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Abstract. While rates of recombination events across the genome (genetic maps) are fundamental
to genetic research, the majority of current studies only use one standard map. There is evidence
suggesting population differences in genetic maps, and thus estimating population-specific maps are of
interest. While the recent availability of biobank-scale data offers such opportunities, current methods
are not efficient at leveraging very large sample sizes. The most accurate methods are still linkage-
disequilibrium (LD)-based methods that are only tractable for a few hundred samples. In this work, we
propose a fast and memory-efficient method for estimating genetic maps from population genotyping
data. Our method, FastRecomb, leverages the efficient positional Burrows-Wheeler transform (PBWT)
data structure for counting IBD segment boundaries as potential recombination events. We used PBWT
blocks to avoid redundant counting of pairwise matches. Moreover, we used a panel smoothing technique
to reduce the noise from errors and recent mutations. Using simulation, we found that FastRecomb
achieves state-of-the-art performance at 10k resolution, in terms of correlation coefficients between the
estimated map and the ground truth. This is mainly due to the fact that FastRecomb can effectively
take advantage of large panels comprising more than hundreds of thousands of haplotypes. At the
same time, other methods lack the efficiency to handle such data. We believe further refinement of
FastRecomb would deliver more accurate genetic maps for the genetics community.
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1 Introduction

A genetic map for a population or a species contains the locations of genetic markers or variant sites in
relation to one another based on the probability of recombination, rather than a physical location along each
chromosome. An accurate genetic map, which is an estimation of the recombination rates along a chromo-
some, serves as the foundation for genetic studies like gene mapping, population genetics, and genealogical
studies. Given that recombination rates differ between populations, the estimation of population-specific
genetic maps is crucial for advancing genetic research, particularly in diverse populations.

The genetic map is measured in centimorgans (cM), with each cM representing a 1% risk that two
markers on the same chromosome would drift apart as a result of a recombination event during meiosis. In
the human genome, one centimorgan roughly equates to 1 million base pairs (Mbps). The recombination
rates may considerably vary within 1 Mbps, and the average of 1 cm equal to 1 Mbps may not hold at
fine-scale (high) resolutions (see Figure 1). Some regions may also have significantly different recombination
rates than the average.

p1 p2 p3

g1 g2 g3
cM

Mbps

unit

Genetic map:

Expected crossovers = (g3-g1)/100

Fig. 1. An example of a genetic map for a chromosome. The expected average number of intervening crossovers in a
generation within (p1, p2) and (p1, p3) are (g2− g1)% and (g3− g1)%, respectively.

The traditional approach to infer the recombination rates is to use genotype data from a large number of
parent-offspring pairs to capture an adequate number of meiotic crossover events [1, 2]. Fine-scale pedigree-
based recombination rates from deCODE [2] are widely used. However, it is increasingly recognized that
recombination rates vary from population to population [3]. Collecting a large number of parent-offspring
pairs can be a practical bottleneck for most populations. An alternative approach is to use a single human
sperm cell referred to as sperm-typing [4, 5]. A semen sample represents a significant portion of the meiotic
crossover events because it contains hundreds of millions of sperm. Sperm-typing can predict a person’s
unique recombination rate. However, at high resolution the rates may not always remain consistent with
other individuals within the population. The sperm-typing is also a time-intensive and money-consuming
process.

Another approach involves using population samples [6–11]. Recombination event signals in population
samples are dispersed among the individuals. Not all recombination event signals, however, are correlated
with the genetic map because they could have been brought by prehistoric crossovers. An early method
based on population samples, LDhat, uses linkage-disequilibrium (LD) patterns for fitting a Bayesian model
via MCMC [8]. While the results of LDhat are noteworthy, the limitations related to the computational
tractability issues are significant as its capacity is restrained to a maximum of several hundred haplotypes.
It is anticipated that the methods that can leverage large samples may achieve superior performance.

