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Technologies that induce targeted protein degradation by small molecules have been

developed recently. Chimeric small molecules such as Proteolysis Targeting Chimeras

(PROTACs) and Specific and Non-genetic IAP-dependent Protein Erasers (SNIPERs),

and E3 modulators such as thalidomides, hijack the cellular machinery for ubiquitylation,

and the ubiquitylated proteins are subjected to proteasomal degradation. This has

motivated drug development in industry and academia because “undruggable targets”

can now be degraded by targeted protein degradation.
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MODALITIES OF RECENT DRUG DEVELOPMENT

Development of a therapeutic antibody and a small molecule inhibitor is the most successful
strategy to develop novel molecular target drugs these days (Nelson et al., 2010; Ferguson and Gray,
2018). The targets for antibodies include tumor specific antigens such as human epidermal growth
factor receptor 2 (HER2) expressed on breast cancer cells that is recognized by Trastuzumab,
and immune suppressive molecules such as programmed death-1 (PD-1) and programmed death-
ligand 1 (PD-L1) recognized by Nivolmab and Pembrolizumab, respectively. However, antibodies
cannot penetrate into cells, and therefore, target molecules for antibodies are limited to cell
surface and extracellular proteins. In contrast, small molecule inhibitors can penetrate into cells
and effectively inhibit the function of target proteins, such as kinases and proteases. However,
developing small molecule inhibitors against proteins that do not possess enzymatic activity is
challenging. Therefore, many intracellular proteins without enzymatic activity are unable to be
targeted by antibodies and small molecule inhibitors, and they are sometimes called “undruggable
targets.” These include scaffold proteins, transcription factors and splicing factors, and account for
more than 70% of the proteins expressed in cells.

Accumulating evidence suggests that inducing protein degradation by small molecules
represents a promising approach to make “undruggable targets” druggable. There are reports that
small molecules, thalidomides and sulfonamides, induce the degradation of “undruggable targets”
such as transcription factors (Ikaros and Aiolos) (Krönke et al., 2014; Lu et al., 2014) and a splicing
factor (RBM39/CAPERα) (Han et al., 2017; Uehara et al., 2017). Technologies to induce protein
degradation by chimeric molecules, Proteolysis Targeting Chimeras (PROTACs) and Specific
and Non-genetic IAP-dependent Protein Erasers (SNIPERs), have been developed, which enables
rational design of degrader molecules against target proteins of interest. This mini-review provides
an overview of the protein degradation technologies.
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FIGURE 1 | Classification of degrader molecules.

CLASSIFICATION OF DEGRADER
MOLECULES

Small molecules that induce degradation of target proteins can
be classified into three groups depending on the structure of
the compounds and their mode of action (Figure 1). The first
class is a single-ligand molecule that directly interacts with the
target protein to induce degradation. This class of molecules
include fulvestrant, a selective estrogen receptor downregulator
(SERD) against estrogen receptor-α (ERα) (Osborne et al.,
2004) which is approved in the clinic against breast cancers
expressing ERα, and a selective androgen receptor downregulator
(SARD) against androgen receptor (AR) (Omlin et al., 2015)
currently under clinical evaluation. These downregulators are
likely to recapitulate the degradation mechanism reported as
hydrophobic tagging (Neklesa et al., 2011). Another example
in this class is inhibitor of apoptosis protein (IAP) antagonists
(Fulda and Vucic, 2012) that induce degradation of cIAP1/2, and
some compounds are under clinical development. In addition,
Boc3Arg-linked ligands that localize target proteins directly to
the 20S proteasome are also grouped in this class (Shi et al., 2016).
Thus, molecules in this class can effectively induce degradation of
target proteins; however, the number of the proteins targeted for
degradation is limited.

