
 International Journal of 

Molecular Sciences

Article

Stability and Fermentability of Green Tea Flavonols
in In-Vitro-Simulated Gastrointestinal Digestion and
Human Fecal Fermentation

Chan-Su Rha 1 , Hyunbin Seong 2, Young Sung Jung 3 , Davin Jang 4 , Jun-Gu Kwak 2,
Dae-Ok Kim 3,4,* and Nam Soo Han 2,*

1 Vitalbeautie Research Division, Amorepacific R&D Center, Yongin 17074, Korea; teaman@amorepacific.com
2 Brain Korea 21 Center for Bio-Resource Development, Division of Animal, Horticultural, and Food Sciences,

Chungbuk National University, Cheongju 28644, Korea; adsm06@naver.com (H.S.);
kwakjg93@naver.com (J.-G.K.)

3 Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Korea;
chembio@khu.ac.kr

4 Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Korea; davin1031@khu.ac.kr
* Correspondence: DOKIM05@khu.ac.kr (D.-O.K.); namsoo@cbnu.ac.kr (N.S.H.);

Tel.: +82-31-201-3796 (D.-O.K.); +82-43-261-2567 (N.S.H.)

Received: 14 November 2019; Accepted: 22 November 2019; Published: 24 November 2019 ����������
�������

Abstract: Flavonols, the second most abundant flavonoids in green tea, exist mainly in the form
of glycosides. Flavonols are known to have a variety of beneficial health effects; however, limited
information is available on their fate in the digestive system. We investigated the digestive stability
of flavonol aglycones and glycosides from green tea under simulated digestion and anaerobic
human fecal fermentation. Green tea fractions rich in flavonol glycosides and aglycones, termed
flavonol-glycoside-rich fraction (FLG) and flavonol-aglycone-rich fraction (FLA) hereafter, were
obtained after treatment with cellulase and tannase, respectively. Kaempferol and its glycosides were
found to be more stable in simulated gastric and intestinal fluids than the derivatives of quercetin
and myricetin. Anaerobic human fecal fermentation with FLG and FLA increased the populations of
Lactobacilli spp. and Bifidobacteria spp. and generated various organic acids, such as acetate, butyrate,
propionate, and lactate, among which butyrate was produced in the highest amount. Our findings
indicate that some stable polyphenols have higher bioaccessibilities in the gastrointestinal tract and
that their health-modulating effects result from their interactions with microbes in the gut.

Keywords: bioaccessibility; flavonol; green tea; in vitro digestion; in vitro fermentation; short-chain
fatty acid

1. Introduction

Green tea is the most commonly consumed beverage in the world and contains a wide range of
bioactive compounds, including caffeine and flavan-3-ols (catechins) [1,2]. Green tea leaves consist
of about 30% polyphenols based on dry weight, of which ≈15% are flavan-3-ols, and less than 1%
are flavonols and flavones [3,4]. Many studies on the beneficial health effects of green tea, mainly
of flavan-3-ols, have been published [1,5]. The flavonols and flavones in tea are mainly found as
glycosides, and their types and compositions vary with tea type and cultivar [2,3]. Aglycones of
flavonols such as kaempferol, myricetin, and quercetin as well as their glycosides have comparable
or higher antioxidant capacities than that of vitamin C [6]. Moreover, flavonols provide health
benefits such as anticancer [7] and antihyperlipidemic effects [8], and flavonol intake improves a
variety of biomarkers of cardiovascular disease risk, such as total cholesterol, low-density lipoprotein,

Int. J. Mol. Sci. 2019, 20, 5890; doi:10.3390/ijms20235890 www.mdpi.com/journal/ijms

http://www.mdpi.com/journal/ijms
http://www.mdpi.com
https://orcid.org/0000-0003-4791-1314
https://orcid.org/0000-0001-5589-3721
https://orcid.org/0000-0002-4532-7694
https://orcid.org/0000-0001-9262-1354
http://dx.doi.org/10.3390/ijms20235890
http://www.mdpi.com/journal/ijms
https://www.mdpi.com/1422-0067/20/23/5890?type=check_update&version=2


Int. J. Mol. Sci. 2019, 20, 5890 2 of 15

and triacylglycerol levels [9]. Furthermore, the bioavailability of flavan-3-ols can be modulated by
other phenolics such as genistein, luteolin, and quercetin [10]. Flavan-3-ol bioavailability decreases
after methylation by catechol-O-methyltransferase in the body [11]. Accordingly, quercetin has been
reported to increase the uptake of flavan-3-ols in models in vitro and in vivo, partly due to its inhibition
of catechol-O-methyltransferase [12].