Recently, IBDrecomb [12] was developed to leverage the recent development of fast Identity-by-Descent
(IBD) segment calling methods. IBD segments are identical DNA fragments that are inherited from a common
ancestor. Under the assumption that the IBD segment boundaries were caused by recombination events,
IBDrecomb counts the IBD segment boundaries and generates a map iteratively using the normalized counts
of the IBD segments. However, IBDrecomb is not adequately efficient as it requires outputting all pairwise
IBD segments, which is not conducive for biobank-scale cohorts. Here, we introduce a novel approach that
efficiently identifies potential recombination breakpoints in very large cohorts using positional Burrows-
Wheeler transform (PBWT). Our method is the first to directly use PBWT to estimate recombination
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rate. To enable accurate recombination rate estimation, we have the following methodological innovations
and contributions: 1) Our method bypasses calling pairwise IBDs (e.g. IBDrecomb) to achieve the needed
efficiency crucial for large cohorts. 2) The crossovers are counted by minor allele counts within individual
PBWT blocks which is efficient while avoiding overcounting. 3) To avoid fragmenting PBWT blocks due to
genotyping errors and recent mutations, we leveraged P-smoother. Our results confirmed the effectiveness of
P-smoother.

2 Methods

2.1 Preliminaries

Positional Burrows-Wheeler Transform (PBWT). The positional Burrows-Wheeler transform [13]
facilitates an efficient approach for finding haplotype matches and also compression of haplotypes in large
biobank-scale cohorts. The underlying idea of PBWT is to store the haplotype sequences based on their
reversed prefix order. Following Durbins’s notation [13], we define a panel of haplotype sequences X, where X
is a two-dimensional matrix. Xk represents the values of haplotypes at the site k and X = [X0, X1, ...XN−1],
where N denotes the number of sites. Xk is an array with M entries where M denotes the number of
haplotype sequences. We also assume the entries of the array Xk are binary.

Prefix array and PBWT matrix. The sequence indices sorted at each site k are referred to as the
positional prefix array ak. PBWT matrix y stores the values of haplotype sequences in the reversed prefix
order at each site. If divergence values and the haplotype sequences X are stored, there will be no need to
store the PBWT matrix and the values at a site k for each haplotype i can be queries (yk[i] = Xk[ak[i]]).

Divergence array. Divergence array dk at each variant site k for every haplotype stores the starting
position of the match between the haplotype with its preceding haplotype sequence in the reversed sorted
order up to the site k − 1. The divergence value keeps track of the starting site index of the longest match
for each haplotype. We refer to the value of the divergence array for each haplotype as its divergence value.
dk is utilized to both identify a long match with a length ≥ L and determine the starting position of the
match.

Haplotype matching blocks for efficient identification of long matches. PBWT facilitates an ef-
ficient approach to enumerate all pairwise haplotype matches longer than a given length. While Durbin’s
algorithm outputs all pairwise matches in O(NM+#matches), a block-based approach [14–16] can enumer-
ate all matching blocks without explicitly outputting all pairs in O(NM). By sorting the haplotype sequences
based on their reversed prefix order, the longest match for each haplotype sequence is placed in the adjacent
position. Moreover, all pairwise haplotype sequences at the site k that are identical for at least L sites from
k are separated by a haplotype sequence j with the condition dk[j] > k − L [13]. We define a L-block at a
site k as a set of haplotype indices that share long matches with each other ending at site k with a minimum
length of L. All L-blocks at any site k may be efficiently scanned by consensus PBWT algorithms [14–16].

PBWT-smoothing for reducing mismatches due to errors and mutations. The original PBWT
scans the haplotype sequences starting from the first site. The divergence and positional prefix arrays are
calculated at each site and the matches starting from the previous sites can be enumerated at each site.
PBWT cannot tolerate mismatches in long matches. As a result, the long matches harboring mismatches
will be discarded or reported partially depending on the minimum cutoff length. The bi-directional PBWT
data structures [17], on the other hand, provide an efficient approach to tolerate possible mismatches in the
middle of long matching blocks.

