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Abstract
Emerging evidence has highlighted that the immune and stromal cells formed the 
majority of tumor microenvironment (TME) which are served as important roles in 
tumor progression. In our study, we aimed to screen vital prognostic signature asso-
ciated with TME in clear cell renal cell carcinoma (ccRCC). We obtained total 611 
samples from TCGA database consisting of transcriptome profiles and clinical data. 
ESTIMATE algorithm was applied to estimate the infiltrating fractions of immune/
stromal cells. We found that the immune scores revealed more prognostic signifi-
cance in overall survival and positive associations with risk clinical factors than stro-
mal scores. We carried out differential expression analysis between Immunescore 
and stromalscore groups to obtain the 72 intersect genes. Protein to protein inter-
action (PPI) network and functional analysis was performed to indicate potential 
altered pathways. Additionally, we further conducted multivariate Cox analysis to 
identify 12 hub genes associated highly with TME of ccRCC using a stepwise regres-
sion procedure. Accordingly, risk score was constructed from the multivariate Cox 
results and Receiver Operating Characteristic (ROC) curve was used to assess the 
predictive value (AUC = 0.781). The ccRCC patients with high risk scores suffered 
poor survival outcomes than that with low risk scores. In the validation cohort from 
GSE53757, TNFSF13B, CASP5, and GJB6 correlated positively with tumor stages, 
while FREM1 negatively correlated with tumor stages. Importantly, we further ob-
served that TNFSF13B, CASP5 and XCR1 showed the remarkable correlations with 
tumor-infiltrating immune cells. Taken together, our research identified specific sig-
natures that related to the infiltration of stromal and immune cells in TME of ccRCC 
using the transciptome profiles, which reached a comprehensive understanding of 
tumor microenvironment in ccRCC.
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1 |  INTRODUCTION

Renal cell carcinoma (RCC), accounting for more than 
90% of kidney malignancies and comprising almost 2%-3% 
among all human malignant neoplasms, is the second most 
common malignancy in the urinary system second to blad-
der cancer.1-3 The incidence and mortality of RCC have in-
creased rapidly in recent decades. In 2019, the estimated 
new cases and new death of kidney cancer will increase 
to 73 820 in the United State.2 As the most common his-
tologic subtype of RCC according to pathologic classifi-
cation, clear cell renal cell carcinoma (ccRCC) accounts 
for approximately 70% of all RCC cases.4,5 Studies have 
shown that the tumorigenesis and development of ccRCC is 
a complex progress mediated by various drivers, environ-
mental risk factors such as obesity and smoking, or tumor 
microenvironment (TME) alterations.6-9 However, the mo-
lecular regulation mechanisms of ccRCC tumorigenesis 
and progression is still unclear.

TME is the complex cellular milieu containing immune 
cells, mesenchymal cells, endothelial cells, inflammatory 
mediators and extracellular matrix molecules adaptively or 
innately.10-12 To provide a comprehensive view of TME, 
PhenoGraph clustering algorithm were performed by 
Chevrier et al and the classification results indicate that T 
cells, with a mean of 51%, act as a key character in ccRCC 
TME immune cells. Besides, the proportion of myeloid cells, 
natural killer cells and B cells were 31%, 9%, and 4%, respec-
tively.9,13,14 Previous studies often focused on the malignant 
progression of tumors regulated by some particular types of 
non-tumor cells or regulators in TME. There is a limitation 
of comprehensive studies analyzing the prognostic value of 
TME in malignant tumors from a genome-wide perspective.

In recent years, the establishment of public resources 
and the emergence of new biological algorithms have pro-
vided new data resources and technical means for TME re-
search. The Cancer Genome Atlas (TCGA) database is a 
public data resource consisting of cancer-causing genomic 
alterations among various malignancies.15 Moreover, the 
Gene Expression Omnibus (GEO) database with biological 
information from the National Center for Biotechnology 
Information (NCBI) provides a promising approach for 
extracting high-through sequence information.16 Novel al-
gorithms have been invented to evaluate tumor purity ac-
cording to TCGA database.17,18 Yoshihara et al described a 
new algorithm called “Estimation of STromal and Immune 

cells in MAlignant Tumours using Expression data” 
(ESTIMATE), which is capable of calculating the fraction 
of different cells in malignant tumors utilizing gene expres-
sion signatures.17 Since the infiltration levels of normal 
cells in tumor microenvironment also function a significant 
role in tumor progression, we mainly utilized the unique 
properties of the transcriptional traits to assess the cellu-
larity of various infiltrating normal cells, including the 
two main types of stromal and immune cells. The utility of 
ESTIMATE algorithm was widely reported to successfully 
predict the infiltration of nontumor cells in TMEs of pros-
tate cancer, breast cancer and colon cancer.19-21 However, 
limited research explored the TME of ccRCC adopting 
ESTIMATE algorithm.