Flavonol aglycones contain different glycosidic bonds. Furthermore, polyphenolic structures and
compositions vary by plant source, influencing the bioaccessibility and bioavailability of flavonol
glycosides [13,14]. Attaching the same sugar at different positions of a quercetin aglycone does not
affect the bioavailabilities of the resulting glycosides in humans [15]. However, the bioavailability
of quercetin diglycoside in humans is lower than that of quercetin monoglycoside [14], implying
that more complex flavonol glycosides are less hydrolyzed under digestive conditions. Quercetin
glycosides are efficiently hydrolyzed to quercetin byβ-glucosidases in the small intestine [16]. Quercetin
4′-glycoside is catabolized through ring fission by intestinal bacteria into phenolic acids, such as
3,4-dihydroxyphenylacetic acid, which has higher biological activities, such as antioxidant effects,
than its parent molecule [17]. Furthermore, it has been reported that a relatively large portion of
ingested rutin remains intact in the ileal fluid and that rutin metabolism occurs mainly via microbial
biotransformation in the large intestine [18].

Many studies on the fates of quercetin, isoquercitrin, and rutin as common flavonol aglycones
and glycosides by microbial degradation have been reported [19,20]. Furthermore, Simons et al. [21]
measured the degradation rate of some flavonoids fermented in vitro with human feces, but none
of the flavonol glycosides were considered. Moreover, the metabolic fates of flavonoids under the
actions of various microbes in the human microbiota working on C-ring fission of dietary flavonoids
have been studied [22]. However, information on the changes during digestion of green tea flavonol
glycosides having various glycosidic linkages remains limited.

Therefore, we investigated the digestive stabilities of the flavonol-glycoside-rich fraction (FLG)
and flavonol-aglycone-rich fraction (FLA) of green tea extracts in various simulated gastrointestinal
fluids. We also evaluated the changes in the microbial populations and short-chain fatty acid (SCFA)
profile upon anaerobic human fecal fermentation in vitro with FLG and FLA. Identification and
quantification of flavonols in FLG and FLA under different digestive conditions were performed using
high-performance liquid chromatography (HPLC).

2. Results and Discussion

2.1. Stabilities of Kaempferol, Myricetin, and Quercetin in In Vitro Digestion

Three flavonol aglycones (kaempferol, myricetin, and quercetin) were subjected to four simulated
digestive environments—one gastric and three intestinal (Table 1). Kaempferol shows no significant
(p > 0.05) changes in the simulated gastric fluid (SGF), but significant (p < 0.05) changes in the simulated
intestinal fluid (SIF) conditions used in this study (Table 1). Kaempferol is more stable than the two
others in the SIF conditions. Myricetin exhibits no significant (p > 0.05) changes under SGF conditions
but undergoes complete degradation upon digestion in pancreatin, brush border membrane vesicles
(BBMVs), and their co-treatment mixture (Table 1). Quercetin shows no significant (p > 0.05) differences
in relative stability under the SGF conditions, and its complete degradation upon co-treatment with
pancreatin and BBMV is observed (Table 1).

