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Abstract

The growing diversity of heritable skin diseases, a practical challenge to clinicians and 

dermatonosologists alike, has nonetheless served as a rich source of insight into skin biology and 

disease mechanisms. I summarize below some key insights from the recent gene-driven phase of 

research on Werner syndrome, a heritable adult progeroid syndrome with prominent dermatologic 

features, constitutional genomic instability and an elevated risk of cancer. I also indicate how new 

insights into skin biology, disease and aging may come from unexpected sources.

INTRODUCTION

Werner syndrome (WS) is an autosomal recessive disease that first captured wide attention 

due to its prominent premature aging (or progeroid) features. WS is also of considerable 

biomedical science interest in light of the pairing of these progeroid features with 

constitutional genomic instability and an elevated risk of many clinically important, age-

dependent human diseases.

The progeroid features of WS were first well-described by Otto Werner (Werner, 1985), 

who described a North German family of four siblings, ages 31 – 40, with short stature, 

prematurely gray hair, bilateral cataracts, atrophy of the extremities, hyperkeratosis and 

scleroderma-like changes together with foot and ankle skin ulceration. He noted one of the 

siblings, a 36 yr old male, gave “…the impression of extreme senility.” These observations 

were published as part of Werner’s doctoral thesis prior to his embarking on a career in a 

small North Sea village. Werner never again returned to study his syndrome (Pehmoeller, 

2001).

The term ‘Werner’s syndrome’ was first used in a subsequent report of an additional patient 

who resembled the family members seen by Werner (Oppenheimer and Kugel, 1934). This 

case report together with a more comprehensive study by Thannhauser of five additional 

patients (Thannhauser, 1945) provided a detailed description of WS. Werner syndrome was 
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next ‘rediscovered’ by colleagues at the University of Washington who described three 

Japanese-American sisters with WS (one of whom is shown in Figure 1). Their analysis 

established the autosomal recessive inheritance of WS and delineated key differences 

between WS and normal aging (Epstein et al., 1966).

Werner syndrome as a clinical entity

The most consistent and earliest noted findings are premature graying and loss of hair 

together with bilateral cataracts, short stature and progressive, scleroderma-like skin changes 

(Table 1)(Epstein et al., 1966; Goto, 1997; Tollefsbol and Cohen, 1984). Hair graying and 

loss begin in the second decade with the scalp and eyebrows, as do bilateral ocular cataracts. 

The short stature of WS patients reflects the absence of a pubertal growth spurt. Short 

stature together with progressive limb thinning, atrophy and a stocky trunk give many 

patients a ‘cushingoid’ appearance (see Figure 2 of (Goto, 2001)).

The scleroderma-like skin changes of WS (Thannhauser, 1945) consist of a mix of atrophic 

and proliferative changes: epidermal atrophy that includes skin appendages in conjunction 

with focal hyperkeratosis and basal hypermelanosis. Dermal subcutaneous atrophy is often 

found with dermal fibrosis underlying atrophic skin (Epstein et al., 1966; Goto, 1997; 

Hatamochi, 2001; Thannhauser, 1945). These changes give skin a ‘tight, white and shiny’ 

appearance, with a progressive sharpening of facial features to give a ‘pinched’, ‘beaked’ or 

‘bird-like’ appearance (see Figure 3 in (Goto, 2001)). The lower extremities, especially the 

feet, may be markedly deformed with ulceration and calcification of soft tissue and tendons 

(Hatamochi, 2001).

Many of these changes are readily apparent in patient photos taken in early adulthood and 

later in life (Figure 1). The progressive development of phenotype makes the diagnosis of 

WS challenging, especially in young adults. However cardinal features are often present 

early, and can be used together with molecular confirmation to confirm or exclude a 

diagnosis (Table 1)(Hisama et al., 2014).

Related RECQ helicase deficiency syndromes

The positional cloning of the WRN locus (Yu et al., 1996) and other members of the RECQ 

helicase gene family led to recognition of deeper links between WS and two additional 

genodermatoses: Bloom syndrome (BS)(Ellis et al., 1995) and Rothmund-Thomson 

syndrome (RTS)(Kitao et al., 1999). Bloom syndrome patients display congenital short 

stature and a characteristic sun-sensitive ‘butterfly’ rash across the bridge of the nose and 

cheeks that may involve hands and forearms (Bloom, 1954). Many patients display cellular 

and humoral immune deficits; an elevated risk of otitis media, pneumonia and diabetes 

mellitus with reduced fertility. Cancer is the leading cause of premature death (Bloom, 1954; 

German, 1979, 1993, 1997).

