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Anisotropic electrical properties can be found in biological tissues such as muscles and nerves. Conductivity tensor is a simplified
model to express the effective electrical anisotropic information and depends on the imaging resolution. The determination of the
conductivity tensor should be based on Ohm’s law. In other words, the measurement of partial information of current density and
the electric fields should be made. Since the direct measurements of the electric field and the current density are difficult, we use
MRI to measure their partial information such as B1 map; it measures circulating current density and circulating electric field.
In this work, the ratio of the two circulating fields, termed circulating admittivity, is proposed as measures of the conductivity
anisotropy at Larmor frequency. Given eigenvectors of the conductivity tensor, quantitative measurement of the eigenvalues can
be achieved from circulating admittivity for special tissue models. Without eigenvectors, qualitative information of anisotropy still
can be acquired from circulating admittivity. The limitation of the circulating admittivity is that at least two components of the
magnetic fields should be measured to capture anisotropic information.

1. Introduction

Noninvasive measurement of electrical properties for biolog-
ical tissues can be useful in EEG/MEG and electromagnetic
source imaging [1] and in providing diagnostics information
about the physiological and pathological states of the tissues
[2–5]. For isotropic conductivity, many approaches have been
developed to measure the conductivity at low frequencies
and at Larmor frequencies [6]. At low frequencies below
1 kHz, Magnetic Resonance Electrical Impedance Tomogra-
phy (MREIT) [7] can probe the conductivity distribution. At
Larmor frequencies of about 100MHz, Magnetic Resonance
Electrical Property Tomography (MREPT) [8, 9] measures
both electric conductivity and permittivity distributions
using measurements of positively rotating magnetic fields
generated by transmit RF coil, 𝐵1+ maps, fromMRI.

Microscopically, the conductivity of the biological tissues
could be isotropic. However, depending on the imaging
resolution, the conductivity of an imaging voxel can be

anisotropic.Macroscopically, in other words, if several tissues
with different electrical properties are combined in the
imaging voxel, the conductivity of the imaging voxel differs
when measured in different directions so that it becomes
anisotropic. Especially in biological tissues, anisotropic elec-
trical conductivity can be found in muscles and nerves [2–
5]. The conductivity tensor is a simplified model with three
eigenvectors and three eigenvalues which can include these
anisotropic cases.

The eigenvectors of the conductivity tensor at low fre-
quencies (<1 kHz) can be inferred from a prior knowledge of
the object or the diffusion tensor imaging [1, 10]. However,
at Larmor frequency of about 100MHz, there have been a
few studies on measuring three eigenvectors and eigenvalues
of the conductivity tensor. Recently, Katscher et al. [11] pro-
posed a way to estimate partial information of conductivity
anisotropy especially in the special case where twominimum
eigenvalues are almost equal to zero. In this work, based on
Katscher’s approach [11], we generalized and consideredmore
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Figure 1: (a) Numerical phantom with anisotropic effective admittivity by stacking periodic binary medium, (b) placement of the imaging
object inside the RF coil.

Straw phantom 1 Straw phantom 2

(a)

Saline water Straw phantom 1 Straw phantom 2

(b)

Figure 2: (a) Two straw phantoms before filling saline water, (b) three phantoms filled with saline water.

possible cases. Based on numerical phantom simulations and
phantom experiments, the performance was evaluated and
the limitations and future directions were proposed.

2. Materials and Methods

2.1. Admittivity Tensor Model. Admittivity tensor denoted
by 𝜅(r) = 𝜎(r) + 𝑖𝜔𝜖(r) is a simplified model for the
electrical anisotropic information at the angular frequency𝜔,
where𝜎(r) and 𝜖(r) are conductivity and permittivity tensors,
respectively.