Similar to the findings for myricetin in this study, a previous study revealed that myricetin
degradation is more influenced by neutral pH intestinal digestive conditions than by acidic SGF [23].
For that study, the half-life of myricetin was reported to be approximately 2.11 h at pH 6.8, whereas
its half-life at pH 7.4 was too low to be measured owing to its rapid degradation [24]. Furthermore,
myricetin has been reported to be most stable at pH 2.0 and exhibits higher solubility at pH 1.2–3.0
than at pH 6.8–7.4 [24]. Similarly, quercetin has been reported to undergo extensive degradation as
pH increases [25]. Therefore, it may be suggested that, although myricetin and quercetin are stable
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under gastric conditions, they undergo faster degradation when passing through the intestine, which
leads to their low bioaccessibility in the body. Kaempferol has been previously reported to be stable in
simulated digestive conditions [26]. The resistance to degradation in SIF observed for kaempferol in
the present study indicates that it is absorbed intact into systemic circulation during digestion in the
gastrointestinal tract and serves as a crucial bioactive phenolic compound in the body.

Table 1. The relative stability of flavonol aglycones in four digestive conditions in vitro.

Compound
Digestive Conditions

Control Gastric Pancreatin BBMV a Pancreatin + BBMV b

Kaempferol 99.20 ± 4.30 Ac 93.40 ± 2.60 A 65.50 ± 0.50 BC 72.23 ± 0.63 B 54.97 ± 0.58 C

Myricetin 101.60 ± 1.53 A 98.97 ± 2.36 A n.d. d n.d. n.d.
Quercetin 99.07 ± 5.48 A 96.47 ± 1.35 A 9.23 ± 0.35 B 4.47 ± 0.12 C n.d.

a BBMV: brush border membrane vesicle. b Pancreatin + BBMV: co-treatment with pancreatin and BBMV. c Data are
expressed as a percentage (%) compared with control in each condition. Data with different uppercase letters in
the same row represent significant differences according to the Tukey–Kramer honest significant difference test
(p < 0.05) with standard error of the mean. d n.d. means not detected.

2.2. Gastrointestinal Stabilities of FLG and FLA in In Vitro Digestion

The digestive stability of these flavonol glycosides and aglycones in more complex mixtures,
namely FLG and FLA from green tea, were investigated. The content of kaempferol, myricetin, and
quercetin was 5.91, 4.15, and 7.72 mg/g for FLG and 34.71, 15.94, and 38.21 mg/g for FLA, respectively,
in our previous research [27]. The phenolic compounds identified in FLG and FLA are summarized in
Table 2. The digestive changes of flavonol glycosides and aglycones in FLG and FLA are depicted in
Figure 1 with numbered peaks (1–16). The 16 phenolic glycosides and aglycones were identified in our
previous high-resolution mass analysis study [27].

Table 2. Identification of phenolic compounds in flavonol-glycoside-rich fraction (FLG) and
flavonol-aglycone-rich fraction (FLA).

Peak No. a Compound b Peak No. Compound

1 Apigenin-6-C-glucosyl-8-C-arabinoside 9 Quercetin-3-O-galactoside
2 Myricetin-3-O-galactoside 10 Quercetin-3-O-glucoside
3 Myricetin-3-O-glucoside 11 Kaempferol-3-O-glucosylrutinoside
4 Quercetin-3-O-galactosylrutinoside 12 Kaempferol-3-O-rhamnosylgalactoside
5 Quercetin-3-O-glucosylrutinoside 13 Kaempferol-3-O-rhamnosylglucoside
6 Quercetin-3-O-rhamnosylgalactoside 14 Myricetin
7 Quercetin-3-O-rhamnosylglucoside 15 Quercetin
8 Apigenin-6-C-glucoside or its isomer 16 Kaempferol

a The corresponding chromatograms are depicted in Figure 1 with numbered peaks. b Refer to the previous report
of Rha et al. [27] for the mass of molecular ions and the fragmentations by high-resolution mass spectrometry.

