the description of lipid metabolism. First,
a generic fatty acid is used in most lipid metabolism reactions.
Also, the essential lipid linolenic acid has no reaction in the
model converting it into this generic fatty acid and hence is not
processed further by the model. To further improve the de-
scription of lipid metabolism in ZebraGEM 2.0, future de-
scription of lipid metabolism should include specific reactions
for each type of fatty acid. This improvement would make
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linolenic acid essential, but because a single reaction would be
part of the metabolism of a range of fatty acids, it comes at the
cost of increased model size. Most likely, this will double the
number of reactions, as the *600 reactions involved in lipid
metabolism will be multiplied by the number of specified fatty
acids. This will increase simulation time significantly for some
of the modeling techniques, like FVA. The Chinese hamster
model iCHOv1,20 a human platelet model,70 and a human
erythrocyte model24 have parts of lipid metabolism with
specified fatty acids and can serve as examples.

An additional factor in lipid metabolism is that many of
the associated metabolites are located in the compartment
‘‘membrane.’’ This compartment accounts for the plasma
membrane, Golgi membrane, endoplasmic reticulum mem-
brane, lysosome membrane, nuclear membrane, and the outer
mitochondrial membrane all at once. This compartmentali-
zation into a single compartment does not take into account
the required transport processes and associated metabolic
processes for such metabolites that take place within the cell.
Another effect of this membrane compartment is the tun-
neling of NADH and NADPH over the membrane due to
imbalanced reaction reversibility, as discussed in Reaction
Reversibility and Reaction Nature section. We have currently
solved this issue by checking reaction reversibility, but a
future improvement of the compartmentalization of mem-
brane metabolites into specific membrane parts would solve
these problems more accurately.

Improving lipid metabolism is also of interest when looking
at the growth conditions of zebrafish. Embryos rely on the
abundance of lipids present in the yolk as their source of energy,
and as zebrafish are often used for experiments in their em-
bryonal stages, insight into lipid metabolism is relevant. Fraher
et al. determined changes in lipid composition of both the yolk
and the developing embryo.71 This study provides interesting
information upon which estimates for lipid exchange between
embryo and yolk can be made, which can further improve
metabolic modeling studies of embryonic stages.

Biomass function and quantitative simulations

The current biomass function is not based upon any data on
zebrafish cell composition, but on human and mouse models.
Although the metabolites of which a cell consists vary little
between animals, as all cells are built from amino acids,
nucleic acids, and fatty acids,50 the ratios between the re-
quired metabolites can vary as much as 30 million fold.26 The
ratios of biomass precursor metabolites can have a large
impact on the model predictions. Therefore, data of zebrafish
cell composition, possibly for different cell types, will be of
high value for increasing model prediction accuracy. So far,
there has been detailed study of lipid composition only.72

Genome-scale metabolic modeling focuses only on me-
tabolism and hence has a limited scope. For example, 20
genes with a non-normal phenotype in Refs.55–62 or ZFIN had
no phenotype in ZebraGEM 2.0. They could not be ascribed
to blocked reactions, no knockout effect due to the gene being
redundant in the model, or the associated reaction diverting
flux from the biomass optimization. The optimization for
biomass production rate does likely not reflect all the required
metabolic outputs of a cell. Alternative objective functions
would include specific protein synthesis for antibody pro-
ducing B-lymphocytes, ATP synthesis for muscle cells, or

ROS production upon infection. In addition, bacterial me-
tabolism also plays a role during infection. Therefore, results
of in silico knockout experiments will deviate from the re-
sults of in vivo experiments.

A generic problem of flux balance analysis is that it does
not consider kinetics and thermodynamics. Gene mutations
or knockouts can change the kinetics of metabolic reactions,
causing for instance accumulation of toxic compounds.
Thermodynamics can also affect the rate of reactions and has
been combined with constraint-based methods before.73

Finally, these genes can cause a phenotype in vivo by other
means than metabolism, that is, they could be involved in
signaling and genetic regulating processes as well, and those
aspects are not part of this model.

Last but not least, when using data integration methods,
one has to be careful with the distribution of experimental
values. As we saw now with our data-integrated simulations,
most of the restricting genes were not significantly differ-
entially expressed, which could lead to pinpointing incorrect
causes of altered metabolism. The algorithm we used, as well
as many others take only a single value for the expression of
genes, often just the average; the original distribution underly-
ing that average has to be considered, especially when com-
paring different situations. Extending data integration methods
for constraint-based metabolic modeling with methods from
robust optimization can offer a framework in which such dis-
tributions can be taken into account.