In order to tolerate genotyping errors, the haplotype panel is smoothed using bi-directional PBWT. The
pre-processing step alternates the alleles that are different in the middle of matching blocks of haplotypes.
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The smoothing procedure (P-smoother) only alternates the minor alleles if the minor allele frequency is
below a certain threshold (with the minor allele frequency threshold equal to 5% by default) in the matching
blocks. This allows our method to be highly error-tolerant and maintain accuracy even when subjected to
genotyping errors.

2.2 Inferring recombination rates

Similar to pedigree-based [2] and population-based inference methods [12], we use an iterative approach
to count crossover events of a certain type at each bin (or window) across the genome. To estimate the
recombination rates efficiently, the type of crossover events should be chosen that can be efficiently counted
and unbiased across the genome. Instead of counting all IBD segment boundaries, we count the boundaries
of diverging haplotypes across all matching blocks in each bin. Haplotypes diverging at site k are defined
as the haplotypes that are matching with at least one other haplotype until the site k − 1, and the match
between the haplotype and other haplotypes in the block terminates at the site k. As we consider haplotypes
in a block are split into two clusters, one having the major allele and the other the minor allele at site k.
We can call the haplotypes carrying the minor allele diverges from the block with haplotypes carrying the
major alleles.

Given a haplotype panel comprising N sites, the recombination rates are calculated for each window in
terms of physical distances (default w = 5000). We assume that the total genetic length in cM is known. We
iterate over the sites and the number of minor alleles for haplotypes within any L-block are counted. The
number of total recombination events in each window is simply the sum of all minor allele counts from the
sites in the window i. Our approach avoids enumerating all pairwise haplotype matches at each site. Please
note that the time complexity of enumeration of all pairwise matches, especially for very short segments
could be theoretically quadratic. Theoretically, the #matches could be O(M2) for very short matches. Our
method only iterates over the haplotypes at each site and computes the number of minor alleles in each
block. In addition, the divergence values for the haplotypes with the minor alleles are then considered to
update the value for the preceding windows containing their divergence values. The overall time complexity
of our method is O(NM), where N denotes the number of sites and M denotes the number of haplotypes.

Figure 2 shows a simple example of a haplotype panel sorted by their reversed prefix order at sites k.
The haplotypes marked with a red cross at the site k are being considered in the calculation of recombi-
nation events. For each L-block, the haplotypes with minor alleles are considered and the allele count for
the window overlapping with their divergence value is updated. Each block is likely derived from a different
genealogical branch. The ancestral accumulation of recombination events is therefore controlled by consid-
ering L-haplotype blocks. Algorithm 1 describes the procedure of counting possible recombination events at
each window using PBWT arrays. The array g[i] contains the genetic location of the site i. L denotes the
minimum genetic length for a match. As we iterate over the haplotypes in the reversed prefix order, the
condition g[dk[j]] > g[k] − L triggers the enumeration of possible recombination events. The array count
stores the total count of recombination events (minor allele counts) for each window. The array pos contains
the genomic (physical) position of the sites.

The recombination rate for each window i is calculated by the formula:

rate(i) = Λ · (ϕi + ρi)

w ·
∑W

n=1(ϕn + ρn)
· (1e+ 6),

where Λ denotes the total chromosome length in cM, and w is the window size in terms of physical distance.
ϕi and ρi represent the number of minor allele counts among the haplotype blocks that end in the i-window
and start, respectively. We start with a simple assumption of a constant recombination rate across the
chromosome (1 cM ≈ 1 Mbps). In the first iteration, the matches are considered by assuming the minimum
length is in Mbps. In each iteration, for each window, the average between the current calculated rate from
the previous iteration is considered.
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Fig. 2. A sketch of the FastRecomb algorithm for counting recombination events at the variant site k. The array
counter stores the sum of events for all sites within each window with the length w. Gray horizontal lines represent
haplotypes in the panel. Haplotypes are sorted based on their reversed prefix order at site k. Two L-blocks are
highlighted in light gray. The diverging haplotypes (red ’x’s) in each L-block are counted and the windows containing
the starting of their longest match are updated.