In the present study, ESTIMATE algorithm was firstly 
performed to calculate the immune and stromal scores 
of TME in ccRCC. We extracted the high-throughput se-
quencing data of ccRCC and identified pivotal genes as-
sociated with TME of ccRCC. Importantly, we established 
a corresponding risk score system to predict the survival 
outcomes of ccRCC patients, and further explored the un-
derlying relationships between TME-related signature and 
immune infiltrates.

2 |  MATERIALS AND METHODS

2.1 | Data collection and processing

We obtained the RNA-seq data (Level 3) of TCGA-KIRC 
cohort (https://portal.gdc.cancer.gov/), including 539 ccRCC 
and 72 normal samples. Corresponding clinical characteris-
tics of age, gender, tumor grade, pathological stage, AJCC-
TNM, and survival outcomes were downloaded from TCGA 
portal using the GDC tool. We utilized the limma package 
to conduct the normalization process, deleting the normal or 
repeated samples for subsequent analysis.

ESTIMATE algorithm was exploited to infer the frac-
tion of immune and stromal cells in tumor tissues based on 
gene expression signature, including microarray expression 
data sets, new microarray, as well as RNA-seq transcriptome 
profiles. We downloaded the R script of ESTIMATE algo-
rithm from the public source website (https://sourc eforge.net/
proje cts/estim atepr oject /). Then, we calculated the immune 
scores, stromal scores and ESTIMATE scores for each sam-
ple, respectively (Table S1).

K E Y W O R D S

biomarkers, clear cell renal cell carcinoma (ccRCC), immune infiltrates, immune/stromal scores, tumor 
microenvironment (TME)
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2.2 | Survival analysis and 
correlation analysis

We utilized the survival package to conduct the Kaplan-Meier 
analysis for ccRCC patients based on the immune scores, stro-
mal scores and ESTIMATE scores. The respective P value of 
the log-rank test was calculated and considered as significant 
with P  <  .05. Meanwhile, we further assessed the associa-
tions between score levels and multiple subgroups of clinical 
variables using Kruskal-Wallis (W-S) test, which was a non-
parametric test suitable for comparisons among two or more 
groups. P < .05 was thought to be of statistical significance.

2.3 | Differentially expressed genes and 
clustering analysis

Since we obtained three scores from the ESTIMATE method, 
we could classify the samples into high- and low-level groups 
according to the median score, respectively. For two groups of 
immune scores, we used the limma package to analyse the tran-
scriptome data with |log(FC)| ＞ 1 and False Discovery Rate 
(FDR) < 0.05 as the threshold.22 Meanwhile, we conducted 
the clustering analysis to identify significant up and down 
gene sets between the two immune score levels and illustrated 
the differential genes using pheatmap package. Accordingly, 
we performed the same procedure and differential analysis in 
patients with high- and low-level stromal scores. Furthermore, 
we identified the intersect genes of four gene sets from the dif-
ferential analysis of patients with immune scores and stromal 
scores. VennDiagram package was exploited to visualize the 
process and intersect genes (Figure 3B).23

2.4 | PPI network and pathway analysis, 
Gene Set Enrichment Analysis (GSEA)

Intersect genes were selected as the vital genes associated with 
tumor microenvironment. We utilized the STRING database 
to construct the protein-protein interaction (PPI) network and 
modified the plot using Cytoscape software (version 3.7.1) 
based on JAVA8.0 platform.24,25 Besides, we calculated the 
number of connecting nodes for top 30 genes and shown the 
results in barplot. What is more, we further investigate the 
potential biological pathways that intersect genes may par-
ticipate in. Firstly, we exploited the org.Hs.eg.db package to 
obtain the entrez ID of each genes. Then, clusterProfiler, org.
Hs.eg.db, enrichplot, and ggplot2 packages were utilized to 
perform the gene ontology analysis from three aspects con-
sisting of Cellular Component (CC), Molecular Function 
(MF), and Biological Process (BP), which was illustrated 
by barplot. In addition, Kyoto Encyclopedia of Genes and 
Genomes (KEGG) was performed to conduct the pathway 

analysis, which was shown by dotplot.26 The P value <.05 
were considered to be significant.

We downloaded the GSEA software (http://softw are.
broad insti tute.org/gsea/index.jsp), running based on JAVA8 
platform.27 Then, we selected the immune scores as the phe-
notypes and divided the samples into high- and low-groups. 
Afterwards, “c2.cp.kegg.v6.2.symbols.gmt gene sets” was 
chosen from the MSigDB (http://softw are.broad insti tute.org/
gsea/downl oads.jsp) to be used as the reference gene sets. 
Last, P < .05 was considered statistically significant.

