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Introduction

Helium
Helium, a colorless, odorless, tasteless monatomic element, 
heads the noble gas series (neon, argon, krypton, xenon, 
and the radioactive element radon) in the periodic table.1 
As a member of noble gases, it has outer shells completely 
filled with electrons, making it almost completely inert 
and thus less capable of forming covalent bonds with 
other elements.2,3 At the same time, helium is described as 
a “non-immobilizer”, which represents a gas that cannot 
only induce anesthesia but also possess other behavioral 
effects.4 Recent years have witnessed an increased interest 
in experimental and clinical investigations of helium, and 
it has been convincingly shown that helium is capable of 
exerting significant biologic effects in diversified basic 
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experiments.5

Physical properties and its application
Helium is the second most abundant element in the known 
universe after hydrogen and has many unusual physical 
properties.6 For example, it is the lightest noble gas (mo-
lecular weight 4 g/mol) and its melting and boiling points 
are the lowest among all elements.7 Compared to oxygen 
(1.43 g/m3) and nitrogen (1.25 g/m3), helium has less 
density (0.179 g/m3).8 The absolute viscosity of helium is 
201.8 mp (oxygen: 211.4 mp; ordinary air: 188.5 mp).9,10 

The low density and high viscosity of helium just in line 
with the principle of Renault formula, this exactly is the 
cause that helium can be utilized to potentially benefit the 
problems associated with airway obstruction by reducing 
respiratory distress and improving respiratory efficiency.11 
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Studies within the past decade have increasingly demon-
strated heliox inhalation (a mixture of helium and oxygen) 
could be a potential lung protective strategy in the clinical 
settings such as bronchiolitis, acute asthma exacerbations 
and chronic obstructive pulmonary disease.6 Furthermore, 
the volume of helium molecules is extremely small so 
that the diffusion rate is 2.5 times that of nitrogen, and 
its water-insoluble properties indicate that paralysis and 
toxicity are not easily caused via blood circulation even 
in high pressure environments in deep water. So we often 
employ helium-oxygen mixed gas (rather than nitrogen) 
in the proper proportion to effectively prevent deep water 
anesthesia, avoid decompression and increase the depth 
of diving when a diver needs to stay in the deep sea for a 
long time.12 

Chemical properties and its application
The increasing evidences indicate that inert gases especially 
xenon and some volatile anesthetics can exert organ pro-
tection through influencing certain signaling pathways in 
diverse basic experiments.13 As a member of an inert gas, 
whether helium also has biochemical properties and thus 
produces a similar protective effect has received extensive 
attention. Furthermore, compared with xenon and other 
volatile anesthetics, helium can be easily and safely admin-
istered.13 It is essentially devoid of anesthetic properties and 
many studies have already revealed a stable hemodynamic 
profile when clinically applied.14 These properties would 
make helium a perfect alternative for organ-protection in 
the case of reversible or irreversible ischemia/reperfusion 
(I/R) damage in clinical scenes when anesthesia is not 
requisite.15 Findings from numerous experimental studies 
have demonstrated that helium acts as a protective agent 
against tissue injury in a variety of organs such as brain, 
heart, liver, and kidney damage, and helium’s cardioprotec-
tion has received most extensive attention.16,17 This review 
contains the existing knowledge about the cellular effects 
of helium, which may bring about new clinical strategies 
of salvage in myocardium I/R injury.

Myocardial I/R injury 
Ischemic heart disease is the primary cause of morbidity 
because of its detrimental clinical consequences, such as 
acute myocardial infarction, heart failure, myocardial 
stunning and arrhythmias.18,19 Early reperfusion is the cor-
nerstone in the treatment of myocardial damage but the 
flipside of the coin is reperfusion injury.20 Studies in the 
past have unraveled that therapeutic intervention with the 
purpose of reducing reperfusion-induced injury is beneficial 
at the time of opening the obstructed vessel.21 Naturally, 
it results in the discovery of pre- and post-conditioning. 

