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ABSTRACT MutantHuntWGS is a user-friendly pipeline for analyzing Saccharomyces cerevisiae whole-
genome sequencing data. It uses available open-source programs to: (1) perform sequence alignments for
paired and single-end reads, (2) call variants, and (3) predict variant effect and severity. MutantHuntWGS
outputs a shortlist of variants while also enabling access to all intermediate files. To demonstrate its utility, we
use MutantHuntWGS to assess multiple published datasets; in all cases, it detects the same causal variants
reported in the literature. To encourage broad adoption and promote reproducibility, we distribute a
containerized version of the MutantHuntWGS pipeline that allows users to install and analyze data with only
two commands. The MutantHuntWGS software and documentation can be downloaded free of charge from
https://github.com/mae92/MutantHuntWGS.
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Saccharomyces cerevisiae is a powerful model system for under-
standing the complex processes that direct cellular function and
underpin many human diseases (Birkeland et al. 2010; Botstein
and Fink 2011; Kachroo et al. 2015; Hamza et al. 2015, 2020;
Wangler et al. 2017; Strynatka et al. 2018). Mutant hunts (i.e.,
genetic screens and selections) in yeast have played a vital role in
the discovery of many gene functions and interactions (Winston
and Koshland 2016). A classical mutant hunt produces a pheno-
typically distinct colony derived from an individual yeast cell with
at most a small number of causative mutations. However, identi-
fying these mutations using traditional genetic methods (Lundblad
2001) can be difficult and time-consuming (Gopalakrishnan and
Winston 2019).

Whole-genome sequencing (WGS) is a powerful tool for rap-
idly identifying mutations that underlie mutant phenotypes (Smith
and Quinlan 2008; Irvine et al. 2009; Birkeland et al. 2010). As
sequencing technologies improve, the method is becoming more
popular and cost-effective (Shendure and Ji 2008; Mardis 2013).

WGS is particularly powerful when used in conjunction with lab-
evolution (Goldgof et al. 2016; Ottilie et al. 2017) or mutant-hunt
experiments, both with (Birkeland et al. 2010; Reavey et al. 2015)
and without (Gopalakrishnan et al. 2019) bulk segregant analysis.

Analysis methods that identify sequence variants from WGS
data can be complicated and often require bioinformatics exper-
tise, limiting the number of investigators who can pursue these
experiments. There is a need for an easy-to-use, data-transparent
tool that allows users with limited bioinformatics training to
identify sequence variants relative to a reference genome. To
address this need, we created MutantHuntWGS, a bioinformatics
pipeline that processes data from WGS experiments conducted in
S. cerevisiae. MutantHuntWGS first identifies sequence variants in
both control and experimental (i.e., mutant) samples, relative to a
reference genome. Next, it filters out variants that are found in
both the control and experimental samples while applying a
variant quality score-cutoff. Finally, the remaining variants are
annotated with information such as the affected gene and the
predicted impact on gene expression and function. The pro-
gram also allows the user to inspect all relevant intermediate and
output files.

To enable quick and easy installation and to ensure reproducibility,
we incorporated MutantHuntWGS into a Docker container (https://
hub.docker.com/repository/docker/mellison/mutant_hunt_wgs). With
a single command, users can download and install the software. A
second command runs the analysis, performing all steps described
above. MutantHuntWGS allows researchers to leverage WGS for
the efficient identification of causal mutations, regardless of bio-
informatics experience.
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Figure 1 Flow chart of the MutantHuntWGS pipe-
line. Input data are colored in blue, the various
bioinformatics tools in the pipeline are colored in
green, and output data are colored in purple.
Arrows identify the path of the workflow at each
step of the pipeline.
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METHODS