2.5 | Establishment of risk score

To further identify important genes in tumor microenvironment, 
we conducted the Kaplan-Meier analysis to select prognostic genes 
with P value of log-rank test <.05. We mainly used the survival 
package and “for cycle” R script to conduct the survival analysis 
of all genes. Then, we performed the stepwise regression method 
to screen 12 hub prognostic genes associated with ccRCC micro-
environment, in which the minimum Akaike information criterion 
(AIC) value was obtained. Meanwhile, we used the multivariate 
Cox regression analysis to get the coefficients (βi) of each gene and 
calculated the risk score as following: risk score = Ʃ (βi * Expi) 
(i = 12). We draw the forest plot by survminer package to show 
the hazard ratio (HR) with 95% confidence interval (CI) of each 
gene. In addition, we could divide the ccRCC patients into high- 
and low-risk groups according the median data of risk scores. We 
conducted the receiver operating characteristic curve (ROC) to as-
sess the predictive value of risk score by survivalROC package.28 
Kaplan-Meier analysis was conducted to analysis the survival dif-
ference between high- and low-risk group by survival package.

We also obtained 72 ccRCC patients from GSE53757 
with transcriptome chip data and corresponding clinical stage 
information. We validated the 12 hub genes in the GSE53757 
populations. The expression data of 12 genes were extracted 
and the risk score was calculated as the above formula. 
Kruskal-Wallis test was utilized to evaluate the associations 
between expression levels of genes with clinical tumor stage.

2.6 | TIMER database analysis

The TIMER database (https://cistr ome.shiny apps.io/timer /) is a 
publicly available resource to estimate the abundance of tumor 
immune infiltrates using the deconvolution algorithm, includ-
ing 10 897 samples across 32 types of cancers from TCGA. We 
invented to explore the associations between 12 hub genes with 
key immune infiltration cells, including B cell, CD4＋ T cell, 
CD8＋ T cell, macrophage, neutrophil, dendritic cell, as well as 
tumor purity. The Person’s correlation coefficients with corre-
sponding statistical significance were calculated. We displayed 
the log2 (RSEM) of gene expression level in y-axis.

http://software.broadinstitute.org/gsea/index.jsp
http://software.broadinstitute.org/gsea/index.jsp
http://software.broadinstitute.org/gsea/downloads.jsp
http://software.broadinstitute.org/gsea/downloads.jsp
https://cistrome.shinyapps.io/timer/
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2.7 | Statistical analysis

Univariate Cox regression, multivariate Cox regression analysis 
and Kaplan-Meier analysis were conducted by survival package. 
Differential analysis was performed by limma package. Kruskal-
Wallis (W-S) test was mainly used for comparisons across two 
or more groups. The correlation of gene expression levels with 

immune infiltrates were determined by Pearson's coefficients 
combined with estimated statistical significance. All statistical 
analysis was conducted using R software (version 3.5.2). The P 
value <.05 was regarded to be statistically significant.

3 |  RESULTS

3.1 | Immune scores revealed more 
prognostic value in ccRCC versus stromal 
scores

We obtained a total of 611 samples from TCGA-KIRC 
combined with transcriptome data and clinical information. 
Excluding nine cases with incomplete data or 72 normal sam-
ples, we got 530 ccRCC patients, in which 344 cases were 
male and 186 were female. The percentage of other clinical 
features was shown in Table  1. Moreover, the information 
of other patients from GSE53737 was shown in Table 2. We 
conducted the ESTIMATE method to calculate the immune 
scores, stromal scores and ESTIMATE scores for each sam-
ple, respectively. Immune scores ranged from −693.96 to 
3328.21, while the distribution of stromal scores was −1433.77 
to 1967.19 (Table S1). The ESTIMATEScore was calculated 
by integrating the two scores and the mean was 2283.99 rang-
ing from −2127.72 to 5091.59. We then conducted the sur-
vival analysis to assess the prognostic value of the two scores. 
The log-rank test revealed that only immune scores showed 
the statistical difference, where ccRCC patients with high im-
mune scores correlated with poor survival outcomes (Figure 1; 
P = .044). However, no significant difference was observed in 
the stromal scores (P = .258), or the sum ESTIMATE scores 
(Figure 1; P = .252). Moreover, we divided the patients into 
three groups incorporating high, median with low groups, and 
the differential survival outcomes between high versus low 
subgroups could be seen in Figure S4.