Cardioprotection induced by pre-conditioning covers two 
phases, an early phase (early pre-conditioning), lasting for 
2–3 hours after the pre-conditioning stimulus,22 and a late 
phase (late pre-conditioning), reappearing 24 hours after 
the initial stimulus and lasting for 2–3 days.23 What has 
been proved is that short episodes of ischemia in advance 
of an ischemic event (ischemic pre-conditioning) generate 
cardioprotection, reduce infarct size and ease cell damage.24 
Post-conditioning is achieved by conditioning cycles at the 
onset of reperfusion,25 the effectiveness and availability 
making it a promising clinical approach to alleviate I/R in-
jury as well.26,27 According to the available research findings, 
several pathways contribute to the survival of myocardial 
cells via helium pre- and post-conditioning are as follows.

Healthy Animal Models
Pre-conditioning by helium
Early pre-conditioning 
Reperfusion injury salvage kinase (RISK) pathway: In 2007, 
Pagel et al.28 provided the first evidence that helium was able 
to exert protective effects by pre-conditioning in ischemic 
myocardium and the underlying mechanism involves the ac-
tivation of the RISK pathway. The experiment showed that 
three 5-minute cycles of 70% helium significantly decreased 
infarct size among rabbits subjected to a 30-minute left 
anterior descending coronary artery occlusion and 3 hours 
reperfusion. Application of Wortmannin, PD 098059, and 
rapamycin, the selective inhibitors of phosphatidylinositol 
3-kinase (PI3K), extracellular signal-regulated kinase 1/2 
(Erk1/2), and 70-kDa ribosomal protein s6 kinase (p70s6K) 
were capable to abolish the cardioprotection induced by a 
brief, intermittent administration of helium. It further dem-
onstrated that atractyloside, a selective opener of mitochon-
drial permeability transition pore (mPTP), could counteract 
the protection induced by helium pre-conditioning. It means 
that RISK pathway and its proposed putative mPTP end-
effector have been intensely implicated in reduction of cell 
death during reperfusion.

Previous studies have revealed that activated pro-survival 
kinases from the RISK pathway regulate the transition state 
of the mPTP by inhibiting the activity of glycogen synthase 
kinase-3β (GSK-3β), preventing the degradation of apop-
totic protein p53 and favorably affecting pro- versus anti-
apoptotic protein balance.29 The GSK-3β or p53 inhibition-
mediated protection effects occur in the downstream from 
PI3K.30,31 Employing SB 216763 and pifithrin-α, the selec-
tive inhibitors of GSK-3β and p53 respectively, lowered 
the threshold of helium pre-conditioning in vivo through 
an mPTP-dependent mechanism. Pagel et al.32 therefore 
demonstrated that the inhibition of GSK-3β and p53 favor-
ably modulating mPTP and producing cardioprotection via 
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infarct size accompanied with a significant decrease in the 
mitochondrial respiratory control index (state3/state4) by 
increasing state4 respiration. The K-channel antagonist 
iberiotoxin not only completely eliminates helium-induced 
infarct size reduction but also reduces helium-induced 
respiratory control index. From the data we conclude that 
the cardioprotection helium provided is associated with 
the activation of the mKCa channel and mild mitochondrial 
uncoupling.18 Recent data further points out: the activation 
of mKCa channel is mediated by protein kinase-A (PKA) in 
helium-induced pre-conditioning.42 

Endothelial nitric oxide synthase (eNOS)-nitric oxide 
(NO): To our knowledge, eNOS acts as a downstream target 
of PI3K and AKT (protein kinase B), which can increase the 
formation of NO by phosphorylating Ser residues.43,44 As 
a major participant, NO plays a pivotal role via promoting 
the translocation of ε-isoform protein kinase C (PKC-ε) 
and direct activation of KATP in ischemia-induced or volatile 
anesthetic-induced cardioprotection.45,46 Paul et al.40 further 
provided the evidence that NO is involved in the helium-
induced pre-conditioning and helium directly increases 
the production of NO in a NOS-dependent manner, rather 
than rely on I/R injury. Pretreatment with non-selective 
NOS inhibitor, N-nitro-L-arginine methyl ester (L-NAME), 
reduced the infarct size induced by helium. Neither induc-
ible NOS (iNOS) antagonist aminoguanidine hydrochloride 
(AG) nor neuronal NOS (nNOS) inhibitor 7-nitroindazole 
(7-NI) had any effect on helium-induced cardioprotection. 
These studies suggest that eNOS can mediate helium pre-
conditioning in rabbits but iNOS or nNOS cannot do it.