Algorithm 1 countAltAlleles

for k = 1 to N do
n0 ← ∅
n1 ← ∅
for j = 1 to M do

if g[k] - g[dk[i] < L then
if |n0| > 0 and |n1| > 0 then

count[pos[k]/w] ← count[pos[k]/w]+ min(|n0|,|n1|)
if min(|n0|,|n1|) == |n0| then

for i in n0 do
count[pos[dk[i]]/w] ← count[pos[dk[i]]/w] + 1

else
for i in n1 do

count[pos[dk[i]]/w] ← count[pos[dk[i]]/w] + 1

n0 ← ∅
n1 ← ∅

if Xk[ak[j]] == 0 then
n0.add(j)

else
n1.add(j)

3 Results

3.1 Simulation

We simulated 1 million haplotypes of European and African ancestry using deCODE genetic map [1]. OutO-
fAfrica 2T12 model in stdpopsim [18] was used to simulate haplotypes of chromosome 20 with the command
line:
stdpopsim HomSap -c chr20 -d OutOfAfrica 2T12 -g DeCodeSexAveraged GRCh36 500000 500000

stdpopsim uses the coalescent simulator msprime [19] as its simulator engine. The variant sites with an
allele frequency of less than 0.05 were filtered out. The total number of variant sites after the MAF filter
was 66,546. We also inserted different genotyping errors into the simulated panel.
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3.2 Evaluation of estimated rates

To evaluate the performance of our method, FastRecomb 3, the Pearson correlation coefficients for different
resolutions were calculated. The highest resolution was set to 10,000 which was the resolution of the genetic
map in deCODE36. We compared the performance of FastRecomb with IBDrecomb and LDHat. The current
implementation of FastRecomb does not treat the end regions differently as was done in IBDrecomb. As a
result, the values for the end regions may not be optimal. Here, we focus on the inferred recombination
rates in the mid-region (excluding 5 Mbps from both sides of the chromosome). For FastRecomb, we first
ran P-smoother [20] with parameters L′ = 20, W ′ = 20, g = 1, MAF = 5% and then ran FastRecomb

with parameters L = 66.3, d = 0.5, w = 5000, r = 5. r denotes the number of iterations and d denotes
the minimum target length in cM. For LDhat, we ran the interval method with a block penalty of 5
and for 22.5 million iterations with a sample being taken every 15k iterations. For IBDrecomb, we ran
refined-ibd [21] with a minimum LOD score of 1 and a minimum IBD segment length of 0.3 cM. We then
ran merge-ibd-segments with a gap of 0.6 cM and discord of 1. Due to the resource-intensive and run time
requirements of LDhat and IBDrecomb, we used only 192 and 5k haplotypes, respectively. For LDhat, 192
haplotypes were the largest number of haplotypes for which a pre-computed likelihood lookup table was
available. For IBDrecomb, 5k haplotypes were the size of the simulated data in their study. We also tried
running refined-ibd on 100k haplotypes and the program had not terminated after a month of running.