Much like the results obtained for the digestive stabilities of the pure flavonol aglycones (Table 1),
the flavonol aglycones in FLG and FLA are stable under SGF conditions but unstable under SIF
conditions (Figure 2). None of the flavonol aglycones in FLG (or myricetin (14) in FLA) are detected
under intestinal conditions (Figure 2). In FLA treated with pancreatin, BBMV, and a mixture of
pancreatin and BBMV, kaempferol (16) is degraded by 95.3%, 97.8%, and 97.2%, respectively, whereas
quercetin (15) is degraded by 97.8%, 98.7%, and 98.3% (Figure 2B). These results indicate that the
flavonols in FLG and FLA are unstable and exhibit poor bioaccessibility under intestinal conditions at
a pH of 7.0.
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Figure 1. High-performance liquid chromatography (HPLC) traces after (A) FLG and (B) FLA in in vitro digestion (600 µg/mL) at wavelength of 365 nm. The number 
after A and B on the HPLC traces indicates the digestive conditions: 1, control; 2, gastric; 3, pancreatin; 4, brush border membrane vesicle (BBMV); 5, pancreatin and 
BBMV combined. The identification of numbered peaks is presented in Table 2. 

Figure 1. High-performance liquid chromatography (HPLC) traces after (A) FLG and (B) FLA in in vitro digestion (600 µg/mL) at wavelength of 365 nm. The number
after A and B on the HPLC traces indicates the digestive conditions: 1, control; 2, gastric; 3, pancreatin; 4, brush border membrane vesicle (BBMV); 5, pancreatin and
BBMV combined. The identification of numbered peaks is presented in Table 2.
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Figure 2. Changes of flavonol aglycones (kaempferol (16), myricetin (14), and quercetin (15)) in (A)
FLG and (B) FLA after in vitro digestion. Different lowercase letters on the bars of each aglycone
represent significant differences according to the Tukey–Kramer honest significant difference test
(p < 0.05). Pan.+BBMV: co-treatment with pancreatin and BBMV. n.d.: not detected.

Most of the glycosides in FLG are stable under gastric conditions, but some quercetin and myricetin
glycosides, such as those represented by peaks 2, 3, 4, 5, 9, and 10, are degraded upon treatment with
pancreatin, BBMV, and a combination of both (Figure 3A). Among the 16 phenolics detected in FLG
and FLA, kaempferol-3-O-rhamnosylgalactoside (12) is not detected in FLG after digestion in vitro
(Figure 3A), due to the fact that it is not present in the original FLG (Figure 1A). Furthermore, since
myricetin-3-O-galactoside (2), quercetin-3-O-galactoside (9), and kaempferol-3-O-glucosylrutinoside (11)
are not found in FLA prior to in vitro digestion (Figure 1B), they are not detected in FLG after digestion
either (Figure 3B). Apigenin-6-C-glucosyl-8-C-arabinoside (1) and quercetin-3-O-rhamnosylglucoside
(7) in FLG are the most stable of the flavonoids under all four digestive conditions
(Figure 3A), while apigenin-6-C-glucosyl-8-C-arabinoside (1), quercetin-3-O-galactosylrutinoside (4),
quercetin-3-O-rhamnosylglucoside (7), and kaempferol-3-O-rhamnosylglucoside (13) in FLA show no
significant (p > 0.05) degradation compared with that of the control (Figure 3B).

The glycosides in FLA are more stable under all the digestive conditions than those in
FLG (Figure 3), indicating that the matrix surrounding the flavonoids affects their degradation
in the digestive tract. The flavonoids common to both FLG and FLA that exhibit over 50%
digestive stability are apigenin-6-C-glucosyl-8-C-arabinoside (1), quercetin-3-O-rhamnosylglucoside
(7), apigenin-6-C-glucoside (8), and kaempferol-3-O-rhamnosylglucoside (13) (Figure 3).

Flavone C-monoglycosides have been observed to be resistant to degradation by
chemical/biological methods and gut digestion conditions [28]. Flavone C-glycosides such as
apigenin-6-C-glucosyl-8-C-arabinoside (1) may be absorbed in the intact form in the intestine [28].
A small fraction of apigenin-C-glycosides (1 and 8) in FLG had their glycosidic linkages cleaved by
intestinal enzymes (data not shown), indicating that most C-glycosides of flavones migrate from the
small intestine to the large intestine without degradation. Kaempferol and its glycosides are more
stable than myricetin, quercetin, and their glycosides (Figures 2 and 3) [29]. Therefore, kaempferol
and its glycosides may be more available for potential absorption into the body and transport to the
large intestine.