Late pre-conditioning
Huhn et al.47 demonstrated for the first time that helium 
can induce late pre-conditioning and reduce infarct size by 
approximately 40% compared with non-preconditioned 
myocardium. Late pre-conditioning was performed by 
administering 70%, 50%, 30% and 10% helium respectively 
for 15 minutes during 24 hours before I/R. The results 
showed that 70%, 50% and 30% helium significantly 
reduced infarct size from 55% in controls to 40%, 34%, 
and 37%. In contrast, no reduction in infarct size was 
observed at 10% helium. In other words, cardioprotection 
is maximal with administration of one cycle of 30% 
helium. Nevertheless, repetitive 30% helium inhalation 
subsequently 2–3 days before I/R did not further enhance 
the cardioprotective effects. The results showed that helium-
mediated cardioprotection had a dose-dependent effect but 
not a time-dependent effect. The cyclooxygenase-2 (COX-
2) inhibitor NS-398 completely eliminated 30% helium-
mediated protection. It elucidated COX-2 is involved in 
helium-mediated late pre-conditioning.

RISK pathway in the helium-induced pre-conditioning.
G protein-coupled receptor ligands including δ1-opioid, 

adenosine, and bradykinin have been shown to activate pro-
survival signaling and play significant roles in classical isch-
emic pre- and post-conditioning.33 Pagel and co-workers34 
tested the hypotheses that morphine, a routinely applied 
opioid receptor in clinical practice, lowers the threshold 
of cardioprotection produced by helium in rabbits as well.

Mild intracellular acidosis: Persistent intracellular aci-
dosis was demonstrated to reduce myocardial damage by 
inhibiting mPTP formation during early reperfusion.35,36 Co-
hen et al.37 proved that transient maintenance of myocardial 
acidosis contributed to myocardium protective action during 
ischemic post-conditioning by ultimately maintaining the 
close state of mPTP. We can accordingly make assumptions 
based on the discoveries that cardioprotection induced by 
ischemic post-conditioning is dependent on not only the 
activation of pro-survival signaling kinase pathways but 
also the preservation of intracellular acidosis during early 
reperfusion. In order to test the hypothesis that intracellular 
pH is involved in helium pre-conditioning during early re-
perfusion, Pagel et al.38 testified the decreases in myocardial 
infarct size induced by intermittent, repetitive exposures to 
helium were thoroughly abolished by transient metabolic 
alkalosis during early reperfusion. And the mPTP inhibitor 
cyclosporin A restored helium-induced reductions in infarct 
size in the presence of alkalosis. Current observations have 
indicated that helium pre-conditioning may protect the 
myocardium against ischemic injury by maintaining mod-
est intracellular acidosis, preserving mPTP in its closed 
conformation and thereby attenuating myocardial necrosis.

Potassium channel: Previous investigation abundantly 
certified that reactive oxygen species (ROS) and mitochon-
drial adenosine triphosphate potassium (KATP) channels 
play complementary roles during ischemic or anesthetic 
pre-conditioning,39,40 but the roles of ROS and mitochon-
drial KATP channels in the process of helium preconditioning 
remain to be defined. Paul et al.41 verified that pretreatment 
with ROS scavengers N-acetylcysteine (NAC) and N-2 
mercaptoproprionyl glycine (2-MPG) abolished helium-
induced cardioprotection, suggesting that ROS participated 
in helium pre-conditioning in vivo. The research further 
indicated that the pretreatment with KATP channels blocker 
5-hydroxydecanoate (5-HD) completely abolished de-
creases in myocardial infarct size produced by helium, 
implicating the underlying function of mitochondrial KATP 
channels in this process as well.41