The admittivity tensor can be representedwith six param-
eters:

𝜅(r) = (

𝜅
𝑥𝑥
(r) 𝜅
𝑥𝑦
(r) 𝜅
𝑥𝑧
(r)

𝜅
𝑥𝑦
(r) 𝜅
𝑦𝑦
(r) 𝜅
𝑦𝑧
(r)

𝜅
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𝑦𝑧
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(r)
) . (1)

Expressing its eigenvectors v
1
, v
2
, v
3
(unit vectors) and its

corresponding eigenvalues 𝜅
1
, 𝜅
2
, 𝜅
3
, the admittivity tensor

can be also expressed as
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1
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2
v
3
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We should note that three equations of Ohm’s law J = 𝜅E
alone are insufficient to identify six unknown components

of 𝜅. However, the eigenvectors of the conductivity tensor
𝜅 could be estimated from prior knowledge of the object or
can be determined by measuring the diffusion tensors [1]
usingMRI. Under the assumption that the eigenvectors of the
admittivity tensor are known a priori, using the eigenvectors
v
1
, v
2
, v
3
of the matrix 𝜅, the conductivity tensor can be

decomposed as

3
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(3)

where 𝐽
𝑗
= J ⋅ v
𝑗
and𝐸
𝑗
= E ⋅ v

𝑗
. In other words, 𝐽

𝑗
(r) = 𝜅

𝑗
𝐸
𝑗
(r).

2.2. Reconstruction of Admittivity Anisotropy Using Measured
Magnetic Fields: Circulating Admittivity. Assume that the
three eigenvectors are known. The effective admittivity, 𝜅 =
𝜎 + 𝑖𝜔𝜖, in a voxel can be determined from Ohm’s law as
follows:

𝜅
𝑗
∫
Voxel

E(r) ⋅ v
𝑗
𝑑r = ∫

Voxel
J(r) ⋅ v

𝑗
𝑑r. (4)

However in MRI, E and J are hard to measure. Instead,
partial knowledge of the magnetic fields H can be acquired
from 𝐵1 mapping techniques [12–15]. Katscher et al. [11]
extended the direct inversionmethod inMREPT [9] and pro-
posed a way to estimate anisotropy of 𝜅 using the relationship
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(a) True 𝜎 in microscale
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(b) Effective 𝜎
𝑥𝑥

in macroscale

20 40 60 80 100 120

20

40

60

80

100

120

140

160

180 0

1

2

3

4

5

6

(S
/m

)

𝑧

𝑦

(c) Effective 𝜎
𝑦𝑦

in macroscale
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(d) True 𝜖
𝑟
in microscale
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(e) Effective 𝜖
𝑟,𝑥𝑥

in macroscale
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(f) Effective 𝜖
𝑟,𝑦𝑦

in macroscale

Figure 3: (a) and (d) depict the true conductivity and the relative permittivity values in the microscopic scale. (b)–(f) illustrate the true
effective 𝜎

𝑥𝑥
, 𝜎
𝑦𝑦
, 𝜖
𝑥𝑥
, and 𝜖

𝑦𝑦,
respectively.

between circulating currents and circulating electric fields
over a surface, which can be estimated from the measured
magnetic fields.

From time-harmonic Maxwell Equations, the relation-
ship among the current density, electric fields, and the
magnetic fields can be expressed as

J(r) = ∇ ×H(r) , ∮
𝜕𝐴(n)

E ⋅ 𝑑l = −𝑖𝜔𝜇∫
𝐴(n)

H ⋅ 𝑑s, (5)

where 𝐴(n) is a surface whose normal vector is n.
Based on the work by Katscher et al. [11], we define

the circulating admittivity, 𝜅̃, as the ratio of the circulating
currents and the circulating electric fields over the surface
𝐴(n) with rotating the normal vector n:

𝜅̃ (𝐴(n)) : =
∮
𝜕𝐴(n) J ⋅ 𝑑l

∮
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= −
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=
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𝑖𝜔𝜇

∫
𝐴(n) ∇

2H ⋅ 𝑑s

∫
𝐴(n)H ⋅ 𝑑s

,

(6)

where s is parallel to the normal vector n. In (6), the
relationship between the curl integral of ∇ × H and the
surface integral of ∇2H hold for homogeneous region of
admittivity and can generate artifacts at tissue boundaries
[16].