Figure 3 shows the correlation coefficients of the three methods for the mid-region (excluding 5 Mbps
from both ends of the chromosome). No genotyping errors were added to the haplotype panel. FastRecomb
performs better than other methods for the mid-region in different resolutions. For 500k resolution, all the
methods achieve a high correlation coefficient close to 1. We also analyzed the five highest recombination
rate locations in deCODE (Chr20) to examine how the hotspots are replicated. We compared the top
five recombination rates inferred by different tools to deCODE using different distance cut-offs. Two from
FastRecomb and IBDrecomb, and one from LDhat regions were within 10k of the five deCODE hotspots.
FastRecomb, IBDrecomb, and LDhat scored 3, 2, and 2 for a distance cut-off of 400k, respectively. Running
on an 8-core 2.10 GHz Intel Xeon E5-2620 v4, LDhat (interval + stat) took 2.39 CPU hours, IBDrecomb
(refined-ibd + IBDrecomb) took 83.6 CPU hours (approximately 3.25 wall-clock hours), and FastRecomb
(P-smoother + FastRecomb) took 13.2 CPU hours. Please note that only 192 haplotypes were used for LDhat
and 5k for IBDrecomb. FastRecomb’s time complexity is linear to the sample size, hence it is possible to run
the program with one million haplotypes without using extensive resources. The maximum resident set size
(peak memory) for FastRecomb was only ∼ 77 MB. The peak memory values for LDhat and IBDrecomb
were ∼ 781 MB and ∼ 810 MB, respectively.

Fig. 3. Pearson correlation coefficients between the inferred recombination rates and the ground truth.

3 Source code is available at https://github.com/ZhiGroup/FastRecomb
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3.3 Robustness against genotyping errors

Genotyping errors in real datasets are more dominant than mutations. It is almost impossible to ignore the
genotyping error rates in practice. We evaluated the performance of FastRecomb, IBDrecomb, and LDhat
using different genotyping error rates. We implanted error rates of 0.05, 0.1, and 0.2%. The errors were
randomly inserted for each haplotype. For example, to simulate an error rate of 0.1%, we randomly selected
0.1% of the variant sites for each haplotype and altered the alleles. Figure 4 shows the correlation coefficients
for the three methods in mid-region using 0.05% (a), 0.1% (b) and 0.2% (c) error rates. The correlation
coefficients of FastRecomb are not affected by increasing the error rates (see Fig 4). For IBDrecomb, how-
ever, additional genotyping errors decrease the correlation coefficient values. LDhat, similar to FastRecomb,
appears to be robust against error rates up to 0.2% for each haplotype. We repeated the experiment with
the genotpying error of 0.1% for 10 different panels generated using varying seed values s = {1, ...10} (see
Figure 5).

a

b

c

Fig. 4. Pearson correlation coefficients in panels containing different error rates; 0.05% (a), 0.1% (b) and 0.2%(c).
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Fig. 5. Performance of recombination rate estimation tools at 10k and 100k using 10 different panels with a genotyping
error rate of 0.1%.

3.4 Performance growth with increasing sample size

FastRecomb performance depends on the number of samples from a population. Principally, FastRecomb
facilitates the use of information that large-scale genetic data entail. To evaluate the performance of FastRe-
comb with increasing sample size, we extracted subpanels with 20k, 50k, 100k, 200k from the simulated 1
million haplotypes. Figure 6 illustrates the correlation coefficients for the mid-region using different sample
sizes (from 20k to 1M haplotypes). The error rate per haplotype was set to 0.1%. The results of LDhat and
IBDrecomb have been included as dotted and dashed lines, respectively. The sample sizes for LDhat and
IBDrecomb were 192 and 5k. As shown in Figure 6, the correlation coefficients for FastRecomb increase with
the increasing number of haplotypes. For smaller sample sizes (e.g. 20k) the coefficients from rates calculated
by FastRecomb are lower than IBDrecomb and LDhat. With 100k haplotypes, the correlation coefficients in
50k resolution approach the values of IBDrecomb and LDhat. With 200k, the coefficients from FastRecomb
are slightly higher than other methods in 50k resolution. With 1 million haplotypes, the correlation coeffi-
cients from rates calculated by FastRecomb exceed the values from LDhat and IBDrecomb in both 10k and
50k resolutions.
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Fig. 6. Effect of sample size on the performance of FastRecomb. Pearson correlation coefficient of FastRecomb
improves with the increasing number of haplotypes (a). The running time increases linearly with the sample size (b).
The error rate was set to 0.1%. Dashed and dotted lines represent the IBDrecomb and LDhat results, respectively.
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3.5 Performance of FastRecomb without smoothing

The smoothing pre-processing step is crucial for panels with a high number of genotyping errors. We cal-
culated the correlation coefficients of FastRecomb without the smoothing steps for different error rates (see
Fig. 7). As shown in Figure 7, a low error rate (e.g. 0.05%) may not affect the results significantly. Higher
error rates, however, could lead to a significant performance reduction.