In addition to activation of KATP channels, another kind 
of K+ channels: Ca2+-sensitive potassium (KCa) channels 
(mKCa) seems to be complicated in the pre-conditioning. 
Studies showed helium-induced pre-conditioning reduced 
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ably decrease infarct size from 43% to 21%, whereas 30 
or 60 minutes of helium inhalation can hardly receive the 
similar profitable consequences. The protein levels of 
cytokine-induced neutrophil chemoattractant (CINC-3) 
and interleukin-1 beta (IL-1β) cytokine-induced were 
increased when employing 30 or 60 minutes of helium 
compared to control. The mRNA levels of CINC-3, IL-
1β, interleukin 6 (IL-6), and tumor necrosis factor alpha 
(TNF-α) were all increased when exposed to 30 minutes 
of helium in the myocardial tissue not directly subjected 
to I/R. Above findings turned out the effectiveness of the 
helium post-conditioning was intimately dependent on 
the duration of helium administration.58 It is not clear that 
whether the higher levels of inflammatory cytokines is re-
lated to helium conditioning or just the causative of nature.

Caveolins
Caveolae, as the small flask-like invaginations of the cel-
lular membrane, has been proven to be a subset of lipid 
rafts.33 And caveolins are structural proteins essential for 
the formation of caveolae. Caveolins contain three isoforms, 
including Cav-1, -2, -3, and a scaffolding domain (CSD), 
which plays a pivotal role in the regulation and localization 
of signaling molecules.59 The CSD is able to combined with 
several triggers, mediators of cardioprotective pathways 
known as RISK pathway proteins, such as PI3K, AKT, PKC 
isoforms, and ERK1/2.60 Caveolins are involved in mPTP 
transitioning through the binding of signaling molecules to 
the CSD.61 The three isoforms all are found in myocardial 
tissue62 and cardiac myocyte-specific over-expression of 
Cav-3 lead to the upregulation of survival kinases and 
therefore produced protection against I/R injury.63

In recent research, Flick et al.64 examined the role of 
the caveolin-associated RISK pathway in helium post-
conditioning-induced cardioprotection in rat heart so as to 
explore the possible underlying mechanism. The findings 
indicated that: 1) changes in Cav-1 and Cav-3 localization 
only after 15 minutes of helium post-conditioning and no 
difference after 5 or 30 minutes; 2) 15 minutes of helium 
post-conditioning significantly increased accumulation of 
Cav-1 and Cav-3 in the membrane fraction of ischemic car-
diac tissue but no difference in the mitochondrial fractions; 
3) The serum analysis did not present any differences in the 
serum for Cav-1 levels, whereas Cav-3 showed increased 
amounts within 15 minutes of helium post-conditioning; 
4) 15 minutes of helium post-conditioning activates RISK 
pathway kinases ERK1/2 and AKT. In conclusion the study 
points out that: 1) helium post-conditioning seems to induce 
protective effects shortly after the onset of reperfusion; 2) 
caveolins and RISK pathway might be crucially involved 
in helium post-conditioning mediated cardioprotection; 3) 

Noteworthily, the above experimental studies simply 
indicated diversified kinases and their targets participated 
in helium-induce pre-conditioning by using their specific 
or non-specific blocking agents, but the actual expression 
and activity of these kinases remain to be measured and 
proved.48 How helium might affect these pro-survival 
kinases and enzymes and thus mediate cardioprotection is 
yet completely unknown.1