In this work, we investigated the relationship between
the circulating admittivity and the admittivity tensor for
simple cases. First, if the admittivity tensor is isotropic,
the circulating admittivity is also isotropic and equal to
the isotropic admittivity. Second, if two eigenvalues of the
admittivity tensor are the same, 𝜅

2
= 𝜅
3
, the eigenvalue can

be determined from the circulating admittivity over a surface
with a normal vector, v

1
, perpendicular to the eigenvectors

corresponding to the two eigenvalues, 𝜅
2
, 𝜅
3
. That is

𝜅̃ (𝐴(v
1
)) :=

∮
𝜕𝐴(v
1
)

J ⋅ 𝑑l

∮
𝜕𝐴(v
1
)

E ⋅ 𝑑l
=

∮
𝜕𝐴(v
1
)

(𝜅
2
𝐸
2
v
2
+ 𝜅
3
𝐸
3
v
3
) ⋅ 𝑑l

∮
𝜕𝐴(v
1
)

(𝐸
2
v
2
+ 𝐸
3
v
3
) ⋅ 𝑑l

= 𝜅
2
,

(7)



4 Computational and Mathematical Methods in Medicine

20 40 60 80 100 120

20

40

60

80

100

120

140

160

180 0

1

2

3

4

5

6

(S
/m

)

𝑧

𝑦

(a) 𝜎̃(𝐴(ŷ))
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(b) 𝜎̃(𝐴(x̂))
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(c) 𝜖̃
𝑟
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Figure 4: Circulating conductivity and relative permittivity derived from 𝐻
+ and𝐻−: (a) 𝜎̃(𝐴(ŷ)), (b) 𝜎̃(𝐴(x̂)), (c) 𝜖̃

𝑟
(𝐴(ŷ)), and (d) 𝜖̃

𝑟
(𝐴(x̂)).

since the normal vector v
1
is perpendicular to the vector 𝑑l

over a line 𝜕𝐴(v
1
) and the two eigenvalues are the same 𝜅

2
=

𝜅
3
.
In addition, as it is considered in [9], if two smaller

eigenvalues of the admittivity tensor, 𝜅
2
, 𝜅
3
, are equal to

zero, the largest eigenvalue, 𝜅
1
, can be determined from the

circulating admittivity directly:

𝜅̃ (𝐴(n)) =
∮
𝜕𝐴(n) 𝜅𝑗1𝐸1v1 ⋅ 𝑑l

∮
𝜕𝐴(n) 𝐸1v1 ⋅ 𝑑l

= 𝜅
1

∮
𝜕𝐴(n) 𝐸1v1 ⋅ 𝑑l

∮
𝜕𝐴(n) 𝐸1v1 ⋅ 𝑑l

= 𝜅
1
.

(8)

As a combination of last two cases, if the largest eigen-
value is much bigger than the two smaller eigenvalues of the
admittivity tensor and the two smaller eigenvalues are the
same, by measuring the circulating admittivity for several
directions of the normal vector, all three eigenvalues could
be estimated.

2.3. Unknown Directions of Eigenvectors: Effective Admittivity
Map (EAM) and Circulating Admittivity Map (CAM). In the
previous section, we determined the admittivity tensor under
the assumption that the eigenvectors of the admittivity tensor
were known a priori. Evenwithout the prior knowledge of the
eigenvectors, we can still provide a qualitative measurement
of anisotropy by computing the dependency on the normal
vector, n, in (6). For a qualitative measurement of the
anisotropy, we define the effective admittivity map, 𝜅(r,n),
and the circulating admittivity map, 𝜅̂(r,n), that describe the
distributions of effective admittivity and circulating admittiv-
ity over the normal vector, respectively:

𝜅 (r,n) :=
∫J(r) ⋅ n 𝑑r
∫E(r) ⋅ n 𝑑r

,

𝜅̂ (r,n) := 1

𝑖𝜔𝜇

∫∇
2H (r) ⋅ n 𝑑r

∫H (r) ⋅ n 𝑑r
.

(9)
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(𝐴(ŷ))

20 40 60 80 100 120

20

40

60

80

100

120

140

160

180 0

50

100

150

200

𝑧

𝑦

(d) 𝜖̃
𝑟
(𝐴(x̂))

Figure 5: Circulating conductivity and relative permittivity derived from only𝐻+ : (a) 𝜎̃(𝐴(ŷ)), (b) 𝜎̃(𝐴(x̂)), (c) 𝜖̃
𝑟
(𝐴(ŷ)), and (d) 𝜖̃

𝑟
(𝐴(x̂)).