Despite these limitations, the improved model combined
with the zebrafish embryo data results in the prediction of
lowered growth in the case of Mycobacterium infection.
Furthermore, we showed that metabolism of histidine syn-
thesis was decreased in infected zebrafish embryos. Further
improvements on the model as well as the data integration
methods and analysis can lead to new applications of Zeb-
raGEM 2.0, such as elucidating yolk and embryo metabolism
or exploring the causes of metabolic diseases.
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33. Machado D, Herrgård M. Systematic evaluation of methods
for integration of transcriptomic data into constraint-based
models of metabolism. PLoS Comput Biol 2014;10:1003580.

34. Schmidt BJ, Ebrahim A, Metz TO, Adkins JN, Palsson B,
Hyduke DR. GIM3E: condition-specific models of cellular
metabolism developed from metabolomics and expression
data. Bioinformatics 2013;29:2900–2908.

35. Saha R, Chowdhury A, Maranas CD. Recent advances in
the reconstruction of metabolic models and integration of
omics data. Curr Opin Biotechnol 2014;29:39–45.

36. Motamedian E, Mohammadi M, Shojaosadati SA, Heydari
M. TRFBA: an algorithm to integrate genome-scale meta-
bolic and transcriptional regulatory networks with incor-
poration of expression data. Bioinformatics 2017;33:1057–
1063.

37. Fyson N, Kim MK, Lun DS, Colijn C. Gene-centric con-
straint of metabolic models. bioRxiv 2017, doi: 10.1101/
116558.
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49. Reznik E, Mehta P, Segrè D. Flux imbalance analysis and
the sensitivity of cellular growth to changes in metabolite
pools. PLoS Comput Biol 2013;9:1003195.

50. Feist AM, Palsson BO. The biomass objective function.
Curr Opin Microbiol 2010;13:344–349.

51. Chou CH, Chang WC, Chiu CM, Huang CC, Huang HD.
FMM: a web server for metabolic pathway reconstruc-
tion and comparative analysis. Nucleic Acids Res 2009;
37:129.

52. Jiang WD, Feng L, Liu Y, Jiang J, Zhou XQ. Growth,
digestive capacity and intestinal microflora of juvenile Jian
carp (Cyprinus carpio var. Jian) fed graded levels of dietary
inositol. Aquac Res 2009;40:955–962.

53. Khosravi S, Lim S-J, Rahimnejad S, Kim S-S, Lee B-J,
Kim K-W, et al. Dietary myo-inositol requirement of
parrot fish, Oplegnathus fasciatus. Aquaculture 2015;436:
1–7.

54. Shiau S-Y, Su S-L. Juvenile tilapia (Oreochromis niloti-
cus · Oreochromis aureus) requires dietary myo-inositol
for maximal growth. Aquaculture 2005;243:273–277.

55. Gibert Y, McGee SL, Ward AC. Metabolic profile analysis
of zebrafish embryos. J Vis Exp 2013;14:4300.

56. Amsterdam A, Nissen RM, Sun Z, Swindell EC, Farrington
S, Hopkins N. Identification of 315 genes essential for early
zebrafish development. Proc Natl Acad Sci U S A 2004;
101:12792–12797.

57. Golling G, Amsterdam A, Sun Z, Antonelli M, Maldonado
E, Chen W, et al. Insertional mutagenesis in zebrafish
rapidly identifies genes essential for early vertebrate de-
velopment. Nat Genet 2002;31:135–140.

58. Amsterdam A, Burgess S, Golling G, Chen W, Sun Z,
Townsend K, et al. A large-scale insertional mutagenesis
screen in zebrafish. Genes Dev 1999;13:2713–2724.

59. Driever W, Solnica-Krezel L, Schier AF, Neuhauss SC,
Malicki J, Stemple DL, et al. A genetic screen for muta-
tions affecting embryogenesis in zebrafish. Development
1996;123:37–46.

60. Muto A, Orger MB, Wehman AM, Smear MC, Kay JN,
Page-McCaw PS, et al. Forward genetic analysis of visual
behavior in zebrafish. PLoS Genet 2005;1:66.

61. Covassin LD, Siekmann AF, Kacergis MC, Laver E, Moore
JC, Villefranc JA, et al. A genetic screen for vascular
mutants in zebrafish reveals dynamic roles for Vegf/Plcg1
signaling during artery development. Dev Biol 2009;329:
212–226.

62. Iwanami N, Sikora K, Richter AS, Mönnich M, Guerri L,
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