Post-conditioning by helium
Altered gene expression  
Helium post-conditioning is the most clinically relevant and 
feasible form of conditioning, the investigation of which 
has becomes an area of scientist interest because ischemic 
events oftenoccur upon arrival of the patient in the hospi-
tal.49,50 In order to get more detailed mechanistic insights 
into the damage-ameliorating effects helium-induced dur-
ing I/R, Oei et al.51 investigated helium post-conditioning 
by assessing cell damage and exploring the differential 
expression patterns of genes related to apoptosis, necrosis 
and autophagy following ischemia. The results revealed that 
15 minutes of helium post-conditioning reduced the extent 
of I/R-induced cell damage and the beneficial effect was 
not observed under circumstance of 5 and 30 minutes of 
helium post-conditioning. Administration by 15 minutes of 
helium post-conditioning caused predominant up-regulation 
of genes involved in autophagy and inhibition of genes 
involved in apoptosis in comparison with I/R alone. It 
turned out that the reduction of cell damage that is at least 
partly induced by helium post-conditioning is mediated by 
the selective expression of genes that regulate programmed 
cell death.

Immune system
The underlying mechanisms of reperfusion-induced myo-
cardial cell dysfunction are oxidative stress and an inflam-
matory burst.52,53 The innate immune system in I/R injury 
is a double-edged sword as a severe inflammatory burst is 
detrimental to the survival of cells but the inhibition of the 
innate immune system is accompanied with adverse con-
sequences after myocardial infarction at the same time.54,55 
Several processes occur during early reperfusion such as 
leukocyte activation and recruitment,56 cytokine and reac-
tive oxygen species burst, and endothelial dysfunction are 
capable to influence cell viability.57

The influence of helium post-conditioning on infarct size 
and the I/R-induced immune response were explored by 
assessing the levels of protein and mRNA of pro-inflam-
matory cytokines. Rats inhaled 15, 30, or 60 minutes of 
70% helium during reperfusion respectively. The results 
elucidated that 15 minutes of helium inhalation observ-
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increased Cav-1 and -3 in the membrane fraction as well as 
the serum might indicate involvement of mitochondrial sig-
naling.64 The results are contrast to another study that helium 
inhalation decreased caveolin-1 and caveolin-3 expressions 
after 24 hours in mice heart.65 One recent research suggested 
helium treatment induced secretion of Cav-1 and -3 into the 
serum,66 which is consistent with increased Cav-3 levels 

in the serum of current in vivo model in rats. Even though 
above studies employed different species and time periods, 
the consequences illuminated that secreted caveolin might 
potentially produce crucial protective effect on account of 
its availability in the whole body.

The experimental data for helium-induced cardioprotec-
tion are summarized in Table 1.

Table 1: Summary of molecular mechanism of helium-induced pre-conditioning (PC) and post-conditioning (postC)

Type of protection Animals Mechanism Reference

EPC Rabbits Inhibition of PI3K, ErK1/2, p70s6K and the opener of mPTP blocked 
cardioprotection

Pagel et al.28

Rabbits Inhibitors of GSK-3β and p53 lowered the threshold through a mPTP dependent 
mechanism

Pagel et al.32

Rabbits ROS scavengers and KATP channels blockers abolished cardioprotection Pagel et al.41

Rabbits Morphine lowered the threshold of helium preconditioning Pagel et al.34

Rabbits Cardioprotection was abolished by transient alkalosis, restored by CsA Pagel et al.38

Rabbits Cardioprotection was abolished by inhibitor of eNOS but not inhibitor of iNOS or 
nNOS

Pagel et al.40

Rats He5 reduced infarct size, abolished by PKA blocker Huhn et al.42

LPC Rabbits COX-2 inhibitors abolished helium-induced cardioprotection Huhn et al.47

PostC Rats He15 reduced cell damage, but He5, H30 can not; He15 changed the expression 
of genes involved in cell pathways

Oei et al.51

Rats He15 reduced infarct size, H30 or He60 increased protein levels of CINC-3 and 
IL-1β ; He30 increased the mRNA levels of CINC-3, IL-1, IL-6, TNF-α

Oei et al.58

Rats He15 increased the secretion of Cav-3 and the activation of ErK1/2 and AKT/
PKB