As shown in Figure 7, in a later section, the effective
admittivity map (EAM) and the circulating admittivity map
(CAM) can be drawn with the use of two angles, 𝜃

𝑥𝑦
and 𝜃
𝑥𝑧

which describe the direction of the normal vector.That is, the
normal vector was initially located at the positive 𝑧-axis, was
rotated along 𝑦-axis by 𝜃

𝑥𝑧
, and then was rotated along 𝑧-axis

by 𝜃
𝑥𝑦
.

2.4. Numerical Simulation: Numerical Phantom Model with
Anisotropic Effective Admittivity. For numerical evaluation,
a numerical phantom with anisotropic effective admittivity
can be generated using periodic binary medium. According
to homogenization theory, anisotropy can be derived from
pointwise admittivity, 𝜅(r), that is distributed periodically
with respect to the 𝑦-variable:

𝜅 (r) := {
𝜅
1
= 𝜎
1
+ 𝑖𝜔𝜖
1

if 0 ≤ 𝑁𝑦 − [𝑁𝑦] < 𝑐,

𝜅
2
= 𝜎
2
+ 𝑖𝜔𝜖
2

if 𝑐 ≤ 𝑁𝑦 − [𝑁𝑦] < 1,
(10)

where 0 < 𝑐 < 1 is a constant depending on the binary
medium,𝑁 is a large positive integer, and [𝑁𝑦] is the largest
integer not greater than𝑁𝑦.

In this numerical experiment the imaging subject is the
box Ω := [−50, 50] × [−50, 50] × [−80, 80]mm3. We divided
the domainΩ into two subdomainsΩ0 := {r ∈ Ω : 𝑧 < 0} and
Ω
𝑎

:= {r ∈ Ω : 𝑧 > 0}. In Ω0 the admittivity is homogeneous
with the value 𝜅 = 1 + 𝑖𝜔𝜖, where the permittivity 𝜖 = 80𝜖

0

with 𝜖
0
the permittivity in the free space. In Ω

𝑎 33 layers
were stacked alternatively with the thickness of 2mm, the
admittivity value 𝜅

1
= 5 + 𝑖𝜔𝜖 and the thickness of 1mm, and

the admittivity value 𝜅
2
= 0.3+ 𝑖𝜔𝜖 in (10) with setting 𝑐 to be

2/3. Figure 1(a) shows the construction of the imaging object.
Driven by a birdcage coil at 3T (𝜔 = 128MHz) as

shown in Figure 1(b), the electric fields, the magnetic fields,
and the current densities in microscale were calculated using
finite-difference time domain (FDTD) numerical simulations
using REMCOM (REMCOM, State College, PA) with the
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Figure 6: Circulating conductivity derived with only phase of𝐻+, (a) 𝜎̃(𝐴(ŷ)), (b) 𝜎̃(𝐴(x̂)).

resolution of 1mm × 1mm × 1mm. Then, to determine
the effective admittivity in macroscale, that is, the ratio of
the ensemble mean current density to the ensemble mean
electrical field, three-dimensional Gaussian filter with the
size of 17 × 17 × 17mm3 and the standard deviation of
2.0mm,which increases the effective voxel size from (1mm)3
to (5mm)3, was applied to the simulated fields.

2.5. MRI Experiments. Two phantoms with anisotropic
admittivity were generated using straws as shown in Figure 2.
As a comparison, onewater phantomwith isotropic admittiv-
ity was made without straws. Three phantoms were cylindri-
cal with the height of 120mm and the radius of 50mm. The
diameters of the straws are 12mm for straw phantom 1 and
6mm for straw phantom 2. All three phantoms were filled
with the saline water of 0.35M NaCl concentration as shown
in Figure 2.