Additionally, we further investigated the immune scores 
and stromal scores with independent clinical characteristics, 
including tumor grade, pathological stage, and AJCC-TNM 
stage. The Kruskal-Wallis (W-S) test revealed that immune 
scores were associated with higher AJCC-T level (P < .001), 
higher AJCC-N level (P  <  .05), higher AJCC-M level 
(P  <  .001), advanced tumor grades (P  <  .001), as well as 
higher pathological stages (P <  .001) (Figure 2). However, 

T A B L E  1  Clinical baseline of 530 ccRCC patients included in 
study from TCGA cohort

Variables Number Percentage

Vital status

Alive 166 31.32

Dead 364 68.68

Age 60.56 ± 12.14  

Gender

Female 186 35.10

Male 344 64.90

AJCC-T

T0/Ta 0 0

T1 271 51.13

T2 69 13.02

T3 179 33.77

T4 11 2.08

AJCC-N

N0 239 45.09

N1 16 3.02

NX 275 51.89

AJCC-M

G1/G2 241 45.47

G3/G4 286 53.96

Unknown 3 0.57

Stage

Stage Ⅰ & Ⅱ 322 60.75

Stage Ⅲ & Ⅳ 208 39.25

Immune score

Low level 265 50.00

High level 265 50.00

Stromal score

Low level 265 50.00

High level 265 50.00

ESTIMATE score

Low level 265 50.00

High level 265 50.00

Risk score

Low level 265 50.38

High level 265 49.62

Abbreviations: AJCC, American Joint Committee on Cancer.

T A B L E  2  Tumor stage of 72 ccRCC patients in GSE53737

Clinical stage Samples (n) Percentage

StageⅠ 24 33.34

StageⅡ 19 26.39

Stage Ⅲ 14 19.44

Stage Ⅳ 15 20.83



4314 |   LUO et aL.

there were no significant difference among stromal scores 
with any other clinical features (Figure S1), in accordance 
with the results from above survival analysis.

3.2 | Differential analysis of gene expression 
profiles with stromal scores and immune scores 
in ccRCC

Limma package was mainly used to deal with Affymetrix mi-
croarray data of 539 ccRCC patients. For samples with immune 
scores, we classified the patients into high- (n = 270) and low-
level (n = 269) groups according the median immune scores. 

Heatmap in Figure 3A revealed the clustering analysis. We to-
tally identified 659 differentially expressed genes (DEGs) based 
on immune scores, consisting of 512 highly expressed genes 
(fold-change ＞ 1, FDR < 0.05) and 147 down-regulated genes 
(fold-change < −1, FDR < 0.05). Meanwhile, we divided the 
patients with stromal sores into high- (n = 270) and low-level 
(n = 269) groups. The differential analysis was performed by 
the same process and 259 up-regulated genes with 152 down-
regulated genes were identified (Table S2; Figure S2). To fur-
ther identify vital genes associated with microenvironment, we 
exploited the Venn diagrams to search 97 intersect genes, where 
49 genes were all up-regulated in ccRCC samples with higher 
immune/stromal scores and 48 genes were all down-regulated 

F I G U R E  1  Survival analysis of immune scores, stromal scores and ESTIMATE scores with overall survival (OS). A, Clear cell renal cell 
carcinoma patients were divided into high group (n = 270) and low group (n = 269). As shown in Kaplan-Meier plot, median survival of patients in 
the high group was shorter than that in low group indicated by the log-rank test of P = .044. B, Similarly, no significant difference were observed in 
survival outcomes in patients with high- and low-stromal scores (P = .258). C, There was no statistical prognostic difference in patients with high- 
an low-ESTIMATE scores (P = .252)

F I G U R E  2  Correlation analysis of immune scores with risk clinical variables using Kruskal-Wallis (W-S) test. A-C, Higher expression level 
of immune scores correlated with higher AJCC-T stage, higher AJCC-N stage, and advanced metastasis. D, Higher expression level of immune 
scores were associated with higher tumor grades. E, In addition, higher immune scores distributed in higher pathological stages
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in that with lower immune/stromal scores. Last, when clustering 
the samples, the differential genes still significantly discrimi-
nate patients of low and high scores in Figure S5.

3.3 | Protein-protein interactions 
among intersect genes and functional 
enrichment analysis

To deeply understand the underlying interplay among 97 in-
tersect genes, we constructed the PPI network using SRING 
tool and Cytoscape software. Meanwhile, the number of inter-
actions among nodes was calculated in bar plot (Figure 4B). 
111 edges involving 55 genes were formed in the network 
(Table S3) and we selected some genes to exhibit in Figure 4A, 
in which CD19, CD79A, TNFSF13B, CCL19 and TNFRSF17 
were relatively remarkable nodes. Besides, we further in-
vestigated the potential pathways that the 97 genes might be 
involved in. The GO enriched analysis indicated that these 
genes may be associated with immune responses, tumor ne-
crosis factors, B cell proliferation, as well as cytokine activity 
(Figure  4C). Especially, cytokine-cytokine receptor interac-
tion, hematopoietic cell lineage, and NF-κB signaling pathway 
were top significant crosstalk that the 72 genes may participate 
in (Table 3).