Flick et al.64

Note: EPC: Early PC; LPC: late PC; PI3K: phosphatidylinositol 3-kinase; Erk1/2: extracellular signal-regulated kinase 1/2; p70s6k: 70-kDa ribosomal 
protein s6 kinase; GSK-3β: glycogen synthase 3β; p53: tumor protein 53; ROS: reactive oxygen species; KATP: mitochondrial adenosine triphosphate 
potassium channel; CsA: cyclosporin A; eNOS: endothelial nitric oxide synthase; iNOS: inducible nitric oxide synthase; nNOS: neuronal nitric oxide 
synthase; COX-2: cyclooxygenase-2; He(5/15/30/60): (5/15/30/60) minutes of helium inhalation; CINC-3: cytokine-induced neutrophil chemoattractant; 
IL-1β: interleukin-1β; IL-6: interleukin-6; TNF-α: tumor necrosis factor-α; Cav-3: caveolin-3; AKT/PKB: protein kinase B; PKA: protein kinase-A.

Disease animal models
All of above studies were carried out in healthy animals, 
whereas a majority of patients with heart disease are aged 
or suffer from multiple co-exiting chronic diseases such 
as hypertension and diabetes. The research in diseased 
animals is limited but still provides reliable guidance for 
us to convert basic experiments into clinical applications, 
the details are as follows.

Healthy Wistar and spontaneous hypertensive rats are 
both subjected to 25 minutes ischemia followed by 120 
minutes reperfusion. The two kinds of rats are subjected to 
70% helium inhalation for 15 minutes after index ischemia 
(PostC), or together with 15 minutes of helium 24 hours 
prior to ischemia (LPC + PostC), or a triple intervention 
with the addition of three repetitive, short cycles of 5 
minutes helium inhalation before ischemia (EPC + LPC + 
PostC) respectively. We can conclude from the results that 
a triple intervention of helium conditioning could protect 
hypertensive myocardium against I/R injury, whereas a 
single intervention could not. The consequences showed 
that the existence of a “threshold” in hypertensive cardiac 

muscle, in which the combination of helium stimuli 
provide a more intense stimulus than each stimulus alone. 
No increased phosphorylation of GSK-β or PKC-ε were 
observed in these groups exposed to helium conditioning, 
indicating that helium-induced conditioning is not involved 
in GSK-β or PKC-ε pathway in diseased animals.49

The aging or diseased myocardium can not be protected 
by a single stimulus of helium conditioning was certified 
in the aged Wistar rats or pre-diabetic obese Zucker rats. 
The protective capability of helium pre-conditioning is 
entirely abolished in the obese Zucker rat, a extensively 
used animal model for pre-diabetic conditions of type 2 
diabetes.50 An effect of helium on Erk1/2 and AKT phos-
phorylation was not detected and a depressed activity of 
GSK-3β was discovered in Zucker lean rats. Even through 
strengthening the stimulus of pre-conditioning could not 
overcome the threshold of reducing infarct size in the pre-
diabetic heart. This may showed that only a combination of 
different conditioning stimuli at various time points could 
exert protection function in diseased myocardium. From 
previous data we can concluded that helium could induce 
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mitochondrial uncoupling and generate pre-conditioning 
via the activation of mKCa channel. Nevertheless, above 
effects are eliminated in the senescent heart.42 The damage 
at the level of the mKCa channel or its upstream signaling 
molecules may explain the aging-related elimination of 
helium-induced pre-conditioning. Early research further 
indicated that the regulation of adenylylcyclase/PKA was 
a possible potential mechanism for the age-dependent loss 
of helium-induced cardioprotection.42

Clinical applications
The underlying mechanisms of cardioprotection helium-
induced have been investigated extensively in animal ex-
periments. However, mechanistic data from human studies 
are scarce.