Pipeline overview
The MutantHuntWGS pipeline integrates a series of open-source
bioinformatics tools and Unix commands that accept raw sequencing
reads (compressed FASTQ format or .fastq.gz) and a text file con-
taining ploidy information as input, and produces a list of sequence
variants as output. The user must provide input data from at least two
strains: a control strain and one or more experimental strains. The
pipeline uses (1) Bowtie2 to align the reads in each input sample to the
reference genome (Langmead and Salzberg 2012), (2) SAMtools to
process the data and calculate genotype likelihoods (Li et al. 2009),
(3) BCFtools to call variants (Li et al. 2009), (4) VCFtools (Danecek
et al. 2011) and custom shell commands to compare variants found in
experimental and control strains, and (5) SnpEff (Cingolani et al.
2012) and SIFT (Vaser et al. 2016) to assess where variants are
found in relation to annotated genes and the potential impact on
the expression and function of the affected gene products (Figure 1).
A detailed description of the commands used in the pipeline
and all code is available on the MutantHuntWGS Git repository

(https://github.com/mae92/MutantHuntWGS; see README.md,
Supplemental_Methods.docx files).

Analysis of previously published data
To demonstrate utility, we used MutantHuntWGS to analyze
published datasets from paired-end sequencing experiments
with DNA prepared from bulk segregants or lab-evolved strains
(Birkeland et al. 2010; Goldgof et al. 2016; Ottilie et al. 2017).
These data were downloaded from the sequence read archive
(SRA) database (https://www.ncbi.nlm.nih.gov/sra; project acces-
sions: SRP003355, SRP074482, SRP074623) and decompressed using
the SRA toolkit (https://github.com/ncbi/sra-tools/wiki). Muta-
ntHuntWGS was run from within the Docker container, and
each published mutant (experimental) file was compared to its
respective published control.

Data availability
All code and supplementary information on the methods used herein
are available on the MutantHuntWGS Git repository (https://github.
com/mae92/MutantHuntWGS).

n■ Table 1. Analysis of previously published bulk-segregant and lab-evolution WGS datasets using MutantHuntWGS

Birkeland et al. (2010)

SRA ID SRR064545 SRR064546
Total Reads (% Mapped) 19,782,779

(92.80%)
20,015,390
(89.57%)

Additional Output Filtering

Variants Called in Control 10,022 Filtering by Cutoff Variant
count
(%)

Variants Called in Experimental 9,646 Variant
quality
score

.130 21
(0.21%)

Variants Unique to the Experimental strain with Variant Quality
Scores . 100 (% of total)

188 (1.95%) SnpEff
Impact

.Moderate 55
(0.57%)

CDS Variants in SIFT output (% of total) 152 (1.58%) Variant
Quality
Score 1
Impact

.130 1
.Moderate

6
(0.06%)

Published mutation (s) Identified Yes SIFT Deleterious 6
(0.06%)

Ottilie et al. (2017)

SRA ID SRR3480136 SRR3490425 SRR3490399 SRR3490397 SRR3490304
Total Reads (Percent Mapped) 14,684,843

(93.61%)
7,935,729
(98.11%)

3,629,049
(97.53%)

5,611,439
(97.80%)

6,904,333
(97.91%)

Variants Called in Control 526
Variants Called in Experimental 367 298 336 377
Variants Unique to the Experimental strain with Variant Quality

Scores . 100 (% of total)
11 (3.00%) 4 (1.34%) 7 (2.08%) 8 (2.12%)

CDS Variants in SIFT output (% of total) 4 (1.09%) 2 (0.67%) 4 (1.19%) 5 (1.33%)
Published Mutation(s) Identified Yes Yes Yes Yes

Goldgof et al. (2016)

SRA ID SRR3480136 SRR3480251 SRR3480237 SRR3480212 SRR3480267
Total Reads (Percent Mapped) 14,684,843

(93.61%)
6,347,816
(94.49%)

7,480,005
(64.04%)

3,058,951
(98.11%)

2,545,805
(97.51%)

Variants Called in Control 526
Variants Called in Experimental 487 316 292 301
Variants Unique to the Experimental strain with Variant Quality

Scores . 100 (% of total)
10 (2.05%) 8 (2.53%) 6 (2.05%) 4 (1.33%)

CDS Variants in SIFT output (% of total) 4 (0.82%) 3 (0.95%) 4 (1.37%) 2 (0.66%)
Published Mutation(s) Identified Yes Yes Yes Yes
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RESULTS AND DISCUSSION