The second class of molecules is the single-ligand molecules
that interact with E3 ubiquitin ligases to modulate substrate
selectivity. This class of molecules is known as E3 modulators
and molecular glues. Thalidomide was the first E3 modulator
identified and interacts with CRBN (Ito et al., 2010), a
substrate recognition subunit of the Cullin-RING-ubiquitin
ligase (CRL) complex. Thalidomide and an analog lenalidomide
induce the degradation of transcription factors Ikaros and
Aiolos (Krönke et al., 2014; Lu et al., 2014). Modification of
the side chain of thalidomide alters substrate selectivity, and
lenalidomide and CC-885 induce ubiquitylation and degradation
of casein kinase 1α (CK1α) (Krönke et al., 2015) and a
translation termination factor GSPT1 (Matyskiela et al., 2016),
respectively. Sulfonamides such as Indisulam and E7820 are

reported to interact with DCAF15, another substrate recognition
subunit of the CRL complex, and induce the ubiquitylation
and degradation of a splicing factor RBM39/CAPERα (Han
et al., 2017; Uehara et al., 2017). Plant hormones including
auxin and gibberellin are also categorized in this class. Auxin
interacts with F-box proteins TIR1 and AFB2 in the SCF
ubiquitin ligase complex, and recruits a transcriptional repressor
to be ubiquitylated and degraded by the proteasome, which
in turn activates the expression of auxin-responsive genes
(Dharmasiri et al., 2005; Kepinski and Leyser, 2005).

The third class is a chimeric molecule, where an E3 ligand
and a target ligand are conjugated to form one molecule. This
class of molecules was developed under different names such
as PROTACs and SNIPERs, but they are designed to crosslink
the target protein and an E3 ubiquitin ligase to induce the
degradation of the target protein, and therefore, their mode of
action is almost identical.

DEVELOPMENT OF CHIMERIC
DEGRADER MOLECULES

The first PROTAC reported came from the laboratories of
Crews and Deshaies by using a peptide sequence recognized
by an F-box protein β-TRCP to recruit the E3 ubiquitin
ligase complex involving β-TRCP (Sakamoto et al., 2001).
This PROTAC induces ubiquitylation and degradation of a
target protein MetAP-2 in an in vitro cell-free system, but
cannot penetrate into cells efficiently. In collaboration with
Ciulli, Crews et al. developed small molecule ligands for
VHL (Buckley et al., 2012a,b), and developed small molecule
PROTACs (Bondeson et al., 2015; Buckley et al., 2015). These
PROTACs induce degradation of various target proteins at
nanomolar or sub-nanomolar concentrations in cell culture
systems and induce the degradation of target proteins in in vivo
xenograft models.

We have studied IAP family proteins that are frequently
overexpressed in cancer cells and found that a small molecule
methyl bestatin (MeBS) induces auto-ubiquitylation and
proteasomal degradation of cIAP1 (Sekine et al., 2008). By using
MeBS as a ligand for cIAP1, we developed the first SNIPER that
induced the degradation of cellular retinoic acid binding protein
II (CRABP2) (Itoh et al., 2010). The activity of SNIPERs was
then markedly improved by adopting high affinity ligands for
IAPs, and the improved SNIPERs at nanomolar concentrations
effectively induced degradation of target proteins by recruiting
XIAP and cIAP1 (Ohoka et al., 2017, 2018). Some of the SNIPERs
were demonstrated to induce degradation of target proteins in
an in vivo xenograft model, which results in antitumor activity.

Handa et al. reported that CRBN is the direct target of
thalidomide that has teratogenic activity (Ito et al., 2010). Bradner
et al. then developed another family of chimeric molecules
containing thalidomide as a ligand for CRBN that induce
degradation of bromo domain proteins (Winter et al., 2015). The
thalidomide-based chimeric molecules also induce degradation
of target proteins at nanomolar concentrations and show activity
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FIGURE 2 | Chemical structure of the E3 ligands (A), and the E3 ligase complexes hijacked by chimeric degraders (B).

in an in vivo xenograft model. Figure 2 illustrates the E3 ligands
and ubiquitin ligase complexes recruited to target proteins.