Rothmund-Thomson syndrome (RTS) was first described as a familial occurrence of skin 

changes with bilateral juvenile cataracts (Rothmund, 1868; Taylor, 1957; Thomson, 1936). 

A characteristic sun-sensitive rash with redness, swelling and blistering appears in the first 

year of life, and may involve the buttocks and extremities while sparing the chest, back and 
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abdomen. The rash may further develop variable pigmentation, telangiectasia and focal 

atrophy. Hair, eyelashes and eyebrows are often sparse or absent. Congenital short stature is 

common, though less severe than in BS. Developmental abnormalities include dysplastic, 

malformed or absent bones, often in the hand or thumbs; delayed bone formation or bone 

density loss; and malformed, missing or extra teeth. Cataracts have been documented in only 

a minority of contemporary RTS patients (Larizza et al., 2010; Wang et al., 2001). Cancer 

risk is largely limited to osteosarcoma (Siitonen et al., 2009; Wang et al., 2003). 

Immunologic function appears intact, but fertility may be reduced. Additional diseases 

associated with RECQL4 mutations are RAPADILINO and Baller-Gerold (BGS) 

syndromes. RAPADILINO syndrome patients have joint dislocations and patellar 

hypoplasia or aplasia, but lack skin changes. BGS patients have craniosynostosis with radial 

aplasia, and RTS-like skin changes (Siitonen et al., 2003; Siitonen et al., 2009; Van 

Maldergem et al., 2006). Life expectancy appears normal in the absence of cancer (Larizza 

et al., 2010; Wang et al., 2001).

Elevated acquired disease risk in Werner syndrome

Many WS patients prematurely develop age-dependent diseases such as myocardial 

infarction and stroke; cancer; osteoporosis; diabetes mellitus; and hypogonadism. Cardio-

vascular disease and cancer are leading causes of premature death (Goto, 1997; Goto et al., 

2013). The elevated risk of neoplasia is quite selective: two-thirds of neoplasms in WS 

patients were of 6, not obviously related, tumor types: thyroid epithelial carcinomas, 

melanomas, meningiomas, soft tissue sarcomas, hematologic neoplasia, chiefly leukemias, 

and osteosarcoma (Lauper et al., 2013; Lauper and Monnat Jr, 2013; Monnat Jr, 2013). 

Multiple neoplasms were common: 22% of 189 patients in our series had 1 to 4 concurrent 

or sequential neoplasms, often of unusual types or at unusual sites. For example, melanomas 

were almost exclusively less common variants: acral lentiginous melanomas arising on the 

palms, soles or in nail beds; and mucosal melanomas arising in the nasal cavity or 

esophagus. Thyroid neoplasms, in similar fashion, were disproportionately less common 

follicular carcinomas (Lauper et al., 2013). The excess risk of these specific neoplasms, 

estimated using a combination of standardized incidence ratio (SIR), proportional incidence 

ratio (SPIR) analyses, ranged from nearly 60-fold for melanoma to 1.5-fold for leukemia and 

pre-leukemic disorders (Lauper et al., 2013). This spectrum of neoplasia overlaps with, but 

is distinct from, the neoplasms observed in BS and RTS (German, 1997; Monnat, 2001; 

Siitonen et al., 2009). BS is unusual among heritable cancer predispositions as many 

different tumor types are involved (German, 1997; Monnat, 2001). The cancer risk in the 

RTS-associated RECQL4 syndromes is, conversely, restricted largely to osteosarcoma and 

lymphoma (Siitonen et al., 2009; Wang et al., 2003; Wang et al., 2001).

Physiologic roles of RECQ helicases

All of the human RECQ helicases hydrolyze ATP, unwind double-stranded DNA and 

possess good DNA strand annealing activity. WRN alone possesses an additional, 3' to 5' 

exonuclease activity. Despite their common biochemical activities, the three disease-

associated RECQ helicases have differing substrate preferences and different sets of protein 

partners (reviewed in (Bachrati and Hickson, 2003; Brosh Jr, 2013; Croteau et al., 2014; 
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Sidorova and Monnat Jr, 2015)). These biochemical data together with functional and 

cellular data begin to indicate how these seemingly similar proteins fill different physiologic 

‘niches’ in human cells and, by extension, how the loss of function of one RECQ protein 

may lead to distinct cellular and organismal phenotypes.