Using a single-channel transreceive head coil, MR images
weremeasured.Thephantomswere located at the isocenter of
the coil with the straw orientation of left-right. Only the phase
of 𝐻+ was measured and the circulating conductivity was
determined by the phase-based approximation in MREPT
[17]. Three-dimensional balanced steady-state free proces-
sion (bSSFP) was acquired with resolution of 3mm×3mm×

3mm,field of view (FOV) of 384mm×192mm×144mm, and
image size of 128×64×48.The other imaging parameters were
the flip angle of 30 degrees, TE of 1.8ms, TR of 3.6ms, and the
scan time of 5 minutes with 27 averages. All measurements
were performed on a 3T Siemens TimTrio scanner.The phase
of𝐻+ was estimated as the half of the measured phase of the
image [17].

3. Results

3.1. The Effective Admittivity of the Numerical Phantom.
Based on (4), by dividing the filtered current densities and

filtered electric fields, the effective anisotropic material can
be acquired. Figures 3(a) and 3(d) illustrate the conduc-
tivity and the relative permittivity in microscale of 1mm
resolution in the slice at {𝑥 = 10mm} that we set in
this simulation, respectively. The effective conductivities in
macroscale 𝜎

𝑥𝑥
, 𝜎
𝑦𝑦

are shown in Figures 3(b) and 3(c) and
the effective relative permittivities are shown in Figures 3(e)
and 3(f). For the subdomain of homogeneous tissue, Ω0,
the conductivity and relative permittivity are constant and
the same microscopically and macroscopically. The effective
conductivity and relative permittivity are almost constant for
the subdomain of the alternating layers of tissues, Ω𝑎 except
some distortions, we think, due to simulation errors. Since
in this experiment 𝜅

𝑧𝑧
is the same as 𝜅

𝑥𝑥
, 𝜅
𝑧𝑧

was not shown
here.

3.2. Observation of Anisotropy Using Circulating Admittivity
(6). In MRI, only partial information of the magnetic fields
can bemeasured.Using conventional single-transmit channel
MR scanner, the circularly polarized component of the
magnetic fields, 𝐻+ := (𝐻

𝑥
+ 𝑖𝐻
𝑦
)/2, can be measured but

the other two components,𝐻− := (𝐻
𝑥
− 𝑖𝐻
𝑦
)/2,𝐻

𝑧
, are hard

to measure. Using a specialized scanner, parallel transmit
system, the anticircularly polarized component could be
measured [15]. Here, we considered two cases: (1) using
𝐻
+ and 𝐻

−, (2) using only 𝐻
+. For the computation of

the circulating admittivity using a partial information of
the magnetic fields, the unmeasured magnetic fields were
assumed to be zero.

Figure 4 illustrates the values of circulating conductivity
and the relative permittivity, 𝜎̃(𝐴(n)) := R(𝜅̃(𝐴(n)) and
𝜖̃
𝑟
(𝐴(n)) := I(𝜅̃(𝐴(n)))/𝜔𝜖

0
, with 𝐻

+ and 𝐻
− at the slice,

𝑥 = 10mm. The surface 𝐴(n) for the integration (6) was
chosen as a plane with the size of 5 × 5 × 1 pixels3 and the
normal vector, n, of x̂, ŷ. In this case, the two components
of the magnetic fields, 𝐻+ and 𝐻

−, were assumed to be
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(c) Straw phantom 1: 𝜎̃(𝐴(x̂))
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(d) Straw phantom 1: 𝜎̃(𝐴(ŷ))
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(e) Straw phantom 2: 𝜎̃(𝐴(x̂))
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(f) Straw phantom 2: 𝜎̃(𝐴(ŷ))

Figure 7: Experiment results: circulating conductivity of phantoms with measured𝐻+, Coronal Slice, (a) 𝜎̃(𝐴(x̂)) of saline water, (b) 𝜎̃(𝐴(ŷ))
of saline water, (c) 𝜎̃(𝐴(x̂)) of straw phantom 1, (d) 𝜎̃(𝐴(ŷ)) of straw phantom 1, (e) 𝜎̃(𝐴(x̂)) of straw phantom 2, (f) 𝜎̃(𝐴(ŷ)) of straw phantom
2.

known and used to reconstruct the circulating admittivity.
As derived in (7), the circulating admittivity with the normal
vector of ŷ, which is perpendicular on the two eigenvectors
of the effective admittivity tensor with the same eigenvalues,
is close to the effective admittivity in x̂ direction except at the
tissue boundaries. For the normal vector of x̂, the circulating
admittivity is a weighted average of the effective admittivities,
𝜅
𝑥𝑥
, 𝜅
𝑦𝑦
, 𝜅
𝑧𝑧
. Thus, the circulating conductivity with the

normal vector of x̂ is bigger than the effective conductivity

corresponding to the smallest eigenvalue of the effective
admittivity tensor, 𝜎

𝑦𝑦
, shown in Figure 3(c).