Since immune scores showed higher associations with 
overall survival (OS) and other risk clinical variables, we 
conducted the GSEA analysis to further screen the significant 
pathway items between groups with higher immune scores 
against that with lower immune scores. The results revealed 
that there were a list of 40 gene sets with FDR < 0.25. The top 
eight immune related pathways included B cell receptor sig-
naling pathway, T cell receptor signaling pathway, Toll-like 
receptor signaling pathway, JAK-STAT signaling pathway, 
Natural killer cell mediated cytotoxicity, Nod-like receptor 
signaling pathway, cytokine-cytokine receptor interactions, 
as well as chemokine signaling pathway (Figure 4E).

3.4 | Batch survival analysis and 
construction of risk score based on hub genes

We screened 43 prognostic genes with log-rank test of 
P <  .05 from the 72 intersect genes (Table 4). Then, step-
wise regression method and multivariate Cox analysis were 
performed to identify 12 hub prognostic genes associated 
with ccRCC microenvironment. The risk formula was cal-
culated as: risk score = (−3.14421) * ADGRV1 + 0.11 * 
APCDD1L + 0.59299 * CASP5-0.16688 * CHRDL2 + 
0.84338*F7 − 0.68058 * FREM1 + 0.68393 * GJB6 + 

F I G U R E  3  Differentially expressed genes analysis with immune scores in clear cell renal cell carcinoma. A, Heatmap of differentially 
expressed genes in two levels of immune scores was illustrated by pheatmap package with FDR < 0.05, fold change > 1. B, Identification of 
intersect genes of commonly up-regulated and down-regulated in stromal and immune scores. The number also displayed in the Venn diagrams
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F I G U R E  4  Construction of protein to protein interaction network and functional pathway analysis for intersect genes, GSEA analysis with 
immune scores as the phenotype. A-B, We selected partial nodes to establish the interaction network, in which CCL19, TNFSF13B, CD79A, 
CD19, TNFRSF17 were remarkable nodes. Number of interplay among nodes were calculated in the right barplot. C, Top GO items with q < 0.05 
were exhibited. D, Top 6 Kyoto Encyclopedia of Genes and Genome (KEGG) pathways were shown with q < 0.05. E, Gene set enrichment 
analysis for comparing phenotype of immune scores between high- and low-levels. A list of 40 immune-related KEGG pathways enriched with 
FDR < 0.25 and we selected top 8 in group with high immune scores to display
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0.10830 * IGLL5 + 0.32994 * KCNJ11 + 0.34990*RORB 
+ 0.28947 * TNFSF13B − 1.21099 * XCR1 (Figure 5A). 
Risk score of 530 ccRCC patients was calculated and we got 
the high-risk group (n = 265) and low risk group (n = 265) 
(Table S4). Distribution of vital status of the two risk groups 
was shown in Figure  5B. Area under the curve (AUC) of 
ROC for 3-year OS prediction was 0.781, indicating superior 
predictive accuracy in survival outcomes. The Kaplan-Meier 
plot revealed that ccRCC patients in high-risk group demon-
strated the worse prognosis (Figure 5D). What is more, the 
survival curves of 12 hub genes with log-rank test of P value 
were drawn in Figure S6A-L. The different expressed levels 
of genes in tumor versus normal were shown in Figure S3.

3.5 | Validation of hub prognostic genes

To determine whether the 12 hub genes obtained from 
TCGA cohort remained to be of prognostic significance, we 
acquired the gene expression profiles of 72 ccRCC patients 
in an independent data set from GSE53757. We analyzed the 
gene expression levels of 12 hub genes with clinical tumor 
stages and found that TNFSF13B, CASP5 and GJB6 cor-
related positively with tumor stages, while FREM1 showed 
negative associations with tumor stages. In particular, corre-
lation results in GSE53757 were highly accordant with sur-
vival analysis or multivariate Cox analysis in TCGA cohort 
(Figure 6A-D). What is more, we calculated the risk score 
of each sample using the above risk formula and the correla-
tion analysis revealed that patients with higher risk scores 
showed higher tumor stages with P < .05 (Figure 6E).

3.6 | Correlation analysis between hub genes 
with immune infiltrates

Since 12 prognostic genes were identified as the hub genes, 
we attempted to uncover the question how the relationships 
between hub genes and immune cells infiltration in ccRCC 
microenrvironmet. Among the 12 genes, five genes were 
found to be significantly associated with tumor immune 

infiltrates, where TNFSF13B, CASP5 and XCR1 showed the 
remarkable correlations with B cell, CD4＋ T cell, CD8＋ T 
cell, macrophage, neutrophil and dendritic cell infiltration 
(Figure S7). Interestingly, TNFSF13B and CASP5 proved 
to be risk signature in TCGA cohort and correlated with ad-
vanced tumor stages in GSE53757. It is worth to implement 
in-depth investigations on whether the relationships between 
expression levels of hub genes and immune infiltrates led to 
poor survival outcomes in ccRCC microenvironment.