FEATURES OF THE CHIMERIC DEGRADER
MOLECULES

Because of themodular structure of chimeric degradermolecules,
it is possible to rationally design and develop a novel degrader
molecule against a protein of interest by substituting the target
ligand. The target ligand does not need to inhibit the activity
of the target protein, and therefore, a poor inhibitor that
has insufficient activity to inhibit the target protein can be
converted to a potent degrader when incorporated into chimeric
degrader molecules. Theoretically, a ligand that interacts with
any domain of the target protein can effectively capture the
target to induce degradation. A higher binding affinity of the
target ligand is preferable (Ohoka et al., 2018); however, some
target proteins cooperatively interact with E3 ligases in the
presence of chimeric molecules (Gadd et al., 2017), implying
that low affinity ligands can also be used to develop potent
chimeric degraders.

There are only a few E3 ligases among the more than 600
E3 ligases in cells that can currently be successfully recruited
to target proteins for degradation. It should be noted that
recruiting different E3 ubiquitin ligases to the same target
protein results in different degradation potencies (Lai et al.,
2016; Shibata et al., 2018), suggesting that finding the best
combination of target protein and E3 ligase is important in
the development of potent degraders. In this context, it is
important to expand the repertoire of E3 ligands to recruit
a wide variety of E3 ligases to target proteins. Some of the
E3 ubiquitin ligases are expressed in a tissue specific and
tumor specific manner. If such an E3 ligase can be recruited
to target proteins, we anticipate that degradation of target

proteins will be restricted to a tissue type or only tumor
cells, which could be more advantageous in terms of selective
toxicity. The number of E3 ligands is gradually increasing
(Lu et al., 2018; Spradlin et al., 2019; Ward et al., 2019;
Zhang X. et al., 2019) but they require improvement to induce
degradation at lower concentrations. Recently, cells resistant
against PROTACs have been reported (Zhang L. et al., 2019),
and the resistance mechanism resides in the alteration of the
ubiquitylation machinery rather than the target proteins. To
overcome such resistance, it is possible to recruit different E3
ubiquitin ligases to restore the degradation of the target proteins,
which further accentuates the importance of developing novel
E3 ligands.

CHIMERIC DEGRADER MOLECULES AS
PROBES TO UNDERSTAND THE
UBIQUITIN CODE

Although ubiquitin was originally identified as an essential factor
to induce proteasomal degradation of many proteins, it is widely
accepted that ubiquitin plays a role in a variety of cellular
phenomena, such as internalization of membrane proteins,
autophagy, DNA repair, and signal transduction. The diversity
in the linkage and modification of the ubiquitin chain, which is
called the ubiquitin code, is assumed to be recognized by different
decoder molecules that may mediate different cellular responses
(Komander and Rape, 2012). To understand the ubiquitin code
in more detail, it would be useful to write a ubiquitin code by
chimeric molecules recruiting different E3 ubiquitin ligases to
determine whether different cellular responses could be induced
by different ubiquitin codes encrypted by various E3 ubiquitin
ligases. For this purpose, ubiquitylation of tagged-proteins with
chimeric degraders could provide a comprehensive system to
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ubiquitylate a variety of target proteins (Neklesa et al., 2011;
Natsume et al., 2016; Hattori et al., 2017; Nabet et al., 2018; Okitsu
et al., 2018).

CONCLUSION

Technologies to induce targeted protein degradation have been
established recently. These technologies are useful for developing
novel drugs, and have promoted a number of drug development
research programs by pharmaceutical companies, bio-ventures,
and academia. The results of the first clinical phase I studies
of PROTACs (ARV-110 against AR and ARV-471 against ER)
were released recently demonstrating acceptable safety profiles.
However, these technologies are still in their infancy and
have significant room for improvement. These technologies
should be further refined, and ultimately applied to clinical
drug development as well as basic research to understand the
ubiquitin biology.
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