Table 1 contains the correlation coefficients for the mid-region using smoothing and without smoothing.
The genotyping error rate was set to 0%. The results show that the smoothing would not lower the correlation
coefficients even if no genotyping error was expected.

Table 1. Correlation coefficients for mid-regions in a panel without genotyping errors.

10k res. 20k res. 50k res. 100k res. 500k res.

with smoothing 0.9352 0.9588 0.9761 0.9818 0.9839
w/o smoothing 0.9348 0.9582 0.976 0.9824 0.9858

Fig. 7. Pearson correlation coefficients of FastRecomb without smoothing the haplotype panel using different error
rates.

3.6 Performance of FastRecomb in end-regions

The coefficient values for end-regions in 10k and 500k resolutions from the panel with 0.1% error rates have
been included in Table 2. LDhat shows a better performance in end-regions. For the end region 2-5 Mbps, the
difference between LDhat and FastRecomb is less noticeable in 10k resolution. The current implementation
of FastRecomb does not treat the end region differently. Hence, the correlation coefficients for the end-regions
are not as high as those of the mid-region. IBDrecomb treats end-regions differently from the mid-region
by a special procedure to compensate for the lower IBD boundary counts due to chromosomal ends. The
special treatment by IBDrecomb improves the accuracy of the rates in the end-region, but, for LDhat, the
correlation coefficients in the end-region are still higher.

3.7 Recombination rate estimation in real data

We applied FastRecomb on four different subsets of UK Biobank data: 1) Asian or Asian British individuals,
2) Black or Black British individuals, 3) White individuals and 4) White (subset) individuals containing
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Table 2. Pearson correlation coefficients for end-regions and mid-region for different recombination rate inference
methods. The error rate was set to 0.1%. The end-regions contain 10 Mbps and the mid-region contains 47 Mbps of
the chromosome.

10k resolution 500k resolution
<2 Mbps 2-5 Mbps mid-region <2 Mbps 2-5 Mbps mid-region

LDhat 0.9281 0.9520 0.9149 0.9962 0.9907 0.9777
IBDrecomb 0.8262 0.8799 0.9079 0.9960 0.9908 0.9840
FastRecomb 0.8321 0.9179 0.9370 0.8852 0.8855 0.9885

7816 randomly selected samples. The ethnic background (Data-Field 21000) of only 8034 individuals was
Black or Black British individuals. Therefore, we selected a subset of White individuals similar to that of
Black or Black British individuals. The number of White (subset) individuals with available genotype data
was slightly less than 8034. Approximately 1 CPU hour and 55 MB memory were used to estimate the
recombination rates for the largest panel containing all White individuals within the UK Biobank data.
Figure 8 illustrates the estimated rates for each subsets in chromosome 22. Table 3 contains the correlation
coefficients and the number of individuals for different subsets of UK Biobank samples.

Correlation with White (subset) was lower than White (all), confirming the higher power of larger sample
size. Also, among populations with comparable sample sizes, the similar population has higher correlation,
suggesting FastRecomb captured population-specific recombination maps. Note that even the highest corre-
lation (0.79) between the estimated map from 458,677 (British) White individuals and the deCODE map
are not as high as that from simulation (e.g., Table 1) This may be due to the fact that the genetic map
between the Icelandic population (deCODE) may be different from the UK population, among other factors.