However, as shown in Figures 5 and 6, if only one
component, 𝐻+, is available, the dependency on the normal
vector was lost in the circulating admittivity.

The circulating conductivities were determined from
phantom experiments in which only the phase of 𝐻+ is
measurable. As shown in Figure 7, the dependency on the
normal vector was also lost in the experimental results.
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Figure 8: Effective conductivity maps and circulating conductivity maps of one anisotropic voxel and one isotropic voxel: (a) effective
conductivity map of anisotropic voxel, 𝑥 = 10mm, 𝑦 = 0mm, 𝑧 = 40mm, (b) circulating conductivity map of anisotropic voxel, 𝑥 = 10mm,
𝑦 = 0mm, 𝑧 = 40mm, (c) effective conductivity map of isotropic voxel, 𝑥 = 10mm, 𝑦 = 0mm, 𝑧 = −40mm, (d) circulating conductivity
map of isotropic voxel, 𝑥 = 10mm, 𝑦 = 0mm, 𝑧 = −40mm.

However, the decrease of the conductivity due to the plastic
straws was observed.

3.3. Distribution of the Admittivity: Circulating Admittivity
Map (CAM). Using simulated magnetic fields, 𝐻+ and 𝐻−,
the circulating admittivity map (CAM) was computed for
the numerical phantom. As a comparison, the effective
conductivitymapwas also computed using simulated current
density and electric fields.The 𝜃

𝑥𝑦
and 𝜃
𝑥𝑧
, which determined

the direction of the normal vector n, varied from −180
∘

∼

180
∘ and 0

∘

∼ 180
∘ by one degree. Figure 8 shows the

effective conductivity maps, the real part of the EAM, and the
circulating conductivity maps, the real part of the CAM, of

one anisotropic voxel located at 𝑥 = 10mm, 𝑦 = 0mm, and
𝑧 = 40mm and one isotropic voxel located at 𝑥 = 10mm,
𝑦 = 0mm, and 𝑧 = −40mm.

For the isotropic voxel, the values of the effective con-
ductivity map and circulating conductivity map were equal
to the conductivity of the tissue. For the anisotropic voxel,
the circulating conductivity map is also uniform along the
direction 𝜃

𝑥𝑧
since only𝐻+ and𝐻− were used. In both effec-

tive conductivitymaps and circulating conductivitymaps, the
direction thatmaximizes orminimizes the conductivity value
does notmatchwith any eigenvector of the admittivity tensor.
Thus, with CAM alone, the eigenvectors of the admittivity
tensor may be hard to determine and thus a quantitative
measurement of the eigenvalues may be hard.
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Figure 9: The distribution of the circulating conductivity: (a) the maximum values for the circulating conductivity maps, (b) the minimum
values for the circulating conductivitymaps, (c) the ratio of themaximum to theminimum, (d) the ratio of two eigenvalues in the conductivity
tensor.

For a qualitative analysis, at each voxel, the maximum
value, the minimum value, and the ratio of the maximum
to the minimum of the circulating conductivity maps were
computedwith𝐻+ and𝐻−. As shown in Figure 9, in this case,
the maximum values were almost constant over anisotropic
tissues, but the minimum values were not constant. The ratio
of the maximum to minimum, which could be used as a
qualitative measurement of the anisotropy, was not constant
over anisotropic tissues and was smaller than the ratio of the
maximum eigenvalue, 𝜎

𝑥𝑥
, to the minimum eigenvalue, 𝜎

𝑦𝑦
,

of the conductivity tensor; that is, using CAM, the contrast
between isotropic and anisotropic tissues was reduced. How-
ever, CAMstill can separate anisotropic tissues from isotropic
tissues without knowing the eigenvectors of the admittivity
tensor.