Installing and running the MutantHuntWGS pipeline
To facilitate distribution and maximize reproducibility, we imple-
mented MutantHuntWGS in a Docker container (Boettiger 2015; Di
Tommaso et al. 2015). The container houses the pipeline and all of its
dependencies in a Unix/Linux environment. We have successfully
installed and run MutantHuntWGS on Mac, Linux, and Windows
operating systems. To download and install the MutantHuntWGS
Docker container, users need only install Docker Desktop (https://
docs.docker.com/get-docker/), open a command-line terminal, and
execute the following command:

$ docker run -it -v /PATH_TO_DESKTOP/Analysis_Directory:/
Main/Analysis_Directory mellison/mutant_hunt_wgs:version1

After download and installation, the command opens a Unix
terminal running in the Docker container so users can begin their
analysis. From the Unix terminal running in the Docker container,
users need only execute the following command to run the Muta-
ntHuntWGS pipeline:

$ MutantHuntWGS.sh \
-n FILENAME \
-g /Main/MutantHuntWGS/S_cerevisiae_Bowtie2_
Index_and_FASTA/genome \
-f /Main/MutantHuntWGS/S_cerevisiae_Bowtie2_
Index_and_FASTA/genome.fa \
-r single \
-s 100 \
-p /Main/MutantHuntWGS/S_cerevisiae_Bowtie2_
Index_and_FASTA/ploidy_n1.txt \
-d /Main/Analysis_Directory \
-o /Main/Analysis_Directory/NAME_YOUR_OUTPUT_
FOLDER
-a YES

A detailed description of the pipeline, its installation, and its use is
available in the MutantHuntWGS Git repository readme (https://
github.com/mae92/MutantHuntWGS/blob/master/README.md).

Utility of the MutantHuntWGS pipeline
MutantHuntWGS processes WGS data through a standard alignment/
variant-calling pipeline and compares each experimental strain to
a control strain (Figure 1, see Methods). The pipeline’s constituent
tools are often used for WGS analysis (Reavey et al. 2015;
Gopalakrishnan and Winston 2019; Gopalakrishnan et al. 2019). How-
ever,MutantHuntWGS ensures ease of use by assembling these tools in a
Docker container and requiring only one command to run them all in
sequence. This approach combines the best aspects of previously
published pipelines (discussed below)while allowing inexperienced users
to install the software and reproducibly apply popular methods.

MutantHuntWGS also ensures that the output data files are well
organized and easy to locate. Output files include aligned reads (BAM
format), alignment statistics (TXT format), pre- and post-filtering
variants (VCF format), SnpEff output (HTML, VCF, and TXT
formats), and SIFT output (VCF, XLS formats). The user thus has all
the information needed to identify and visually inspect sequence
variants, and to generate figures and tables for publication.

MutantHuntWGS combines versatility and simplicity
Our goal in creating MutantHuntWGS was to simplify the installa-
tion and usage of robust bioinformatics tools while maintaining
flexibility by allowing users to specify certain critical options.

Examples of this, discussed below, include (1) enabling use with
additional organisms, (2) allowing users to specify ploidy, (3)
filtering by a user-specified variant-quality score, and (4) exposing
all intermediate and final output files to facilitate additional
filtering and quality control.

MutantHuntWGS is designed for use with S. cerevisiae by default
but can be adapted to analyze WGS data from any organism. At
present, only the necessary reference files for S. cerevisiae are included
in the MutantHuntWGS download. Investigators who wish to ana-
lyze data from an organism other than S. cerevisiae need to provide,
at minimum, new Bowtie2 indices, a genome FASTA file, and a ploidy
file. Bowtie2 indices and genome FASTA files for many model
organisms are available at https://support.illumina.com/sequencing/
sequencing_software/igenome.html. A FASTA index file (genome.
fasta.fai) that can be easily converted into a ploidy file is also
available at this link. Unfortunately, performing the SnpEff and
SIFT analysis would require slight alterations to the SnpEff and
SIFT commands in the pipeline script and a copy of the SIFT
library for the organism of interest. We chose not to include
reference files and SIFT libraries for other organisms within the
Docker container due to the large size of these files. If users
encounter difficulties when analyzing non-S. cerevisiaeWGS data,
we encourage them to seek assistance by opening an issue on the
MutantHuntWGS Git repository.