Functional characterizations have identified distinct roles in specific RECQ helicase proteins 

in DNA replication. For example, RECQL4 and to a lesser extent RECQL bind replication 

origins and contribute to DNA replication initiation (Thangavel et al., 2009; Xu et al., 

2009). Single molecule DNA replication track analyses we and others have performed 

revealed roles for BLM, WRN and RECQL in replication fork rate maintenance and fork 

restart (Berti et al., 2013; Sidorova et al., 2013; Sidorova et al., 2008). RECQL4 has an 

interesting additional role in mtDNA maintenance: it is co-imported with TP53, and appears 

to limit mtDNA damage in a replication-dependent manner (Croteau et al., 2012; De et al., 

2012; Gupta et al., 2014).

Several RECQ helicases also help maintain telomeres, though again display apparent 

functional specialization. Telomeric DNA poses a dual challenge to the DNA replication 

machinery as it is composed of repeated (the human telomeric repeat sequence is 

TTAGGG), GC-rich DNA organized into a unique chromatin ‘cap’ at the ends of 

chromosomes (Sfeir et al., 2009). G-rich lagging strands may form G4 DNA quadruplex 

structures (Maizels and Gray, 2013) which are a good biochemical substrates for WRN and 

BLM. Only WRN helicase activity is required for complete replication of telomeric G-rich 

lagging strands, whereas cells lacking RECQL, RECQL4 or BLM also show telomere 

breakage and loss. It is unclear whether these effects are via a common mechanism 

(Barefield and Karlseder, 2012; Crabbe et al., 2007; Crabbe et al., 2004; Ghosh et al., 2012; 

Popuri et al., 2014). In contrast, WRN and BLM both participate in the recombination-

mediated ‘alternative lengthening of telomeres’ (ALT) pathway used by many tumor cells to 

gain replicative immortality (Mendez-Bermudez et al., 2012). One phenomenon that is not 

yet well-understood is the sensitivity of WRN+ cells to telomere-homologous DNA 

oligonucleotides (‘T-oligos’). The ability to respond to T-oligos may depend upon WRN 

exonuclease activity, and may have therapeutic potential in light of protective or deleterious 

responses in different cell types (Eller et al., 2006; Gilchrest and Eller, 2009).

All five of the human RECQ helicases also participate in DNA double strand break repair by 

non-homologous DNA end joining (NHEJ) or homology-dependent recombination (HDR or 

HR). WRN and RECQL4 participate in base excision repair, and RECQL5 may play an 

additional role in ssDNA break repair (reviewed in (Brosh Jr, 2013; Croteau et al., 2014; 

Sidorova and Monnat Jr, 2015).

‘Rewritten in the skin’ – RECQ helicases in transcription

Previous analyses had suggested a role for the WRN and BLM RECQ helicases in 

transcription (Johnson et al., 2010; Kyng et al., 2003). In order to better understand this role, 

we analyzed gene and miRNA expression in mutation-typed WS and BS primary fibroblasts 

and in isogenic control primary fibroblasts depleted of the WRN or BLM protein. These 

analyses identified −3,000 genes and dozens of miRNAs whose expression was significantly 
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altered by the loss of WRN and BLM function. Among the subset (−25%) of genes altered 

in both WS and BS cells, a surprisingly high fraction (>90%) had expression altered in the 

same direction (Nguyen et al., 2014)(Tang, Robles et. al., in preparation). Many WRN- and 

BLM-responsive downregulated genes contained G quadruplex (G4) DNA motifs in their 5' 

ends, providing strong evidence that G4 DNA structures are physiologic as well as 

biochemical substrates for WRN and BLM.

The genes and miRNAs altered in WS and/or BS cells play important roles in pathways that 

drive cell growth, proliferation, death and survival. BS patient cells had gene expression 

patterns predicted to alter DNA replication recombination and repair, as well as immune 

function and tumorigenic/DNA damage signaling. These make good sense in light of our 

understanding of the biochemical, cellular and organismal phenotype of BS (Nguyen et al., 

2014)(Tang, Robles et. al., in preparation). WS appears more complex, and thus intriguing. 

One remarkable—and as yet not fully understood—finding in WS cells was coordinate 

upregulation of nearly all of the cytoplasmic tRNA synthestase (ARS) and synthetase-

associated interacting protein (AIMP) genes (Kim et al., 2011; Park et al., 2010; Wallen and 

Antonellis, 2013; Yao and Fox, 2013).