4. Discussion

Conductivity tensor is a simplified anisotropy model. Given
three eigenvectors, the tensor can be estimated if the electric
current densities and electric fields can be measured. In
MRI, however, electric fields are hard to be measure without
knowing or estimating the conductivity and permittivity of
tissues. In this work, using MREPT formulae, the circulating
admittivity is proposed as ameasure to analyze the anisotropy
of the tissues. Circulating admittivity was defined as the
ratio of circulating current densities to the circulating electric
fields, which can be determined from the magnetic fields.
We did not fully investigate, but we derived the relation-
ship between the admittivity tensor for special cases. Using
numerical phantom simulations, we verified the relationship
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Figure 10: Simulation results: circulating conductivity of simulated phantoms withmeasured𝐻+, coronal slice: (a) initial position using both
magnitude and phase of𝐻+, (b) 90∘ rotated using both magnitude and phase of𝐻+, (c) initial position using only the phase of𝐻+, and (d)
90
∘ rotated using only the phase of𝐻+.

for the first two cases: (1) isotropic tissues and (2) two
eigenvalues of the admittivity tensor are the same. As a future
work, more realistic cases would be considered.

In this work, to deal with unknown eigenvectors, the
circulating admittivity map (CAM) was proposed as a qual-
itative measure. The ratio of the maximum to the minimum
conductivity was reduced but still anisotropic tissues can be
separated from isotropic tissues.

In the conventional single-transmit channel MR scanner,
the circularly polarized magnetic field,𝐻+, can be measured
by 𝐵1 mapping methods, but the other two components
are hard to measure. If only one measurement of magnetic
fields, 𝐻+ is available, the anisotropic information is lost in
the estimate of the circulating admittivity. Even if only one
component of the magnetic fields, 𝐻+, can be measured,
the anisotropic information can be acquired by measuring

several𝐻+ by rotating the object with respect to transmit coil.
In Figures 10 and 11, the circulating conductivities only with
𝐻
+ for two positions of the object, that is, initial position

and 90
∘ rotated, are shown. For simulation data shown in

Figure 10, the circulating conductivities were computed with
both magnitude and phase of 𝐻+ or with only phase of 𝐻+.
For experimental data shown in Figure 11, only the phase of
the𝐻+ was used. For isotropic tissues, circulating conductiv-
ity was not related to the position, but for anisotropic tissues,
the circulating conductivity at the center of the phantom
was changed. At the boundary of the phantom, very high or
negative, especially at the top and the bottom of the phantom
after rotating 90

∘, conductivity values were observed. We
think that boundary artifacts [16] created at the air-water
boundary were spread inside the phantom due to the spatial
filtering used to reduce the noise in the conductivity estimates
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Figure 11: Experiment results: circulating conductivity of phantoms with measured 𝐻+, coronal slice, (a) saline water: initial position, (b)
saline water: 90∘ rotated, (c) straw phantom 1: initial position, (d) straw phantom 1: 90∘ rotated, (e) straw phantom 2: initial position, (f) straw
phantom 2: 90∘ rotated.

and thus our conductivity estimates at the boundary of the
phantom were not reliable.

5. Conclusions

Noninvasive measurement of conductivity tensor at Larmor
frequency could be achieved using MRI. Using measured 𝐵1
maps from MRI, circulating current density and circulating
electric fields can be estimated. In this work, the ratio of the

two, called circulating admittivity, was proposed as measure
of the conductivity anisotropy at Larmor frequency. Given
eigenvectors of the conductivity tensor, quantitativemeasure-
ment of the eigenvalues can be achieved from circulating
admittivity for special tissue models. Without eigenvectors,
qualitative information of anisotropy still can be acquired
from the distribution of the circulating admittivity. The
limitation of the circulating admittivity is that the anisotropic
information is lost if only one component of the magnetic
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field is available. At least, an additional acquisition, either
by rotating the object or some other scheme, needs to be
performed for anisotropic information.
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