Table 3. Correlations between inferred rates in UK Biobank and deCODE map at 100k resolution.

Ethnic background Number of individuals Correlation coefficient

Black or Black British 7618 0.26
Asian or Asian British 9375 0.33

White (subset) 7816 0.42
White 458677 0.79

4 Discussion

The recombination rates inferred by FastRecomb can achieve the highest correlation coefficients given a large
number of samples. The scalability of FastRecomb which enables the usage of biobank-scale data is perhaps
the most significant reason for increased performance outcome. Additionally, the pre-processing step and the
use of a shorter IBD length cut-off ensure robustness against genotyping errors, which would otherwise reduce
the accuracy of IBD-based approaches like IBDrecomb. In our simulated data, panels with 100k individuals
achieve comparable or slightly better performance compared to LDhat and IBDrecomb in the mid-region of
the chromosome. With 500k individuals, the recombination rates inferred by FastRecomb are more accurate
in the mid-region. In our experiments, we set the minimum length L for counting minor alleles in blocks of
matching haplotypes to 0.5 cM. For smaller panels, the IBD coverage for 0.5 cM may not be sufficient for
certain regions. As a result, the inferred recombination rates may not be representative of the underlying
population. Smaller cut-off lengths (e.g. 0.1 or 0.2 cM) could result in more accurate correlation coefficients
for small panels comprising only a few thousand haplotypes, but the correlation coefficients may not be
necessarily better than the longer cut-off in large panels. This is due to the high probability of a match
between two haplotypes for small cut-offs (e.g. 1 cM), especially if the marker density is not very high.

FastRecomb assumes that mismatches after a long match are due to recombination events where some
mismatches could be due to recent mutations or genotyping errors. This problem can be addressed by
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Fig. 8. Estimated rates using different subsets of UK Biobank across the chromosome 20. (a) Asian or Asian British,
(b) Black or Black British, (c) Subset of White individuals, (d) All White individuals. The rates from deCODE (sex
averaged) are presented for comparison (e).

smoothing the panel. However, we did not assess the biases by counting minor alleles, which could be
further investigated in future work. In our experiments, we focused on the mid-region of the chromosome
which entailed approximately 82% of the entire chromosome. In future work, we will experiment with special
treatment for the end-regions similar to IBDrecomb while counting the IBD boundaries. Moreover, we limited
evaluation of our method to array data. Error rates in sequencing data might be higher, especially for rare
variants. As a result, the accuracy of FastRecomb will rely on the performance of the smoothing step.
Thinning the data using minor allele frequencies is also a possible solution for panels with high error rates
in rare variants.

5 Conclusions

In this work, we presented a new method to estimate the recombination rates in biobank-scale cohorts. A
unique hallmark of the proposed method, FastRecomb, is its scalability. FastRecomb implicitly considers
all matches between pairs of haplotypes while avoiding enumerating all possible pairs using PBWT blocks.
As a result, the run time of FastRecomb grows linearly with the number of variant sites and the number
of individuals. Also, FastRecomb avoids explicit outputting of IBD segments, a potential I/O bottleneck.
These innovations enable FastRecomb to be easily applicable to panels with hundreds of thousands or even
millions of haplotypes without requiring extensive resources.

Based on our experiments, the performance of FastRecomb can be higher than the state-of-the-art meth-
ods when the haplotype panel is large enough. Moreover, our method is robust against genotyping errors as
the performance of FastRecomb was not affected by increasing the error rates from 0 to 0.2%.

In summary, FastRecomb unleashes the power of biobank-scale haplotype panels for estimating population-
specific genetic maps. Given the fact that some human populations may have unique recombination hot-spots
and their genetic map may differ, it is essential to estimate their unique genetic map for downstream analysis.
As access to biobanks housing hundreds of thousands to millions of individuals increases, efficient methods
such as FastRecomb may become critical for population-specific genetic map estimation.
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