The mechanism of ARS/AIMP upregulation is not yet understood but may include MYC, 

which can alter and in turn be modulated by ARSs (Shi et al., 2014) while driving 

expression of WRN and telomerase (Grandori et al., 2003). ARS and AIMP overexpression 

in WS could perturb protein homeostasis by altering global protein turnover and/or 

translational fidelity (Lee et al., 2014; Wolff et al., 2014). Altered tRNA charging could 

affect the balance between mitochondrial and nuclear protein synthesis to promote 

mitochondrial dysfunction and oxidative stress (Jovaisaite and Auwerx, 2015). It could also 

drive disease pathogenesis via the growing list of ARS/AIMP ‘non-canonical’ functions that 

modulate disease-related metabolic, developmental, angiogenic, tumorigenic, immune and 

inflammatory pathways (Paul and Schimmel, 2013; Son et al., 2014). All of these areas are 

ripe for further exploration using a combination of new genomic and proteomic approaches.

The origins of phenotype

The biochemical and cellular specializations of the individual RECQ helicases outlined 

above begin to indicate how the loss of function of a single RECQ protein may lead to 

specific RECQ deficiency syndromes and their associated disease risks. As noted above, 

RECQ-deficient cells display cell proliferation defects in conjunction with genomic 

instability (Dhillon et al., 2007; Mao et al., 2010; Martin et al., 1970; Sharma et al., 2007; 

Sidorova et al., 2013; Thangavel et al., 2009; Warren et al., 1981). These cellular defects in 

turn are likely part of the explanation for why BS and RTS patients are often small though 

proportionately developed. BLM or RECQL4 loss can both interfere with DNA replication 

and impair cell production throughout development. Despite this, development appears 

largely normal in both syndromes and responds by proportionately scaling output (the fetus) 

to reflect inadequate substrate (cells). This proportional dwarfing is particularly striking in 

BS, where patients are born and often remain at or below the 5th percentile for height and 

weight (Keller et al., 1999).
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The progressive development of progeroid features in WS only after development is largely 

complete may reflect the starkly different outcome of replication arrest, which leads to high 

levels of cell death in BS though not in WS cells (Mao et al., 2010; Sidorova et al., 2013). 

WRN loss, in contrast, has a more profound effect on transcription than does BLM loss, and 

thus may have a correspondingly more prominent role in transcription and tissue 

maintenance (see above). Disrupted DNA metabolism in WS patient cells could drive the 

progressive accumulation of mutant and senescent cells in many tissues, with acquisition of 

a senescence-associated secretory phenotype that could in turn promote the elevated risk of 

many clinically important age-associated diseases (Campisi, 2013). Cellular senescence in 

the RECQ helicase syndromes may have one modest silver lining: it is an effective, albeit 

non-specific, tumor-suppressive mechanism (Adda di Fagagna, 2008; Collado and Serrano, 

2010). Altered RECQ expression, as opposed to mutation, may be frequent in many tumor 

types (Lao et al., 2013). However the previous suggestion that these changes may be largely 

methylation-driven (Agrelo et al., 2006) has not been consistent enough in our hands to 

serve as a reliable marker for altered WRN expression in tumors (Lao et al., 2013)(Bosch, 

Luo et al, in preparation).

More systematic collection of patient data, longitudinal study of patients, and the collection 

and distribution of well-characterized clinical samples should all aid our understanding of 

the RECQ deficiency syndromes. We also have a growing range of options to capture and 

analyze patient-derived cells and cell lines, including improved short term primary culture, 

organoid culture and the generation of cell lines and iPS cells (Cheung et al., 2014; Martin 

et al., 1970; Shimamoto et al., 2014; Wyllie et al., 2000). These analyses and materials have 

the potential to identify genetic and environmental modifiers of disease progression and 

acquired disease risk.

New clues to skin biology, disease and therapy

The above analyses emphasize the complexity of disease pathogenesis in even ‘simple’ 

monogenic genetic diseases such as Werner syndrome. They also emphasize how new 

insights into disease pathogenesis from rare heritable diseases may improve our 

understanding of skin biology while identifying potential new therapies. One example 

comes from another skin disease, recessive dystrophic epidemolysis bullosa (RDEB). RDEB 

results from COL7A1 mutations leading to loss of Type VII collagen, a marked reduction in 

anchoring fibrils and extreme skin fragility with loss and scaring (Tolar and Wagner).