Flavonol glycosides show greater degradation upon exposure to BBMV only and a mixture of
pancreatin and BBMV than when exposed to pancreatin only (Figure 3), implying that BBMV plays
a vital role in flavonoid digestion. BBMV contains various enzymes in the small intestine microvilli.
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Lactase-phlorizin hydrolase (LPH) exists on the apical surfaces of brush border enterocytes, where it is
anchored into the membrane by its C-terminal end [30]. LPH catalyzes the hydrolysis of a variety of
flavonoid β-glucosides, such as phlorizin [30]. Flavonols are degraded by LPH or conjugated with
glucuronic acid by uridine 5′-diphospho-glucuronosyltransferase before absorption in the body [31,32].
Treatment of Caco-2 cells with lactase has been reported to increase quercetin bioavailability [31].
The pH changes through stomach to intestine cause degradation of flavonol glycosides, the digestive
enzymes hydrolyze the residual flavonol glycosides in the small intestine, and the flavonols that reach
the large intestine are finally metabolized by the microbiota. Therefore, the degradation and absorption
of polyphenols in green tea depend on intestinal microflora and LPH production, meaning that
polyphenol bioavailability will vary between individuals. Moreover, enzymatically treated flavonols,
such as FLA in this study, may have higher bioavailability than flavonol glycosides, regardless of LPH
in the body.
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2.3. Modulating Interaction of FLG and FLA on Microbial Populations in In Vitro Fecal Fermentation

Culture media from in vitro batch fermentations with fecal samples were collected at 12 and 24 h.
Quantitative polymerase chain reaction (qPCR) analysis was used to enumerate the population of
bacterial groups upon fecal fermentation in vitro. The populations of the lactic acid bacteria Bifidobacteria
spp. and Lactobacilli spp. are significantly (p < 0.05) increased upon 24 h fecal fermentation with FLG
and FLA compared with those of control not treated with FLG or FLA (Figure 4). The population of a
representative pathogenic bacterium, Clostridium, in control decreases after fermentation (Figure 4). The
fermentations with FLG and FLA also bring about Clostridium population similar to that of the control
(Figure 4). In general, the FLA-treated fermentation exhibits higher stimulation of bacterial growth
than the FLG-treated fermentation. There are no significant (p > 0.05) differences in the population of
the symbiotic microorganism Bacteroides in the FLG- and FLA-added fermentations compared with that
of the control (Figure 4). Phenolics are known to be biotransformed in the colonic microflora, which
may affect their absorption and biological effects [22]. Some phenolics have been reported to have
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inhibitory effects on pathogens but to enhance the growth of Lactobacillus rhamnosus [33]. Quercetin as
one of the flavonols has been reported to have prebiotic effects on Bifidobacterium adolescentis, producing
nitric-oxide-suppressing agents [34].
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Figure 4. Effects of FLG and FLA on the microbial population in an in vitro fecal fermentation for
(A) 12 h and (B) 24 h. Differences (∆%) in the relative bacterial population sizes with respect to the
total number of bacteria were evaluated after fermentation of FLG and FLA from green tea extract.
The following calculation was applied: [(selected bacterial number at 12 or 24 h/total bacteria number
at 12 or 24 h) – (selected bacterial number at 0 h/total bacteria number at 0 h)] × 100. NS stands for
no substrate as a control. Different lowercase letters on the bars of each microorganism represent
significant differences according to the Tukey–Kramer honest significant difference test (p < 0.05).

2.4. Effects of FLG and FLA on SCFAs and Lactate Production in In Vitro Fecal Fermentation

SCFAs are important metabolites for colon health because, in addition to being the primary source
of energy for colon cells, they are signaling chemicals that cause anti-inflammatory and anticarcinogenic
effects [35,36]. Therefore, the production of SCFAs during in vitro fecal fermentation is considered a
unique biomarker for the analysis of prebiotic activity against various substances.