Experiments in yeast are often performed in a haploid back-
ground, but can also be performed in diploid or occasionally aneu-
ploid backgrounds. The MutantHuntWGS download includes two
ploidy files, one for diploids and one for haploids. The user can
specify either ploidy file when running the pipeline. Muta-
ntHuntWGS will automatically provide this file to BCFtools during
the variant-calling step. This may be particularly advantageous for
analysis of yeast strains with aneuploid chromosomes. Instructions
are provided on the GitHub Readme page explaining how to modify
the ploidy file to account for aneuploidy in the analysis.

Users may also set variant-quality-score cutoffs (described in
detail on GitHub: https://github.com/mae92/MutantHuntWGS/blob/
master/README.md) to tune the stringency of the analysis. They can
also toggle the alignment step to save timewhen resetting the stringency.
This option re-subsets variant calls with a higher or lower stringency
cutoff, skipping the more time-consuming upstream steps of the pipe-
line. Although MutantHuntWGS does not allow users to specify addi-
tional cutoffs that filter the output per SnpEff/SIFT effect predictions
and scores, users can separately apply such filters to theMutantHuntWGS
output files after the fact—thus allowing for increased stringency.

Assessing MutantHuntWGS performance using a bulk
segregant analysis dataset
To assess MutantHuntWGS performance, we applied it to bulk
segregant analysis data (Birkeland et al. 2010) with ploidy set to
haploid. MutantHuntWGS identified 188 variants not present in the
control strain that passed the variant-quality-score cutoff of 100.
Thus only 1.95% of all variants detected in the experimental strain
passed the filtering steps (Table 1). Among these was the same PHO81
(VAC6) mutation found in the Birkeland et al. (2010) study, which
results in an R701S amino acid substitution in the Pho81 protein
(Birkeland et al. 2010). Our pipeline thus identified the same pub-
lished causal variant described in the original study.

We were surprised by how many sequence variants (relative to the
reference genome) remained after filtering. Given our variant-quality-
score cutoff of 100, it is unlikely that these variants were called in error;
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instead, they likely reflect high sequence heterogeneity in the genetic
backgrounds of the experimental and control strains. To further reduce
the length of the variant list, we experimented with additional cutoffs,
including (1) more stringent variant-quality-score, (2) SIFT score, and
(3) SnpEff impact score cutoffs. A SIFT-score cutoff of ,0.05 (dele-
terious) reduced the number of variants in the SIFT output from 152 to
6 (Table 1). An increased variant-quality-score stringency (.130)
reduced the number of variants to 21. A SnpEff impact-score cutoff
of.Moderate reduced the number of variants to 55. Finally, a variant
quality-score cutoff of .130 and a SnpEff score of . Moderate, used
together, reduced the number of variants to only 6. All post-hoc tests
retained the causal variant. These tests demonstrate how users might
similarly narrow their lists of potential candidates. However, we
caution readers that filtering by these metrics has the potential to
increase the false negative rate in their analysis.

Assessing MutantHuntWGS performance using lab
evolution datasets
To test MutantHuntWGS performance on strains that did not un-
dergo bulk-segregant analysis, we analyzed nine datasets from lab
evolution experiments (Goldgof et al. 2016; Ottilie et al. 2017), again
setting ploidy to haploid and using a variant-quality-score cutoff
of 100. In each of these studies, yeast cells were allowed to evolve
resistance to a drug and WGS was used to identify mutations
(Goldgof et al. 2016; Ottilie et al. 2017).