In the latest clinical research, 125 patients undergoing 
coronary artery bypass grafting (CABG) surgery were 
allocated randomizedly to several groups include helium 
pre-conditioning via three cycles of helium inhalation for 
5 minutes and subsequent 5 minutes inhalation of oxygen-
enriched air, helium post-conditioning group receiving 15 
minutes of helium inhalation before release of the aortic 
cross clamp, or the combination of both. The investiga-
tions indicated that the inability of helium conditioning to 
produce cardioprotection and no any statistically significant 
difference was observed with respect to the activation of 
p38 mitogen activated protein kinase (p38 MAPK), ERK 
1/2 or levels of heat shock protein 27 (HSP27) and PKC-ε 
in human heart induced by helium pre-conditioning, post-
conditioning or the combination of both. The result was in 
contradiction with the anterior experiments we demenstrat-
ed. Further more, helium pre- and post-conditioning did not 
affect postoperative troponin release at various time points 
postoperatively in patients undergoing CABG surgery.67

In an ealier study, the patients subjected to similar CABG 
surgery were administered helium inhalation (79%) for 5 
minutes once for three sections prior to the start of cardiopul-
monary bypass (He-Pre) or at the time when the perfusion was 
initiated (He-PostC). The result showed He-Pre or He-Post 
alone, and even the combination of both did not generate ben-
eficial effects on the level of postoperatively troponin release.68

In one recent study investigating whether helium breathing 
in healthy volunteers affects the response capability of the 
human immune system in whole blood ex vivo, healthy 
male volunteers were administrated 30 minutes heliox (79% 
helium and 21% O2) or ordinary air respectively. Blood was 
withdrawn at various time points after helium breathing and 
subsequently received incubation with lipopolysaccharide 
(LPS), lipoteichoic acid (LTA), T-cell stimuli anti-CD3/
anti-CD28 (TCS) or RPMI (as control) for different duration 
including 0, 2, 4 and 24 hours. The pro-inflammatory 

cytokines, TNF-α, IL-1β, IL-6, and chemokine, interleukin-8 
(IL-8), were measured after stimulation with LPS and LTA. 
The study suggests that prolonged inhalation of helium did 
not produce any influence on the ability of the innate and 
early adaptive immune system to respond to immune stimuli. 
There were no differences among TNF-α, IL-1β, IL-6, IL-8, 
interferon-γ (IFN-γ) and interleukin-2 (IL-2) levels at different 
time points before and after helium inhalation in comparison 
to ordinary air inhalation.69 Consequently, helium can hardly 
exert influence on the responsiveness of immune system.

We systematically summarize the research advances 
obtained from a variety of basic experiments related to the 
helium-induced cardioprotection so as to get more compre-
hensive and concise knowledge. The relevant evidences are 
described as Figure 1.

Although above evidences have been sufficient to fully ex-
plain helium played a significant role in myocardial ischemic 
injury, whether helium inhalation would exert a negative 
influence on the human body caused more or less anxiety. For 
instance, when the body is completely enclosed in helium, 
helium with high thermal conductivity may cause heat loss 
and thus reduce metabolism, so the energy consumption of 
the body is lower in a helium-filled environment.70 What 
deserves our attention is that prolonging breathing by 75% 
of helium could induce hypothermia in rats.71 In addition, 
helium inhalation can caused distort voice because the den-
sity of helium is smaller than that of air and thus produce a 
higher resonance frequency to make the sound sharper.72 The 
above disadvantages may be a stumbling block for helium in 
the treatment of I/R injury, which makes people more hard to 
explore the most appropriate condition under which helium 
inhalation could minimize damage to the body.

Conclusion
From the above data we can conclude that multiple animal 
experiments suggest helium conditioning is associated with 
the inhibition of myocardial cell dysfunction and the reduc-
tion of myocardial I/R injury. The underlying mechanism 
of helium administration might involve the RISK pathway, 
the mPTP, the intracellular pH value, the caveolins and the 
immune system. The mechanisms by which these above-
mentioned triggers, modulators and transducers generate 
favorable effects have not been completely elucidated, and 
abundant clinical researches are essential to prove their 
effectiveness and safety so as to translate the experimental 
data into clinical circumstances. As for how to alleviate the 
possible harm of helium inhalation on the organism, perhaps 
looking for the most suitable concentration, duration, timing 
and pause interval of helium inhalation is a good choice. In 
summary, helium is a promising alternative to protect the 
myocardium against I/R injury in the future investigations.
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