4 |  DISCUSSION

Since immune checkpoint therapies such as nivolumab have 
developed rapidly in ccRCC in recent years, TME has at-
tracted increasing attention as a crucial cellular milieu incor-
porating of immune cells, stromal cells as well as extracellular 
matrix molecules.29,30 For example, Toma et al investigated 
the expression of human 6-sulfo LacNAc dendritic cells in 
ccRCC and found that more proportion of 6-sulfo LacNAc 
dendritic cells was negatively associated with progression-
free, tumor-specific or overall survival.31 In addition, human 
endogenous retroviruses sequences were identified signifi-
cantly overexpressed in ccRCC tumors with sensitivity to 
programmed death receptor 1 (PD-1) inhibition therapy.32 
Unlike most studies that focused on a nontumor cell or im-
mune molecule in TME, our current study was based on cer-
tain high-quality datasets, and identified specific signatures 
that related to the infiltration of stromal and immune cells in 
ccRCC TME by using algorithm that takes advantage of the 
transcriptional profiles.

Recently, there have been more and more applications 
of bioinformatics in the field of medical research.33,34 
ESTIMATE algorithm was presented by Yoshihara in 2013 
at first time.17 In glioblastoma, ESTIMATE algorithm-de-
rived immune scores and stromal scores were performed to 
facilitate the quantification of the non-tumor components in 
a malignancy.9 In our current research, we calculated the im-
mune scores, stromal scores and ESTIMATE scores for each 
ccRCC sample extracted from the TCGA database by apply-
ing ESTIMATE algorithm. The results revealed that immune 

Description P value P adjust Count

Cytokine-cytokine receptor 
interaction

.00000582 .000587719 10

Hematopoietic cell lineage .000240228 .012131514 5

Primary immunodeficiency .001278873 .043055382 3

NF-kappa B signaling pathway .002240071 .048597712 4

Intestinal immune network for IgA 
production

.002886993 .048597712 3

Malaria .002886993 .048597712 3

T A B L E  3  Kyoto Encyclopedia 
of Genes and Genomes results from the 
functional pathway analysis of intersect 
genes
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T A B L E  4  43 prognostic genes from the batch survival analysis

Gene name Description Location
Log-rank test of 
P value

PAEP Progestagen-associated endometrial protein Chromosome 9, NC_000009.12 <.001

SLC22A6 solute carrier family 22 member 6 Chromosome 11, NC_000011.10 <.001

OGDHL oxoglutarate dehydrogenase like Chromosome 10, NC_000010.11 <.001

GJB6 gap junction protein beta 6 Chromosome 13, NC_000013.11 <.001

SLN sarcolipin Chromosome 11, NC_000011.10 0 < .001

OBP2A Odorant-binding protein 2A Chromosome 9, NC_000009.12 <.001

LDHD lactate dehydrogenase D Chromosome 16, NC_000016.10 <.001

ADGRV1 adhesion G protein-coupled receptor V1 Chromosome 5, NC_000005.10 <.001

APCDD1L APC down-regulated 1 like Chromosome 20, NC_000020.11 <.001

SLC22A8 solute carrier family 22 member 8 Chromosome 11, NC_000011.10 <.001

CPA4 carboxypeptidase A4 Chromosome 7, NC_000007.14 <.001

CWH43 Cwh43p Chromosome III, NC_001135.5 <.001

PPARGC1A PPARG coactivator 1 alpha Chromosome 4, NC_000004.12 <.001

HMGCS2 3-hydroxy-3-methylglutaryl-CoA synthase 2 Chromosome 2, NC_005101.4 <.001

SLC22A12 solute carrier family 22 member 12 Chromosome 11, NC_000011.10 <.001

AQP9 aquaporin 9 Chromosome 15, NC_000015.10 <.001

FDCSP follicular dendritic cell secreted protein Chromosome 4, NC_000004.12 <.001

GPAT3 glycerol-3-phosphate acyltransferase 3 Chromosome 4, NC_000004.12 <.001

TNFSF13B TNF superfamily member 13b Chromosome 13, NC_000013.11 <.001

FREM1 FRAS1-related extracellular matrix 1 Chromosome 9, NC_000009.12 <.001

HSD11B2 hydroxysteroid 11-beta dehydrogenase 2 Chromosome 16, NC_000016.10 <.001

MIXL1 Mix1 homeobox-like 1 (Xenopus laevis) Chromosome 1, NC_000067.6 .001

FCRL5 Fc receptor like 5 Chromosome 1, NC_000001.11 .001

GREM1 gremlin 1, DAN family BMP antagonist Chromosome 15, NC_000015.10 .003

MZB1 marginal zone B and B1 cell specific protein Chromosome 5, NC_000005.10 .004