Shortlists of only 4 to 11 (1.33–3.00%) of the variants originally
detected in the experimental strain(s) were obtained for each dataset
(Table 1). Out of these variants, only 2 to 5 (0.66–1.37% of called
variants in the experimental strain) were present in the SIFT output
for each dataset, which contains only protein coding variants. In each
case, the list of variants generated by MutantHuntWGS included the
mutation identified in the published study (SRR3480237: Pma1
N291K, Yrr1 T623K; SRR3480212: Pma1 P339T, Yrr1 L611F;
SRR3480251: Pma1 L290S, Yrr1 T623K; SRR3480267: Pma1 G294S;
SRR3490304: Erg11 V154G; SRR3490397: Erg11 T318N; SRR3490399:
Erg25 D234E; SRR3490425: Erg25 H156N). These test cases
confirm that MutantHuntWGS can identify yeast-sequence var-
iants from WGS sequencing samples and accurately filter out
background mutations.

Existing WGS analysis pipelines
Other platforms exist that perform similar analyses. Each possesses a
subset of the features enabled by MutantHuntWGS and has notable
strengths. MutantHuntWGS is unique in its ability to combine the
best attributes of these published tools while including additional
functionality and providing output data in standard formats, such as
BAM and VCF.

One user-friendly program, Mudi (Iida et al. 2014), uses BWA
(Jo and Koh 2015), SAMtools (Li et al. 2009), and ANNOVAR
(Wang et al. 2010) for sequence alignment, identification, and
annotation of sequence variants, respectively. LikeMutantHuntWGS,
Mudi performs numerous filtering steps before returning a list of
putative causal variants. MutantHuntWGS predicts variant effects
and maps variants to annotated S. cerevisiae genes using SnpEff and
SIFT instead of ANNOVAR, and also offers access to all intermediate
data files.

Another program, VAMP, consists of a series of Perl scripts that
build and query an SQL database made from user-provided short-
read sequencing data. VAMP identifies sequence variants, including
large insertions and deletions. It also has built-in functionality that

allows for manual inspection of the data (Birkeland et al. 2010). One
advantage of MutantHuntWGS over VAMP is that it adheres to
common data formats.

A recent article describing WGS in yeast samples includes a
bioinformatics pipeline, referred to as wgs-pipeline (Gopalakrishnan
andWinston 2019). It is built in a Snakemake framework (Köster and
Rahmann 2012) that runs in a Conda environment (https://docs.
conda.io/en/latest/), similar to the container-based analysis environ-
ment we used for MutantHuntWGS. This pipeline uses Bowtie2
(Langmead and Salzberg 2012), SAMtools (Li et al. 2009), Picard
(Toolkit 2016), and GATK (McKenna et al. 2010) to align, process,
and compare datasets. Compared to wgs-pipeline, MutantHuntWGS,
which runs both SnpEff and SIFT on the candidate variants, provides
a more comprehensive analysis of the predicted effects of the variants.

The Galaxy platform (Giardine et al. 2005; Blankenberg et al. 2010)
provides a user-friendly, online interface for building bioinformatics
pipelines. Galaxy also offers access to intermediate files. However,
analysis with this platform requires the user to select the tools and
parameters to incorporate, so some knowledge of the tools themselves
is essential. Implementation is straightforward after those decisions are
made, and the user need not have any understanding of Unix/Linux.
The advantage of MutantHuntWGS over the Galaxy platform and
pipelines such as CloudMap (Minevich et al. 2012) is that the user does
not need to make decisions about the data analysis workflow.

In summary, the MutantHuntWGS pipeline is among the most
user-friendly of these programs. It combines the most useful features
of the existing WGS analysis programs while also enabling the user to
account for ploidy. Containerization streamlines the installation of
MutantHuntWGS and enhances its reproducibility. Thus, Muta-
ntHuntWGS offers ease of use, functionality, and data-transparency,
setting it apart from other WGS pipelines.

Conclusions
Processing data generated from next-generation sequencing plat-
forms requires significant expertise, and so is inaccessible to many
investigators. We have developed a highly effective differential
variant-calling pipeline capable of identifying causal variants from
WGS data. We demonstrate the utility of MutantHuntWGS by
analyzing previously published datasets. In all cases, our pipeline
successfully identified the causal variant. We offer this highly re-
producible and easy-to-implement bioinformatics pipeline to the
Saccharomyces cerevisiae research community (available at https://
github.com/mae92/MutantHuntWGS).
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