The potential for genetic therapies of EB and a handful of other heritable diseases was 

emphasized over two decades ago by the identification of patients who had undergone 

spontaneous reversion of causative mutations with partial or full correction of disease-

specific defects in skin, blood, lymphoid or liver (Hirschhorn 2003). A deeper understanding 

of the role of Type VII collagen in skin (Tolar and Wagner) had led to a diversity of 

therapeutic approaches: complementation (GENEGRAFT 2014) or targeted correction of 

causative COL7A1 mutations in epidermal cells (Sebastiano et al., 2014); use of patient-

derived, mutation-reverted keratinocytes (Tolar et al., 2014); and the repair in trans of 

anchoring fibrils using allogeneic fibroblasts (Venugopal et al., 2013), mutation-corrected, 

iPS-derived fibroblasts (Wenzel et al., 2014) or bone marrow transplantation (Tolar and 

Monnat Page 6

J Invest Dermatol. Author manuscript; available in PMC 2015 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Wagner; Wagner et al., 2010). Repair in trans may be a viable option for dealing with the 

scleroderma-like skin changes seen in WS, as might aminoglycoside suppression of WRN 

missense mutations, a strategy that has been used in RDEB (Cogan et al., 2014).

Another unusual example of where we may find new clues to treating heritable or acquired 

skin disease as well as age-associated changes comes from comparative genetics, more 

specifically the African spiny mice Acomys kempi and Acomys percivali. Acomys mice have 

the remarkable ability to shed–and then regenerate without scaring–large segments of skin, 

and may have evolved this ability to escape predators (Seifert et al., 2012). While scarless 

wound healing also occurs in humans, it is largely restricted to the fetus (Yates et al., 2012). 

Acomys mice, in contrast, are able to continuously regenerate skin without scaring in the 

face of injury, inflammation and infection. Understanding the mechanistic basis for this 

remarkable example of epimorphic regeneration may identify new ways to maintain or 

rejuvenate skin, and to help individuals with injuries that lead to disfiguring scaring. Nature 

undoubtedly holds more examples of remarkable cutaneous biology. Finding these and 

turning them to good use will require imagination, together with a willingness to look—and 

think—a bit beyond our usual comfort zone.
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Figure 1. 
Clinical features and progression of Werner syndrome. Left photo panels are of Case 1, a 

Japanese-American WS patient reported by Epstein et al., 1966, at ages 15 (left) and 48 

(right). Right photo panels are of a second Caucasian WS patient at ages ~13 (left) and 56 

(right). Key clinical features of WS are present in both sets of photos, including the rounded 

face; sharp facial features; graying, thinning and loss of scalp and eyebrow hair; and in 

Patient 2 right panel thin, atrophic forearms and right elbow ulceration. Patient 1 archival 

photos, kindly provided by Drs. George Martin and Nancy Hanson of the International 

Registry of Werner Syndrome, were digitized and restored by Alden Hackmann. They are 

used courtesy of Lippincott Williams & Wilkins. Patient 2 photos were provided by Dr. 

George Martin, and are used here courtesy of the patient’s spouse with informed consent of 

the patient, and of Elsevier Press where they were originally published in different form 

(Martin, GM (2005) Genetic modulation of senescent phenotypes in Homo sapiens. Cell 

120:523–532).
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Table 1

Werner syndrome diagnostic criteria

Category WS signs and symptoms*

Cardinal** 1. cataracts (bilateral)

2. sclerodermalike skin changes

3. short stature

4. parental consanguinity

5. premature greying and/or thinning of scalp hair

Additional 1. diabetes mellitus

2. hypogonadism

3. osteoporosis

4. osteosclerosis (distal phalanges/fingers and/or toes)

5. soft tissue calcification

6. premature atherosclerosis

7. neoplasia

8. thin, highpitched voice

Category Diagnostic confidence Diagnostic criteria

Definite High confidence all cardinal signs + two additional signs OR confirmed pathogenic WRN mutations in both alleles

Probable High confidence first 3 cardinal signs + any 2 others

Possible Low confidence either cataracts or dermatological changes + any 4 additional signs

Exclusion** Exclude signs or symptoms before adolescence (except stature)

notes:

*
WS signs and symptoms are from the diagnostic criteria established by the International Registry of Werner Syndrome: 

www.wernersyndrome.org/registry/diagnostic.html, with additional discussion and application provided in Lauper et al. (2013).
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