XCR1 X-C motif chemokine receptor 1 Chromosome 3, NC_000003.12 .004

ZPLD1 zona pellucida-like domain containing 1 Chromosome 3, NC_000003.12 .004

CASP5 caspase 5 Chromosome 11, NC_000011.10 .006

TMEM38A transmembrane protein 38A Chromosome 8, NC_000074.6 .006

CHRDL2 Chordin-like 2 Chromosome 11, NC_000011.10 .007

RORB RAR-related orphan receptor beta Chromosome 19, NC_000085.6 .008

IGLL5 immunoglobulin lambda-like polypeptide 5 Chromosome 22, NC_000022.11 .009

PAH phenylalanine hydroxylase Chromosome 12, NC_000012.12 .010

MUC20 mucin 20, cell surface-associated Chromosome 3, NC_000003.12 .011

SCARA5 scavenger receptor class A member 5 Chromosome 8, NC_000008.11 .018

KCNJ11 potassium voltage-gated channel subfamily J 
member 11

Chromosome 11, NC_000011.10 .019

IL10 interleukin 10 Chromosome 1, NC_000001.11 .027

HSD11B1 hydroxysteroid 11-beta dehydrogenase 1 Chromosome 1, NC_000001.11 .028

VSIG4 V-set and immunoglobulin domain containing 4 Chromosome X, NC_000023.11 .029

F7 coagulation factor VII Chromosome 13, NC_000013.11 .037

RAP1GAP RAP1 GTPase-activating protein Chromosome 1, NC_000001.11 .039

POU2AF1 POU class 2 homeobox-associating factor 1 Chromosome 11, NC_000011.10 .043

KLK3 Kallikrein-related peptidase 3 Chromosome 19, NC_000019.10 .044
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scores were statistically significantly higher in malignant 
tumor cases and associated with worse survival outcomes, 
higher AJCC-T level, higher AJCC-N level, higher AJCC-M 
level, advanced tumor grades and higher pathological stages. 
For the first time that ESTIMATE algorithm-derived immune 
scores were calculated in ccRCC to evaluate the prognostic 
value and provide extra evidence for the biological basis of 
immunotherapy.

In our study, PPI network was constructed using 
SRING tool and Cytoscape software. Relatively remark-
able nodes including CD19, CD79A, TNFSF13B, CCL19 

and TNFRSF17 were selected and the potential pathways 
such as cytokine-cytokine receptor interaction, hemato-
poietic cell lineage, and NF-κB signaling pathway were 
identified by GO enriched analysis. It was reported that 
a potential pathologic p.G76S heterozygous mutation on 
the TNFRSF13B gene which identified by whole-exome 
sequencing might upregulate cytokine-cytokine receptor 
interaction signaling pathway and increase serum TNFα, 
IL-17α, IFNγ and BAFF levels in immune thrombocyto-
penia patients.35 In addition, CD19 was revealed to par-
ticipate in the regulation of constitutive activation of 

F I G U R E  5  Construction of risk score based on 12 hub genes associated with tumor microenvironment. A, Forest plot of 12 hub genes based 
on stepwise regression method and multivariate Cox results. B, Distribution of vital status in high- and low-risk groups. C, Receiver Operating 
Characteristic curve was established for assessing predictive value of risk score with AUC = 0.781. D, Kaplan-Meier analysis for two levels of risk 
score indicated that risk score could be an independent risk factor for overall survival in clear cell renal cell carcinoma (P < .0001)
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NFκB pathway in chronic lymphocytic leukemia as a role 
of hematopoietic cell lineage marker.36 Apart from clas-
sical NFκB pathway, Wharry et al found that CCL19 was 
dramatically elevated in pancreatic cancer cells acting as 
noncanonical NFκB target gene.37 However, relevance of 
above remarkable nodes genes and pathways in ccRCC re-
quire further investigation.

Finally, a total of 12 hub prognostic genes associated 
with TME were identified by stepwise regression method 
in multivariate Cox analysis. We explored the associa-
tions between hub genes with B cell, CD4＋T cell, CD8＋T 
cell, macrophage, neutrophil and dendritic cell infiltration 

analyzed by using the deconvolution algorithm based on 
the TIMER database. Furthermore, TNFSF13B and CASP5 
were proved to be correlated with advanced tumor stages in 
GSE53757.

Tumor necrosis factor ligand superfamily member 13B 
(TNFSF13B) also known as B-cell activating factor (BAFF) 
is a cytokine that belongs to the tumor necrosis factor (TNF) 
ligand family. As a potent B cell activator, TNFSF13B is 
identified in the biological process of B cell proliferation 
and differentiation.38 Previous studies on TNFSF13B have 
mostly focused on immune system diseases and hemato-
logical malignancies. Current researches indicated that 

F I G U R E  6  Validation of 12 hub genes in GSE53757. A-D, Higher expression levels of TNFSF13B, CASP5 and GJB6 correlated higher 
pathological stages, while level of FREM1 was negatively associated with stages. E, Moreover, risk score calculated as the formula from the TCGA 
population revealed the same results that higher risk score was related with higher stages (P = .043)
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TNFSF13B, which might be significantly affected by IFN 
regulatory factors,39,40 is an important regulatory target in 
primary Sjögren's syndrome (SS). Ding et al reported that 
overexpressed TNFSF13B might increases lymphocytic 
infiltration and inefficiently promotes ectopic B-cell dif-
ferentiation in SS.41 Besides, studies revealed that genetic 
variants of both TNFSF13B and TNFSF13B-receptor were 
related to SS-related lymphoma.42-44 In contrast with our 
research, Pelekanou et al observed a differential expres-
sion of TNFSF13B in 86 ccRCC tissues detected by im-
munohistochemistry, while independent of tumor grade.45 
Compared to our genome-wide bioinformatics analysis 
based on multiple-database, the conflicting result may 
be caused by the more significant bias from single-center 
small sample-sized study. It is noticeable that limited re-
search focused on specific regulation mechanism for the 
role of TNFSF13B in ccRCC, and the evidence we provide 
in terms of immune infiltration may serve as a potential 
research strategy.

Caspase 5 (CASP5), along with CASP1, CASP4, and 
CASP12, belong to inflammatory caspases sub-family, which 
were identified to play a role in the maturation of inflamma-
tory cytokines (IL-1β and IL-18) and apoptosis pathways.46-48 
In human monocytes, CASP5 and CASP4 could be activated 
by saturated fatty acids, then trigger IL-1β and IL-18 release, 
which contributed to type 2 diabetes.49 Apart from regulat-
ing obesity-associated inflammation, CASP5 might be par-
ticularly important for carcinogenesis. Dong et al identified 
rs507879, which was located within exon 2 of CASP5 and 
resulted in a missense mutation and amino acid substitu-
tion.50 Although this CASP5 exon 2 SNP is discovered to 
be a benign mutation by PolyPhen. However, a common 
somatic mutation in exon 2 was observed in leukemias and 
some malignant solid tumors including gastric, colon, and 
lung cancers yy.51-54 According to our results, CASP5 was 
firstly proved to be correlated with advanced tumor stages 
of ccRCC in GSE53757. Combined with the above findings, 
inflammatory cytokines-derived apoptosis pathway might be 
a possible mechanism.

Remarkably, the risk model was calculated based on 12 
hub prognostic genes associated with TME of ccRCC. The 
AUC of the ROC curve revealed the satisfactory predictive 
efficiency of the risk signature. After that, we validated 
the prognosis value of the risk model in an independent 
data set from GSE53757. This novel TME hub genes-re-
lated risk score model provides a new theoretical basis 
for the prognosis assessment of ccRCC patients, which 
is expected to be further applied in the future clinical 
management.

Of note, there still exists several limitations in the cur-
rent study. Firstly, we only selected sequencing data from 
public databases analyzed through biological algorithm ap-
proaches. We should validate the results from this article in 

clinical patients, which was warranted in our own cohorts. 
Secondly, 12 TME-related hub genes should be further stud-
ied to clarify the regulatory mechanism in immune infiltrates 
of ccRCC. Finally, considering the choice of analytical ap-
proaches, we included a limited database for the screening 
of hub genes, which may result in biased results due to the 
neglect of other databases.

In summary, a list of TME-related hub genes was ex-
tracted from functional enrichment analysis of TCGA data-
base based on ESTIMATE algorithm. After survival analysis 
and prognostic value evaluation, these hub genes might be-
come potential biomarkers of ccRCC. Besides, risk score 
which was calculated based on hub genes provided a new 
theoretical basis for predicting survival conditions of ccRCC 
patients. Finally, we further shed the insights on the poten-
tial associations of TME-related signature with tumor im-
mune-infiltrating abundance.

5 |  CONCLUSION

In our research, we selected the transcriptional profiles from 
public databases based on bioinformatics algorithm and iden-
tified specific signatures that related to the infiltrating levels 
of stromal and immune cells in TME of ccRCC. Overall, our 
research could provide a comprehensive understanding of 
tumor microenvironment and potential foundations for future 
individualized therapy.
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