The differences of concentrations of lactate and SCFAs (acetate, propionate, and butyrate) produced
during fecal fermentation with FLG and FLA are shown in Figure 5. The amounts of lactate and
SCFAs produced in in vitro fecal fermentation with FLG and FLA are generally higher than those of
the control without FLG or FLA. Acetate production is slightly higher for fecal fermentation with FLG
and FLA. The amount of lactate is higher at 12 h and then lower at 24 h compared to the control. The
propionate level is lower at 12 h and then recovered to a similar level to the blank-treated control.
The butyrate concentration is 16.55 mM after fecal fermentation with FLA at 12 h and 19.17 mM after
fermentation with the FLG at 24 h (data not shown).
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In the fecal fermentation supplemented with FLG, the conversion of lactate into butyrate may
account for the lack of significant (p > 0.05) difference between the butyrate concentrations of the
12 and 24 h anaerobic fecal fermentation. Compared with acetate, propionate, and lactate, butyrate
is produced in higher amounts from fecal fermentations with FLG and FLA (Figure 5), suggesting
that both fractions are utilized as the main substrates of intestinal microorganisms and have beneficial
effects on human gut health through the butyrate production.

Lactobacilli and Bifidobacteria are known to produce lactate and acetate, respectively, as final
metabolites [37–39]. The final metabolites are not distinctive in Bacteroides, that is, different SCFAs
and lactate can be produced varying with growth phase, medium composition, and metabolic
cross-feeding [40]. In the present study, butyrate is produced in higher amounts than acetate,
propionate, and lactate in anaerobic fecal fermentation (Figure 5). In previous studies, butyrate
production was observed to increase significantly in rats fed with the lactic acid bacteria L. rhamnosus
together with malt [41] and, furthermore, lactate and acetate can be converted to butyrate by human
gut microbes such as Bi. adolescentis [42]. Butyrate has been demonstrated to have beneficial effects on
the gut by regulating inflammation and supporting energy metabolism in the microbiota [43], and
macrophages treated with butyrate were found to exhibit decreased production of proinflammatory
cytokines such as interleukin-6 [44].

Quercetin glycosides such as isoquercitrin and rutin have been reported to be anaerobically
deconjugated and degraded into lower molecular weight products such as quercetin and phenolic acid
through in vitro human fecal fermentation [45]. The flavonols undergo ring fission and dehydroxylation
by gut microbiota in humans [22]. The type of glycosidic bond between the flavonol and sugar moiety
influences the degradation rate in the digestive tract, with C-glycosidic bonds exhibiting much slower
cleavage than O-glycosidic bonds [46]. The production of lactate and SCFAs in anaerobic fecal
fermentation in this study implies that gut bacteria utilize both flavonol glycosides and aglycones. The
results in this study (Figures 4 and 5) suggest that flavonols and other phenolics in the FLG and FLA
from green tea are resistant to the digestive conditions in the upper small intestine, pass through the
small intestine, and then modulate large intestinal microbial growth and production of SCFAs and
lactate to produce health benefits in the body.
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3. Materials and Methods

3.1. Chemicals and Reagents

Kaempferol, myricetin, quercetin, dimethyl sulfoxide (DMSO), MgSO4·7H2O, bile salts, l-cysteine
hydrochloride, hemin, resazurin solution, pepsin (from porcine mucosa), pancreatin (from porcine
pancreas), and formic acid were purchased from Sigma-Aldrich Co., LLC (St. Louis, MO, USA).
HCl, NaCl, K2HPO4, KH2PO4, NaHCO3, MgCl2, KCl, and CaCl2·2H2O were purchased from Junsei
Chemical Co., Ltd. (Tokyo, Japan). Tween 80 was purchased from VWR International, LLC (Radnor,
PA, USA). Methanol (HPLC grade) and acetonitrile (HPLC grade) were obtained from Thermo
Fisher Scientific (Waltham, MA, USA). Water (HPLC grade) was purchased from Burdick & Jackson
(Muskegon, MI, USA). The fresh porcine small intestine was purchased from a local food market.
All other chemicals were of analytical grade or higher.

3.2. Preparation of FLG and FLA

The FLG and FLA from dried green tea extract were obtained by the method used in our previous
studies [27,47]. In brief, fresh green tea was harvested at Osulloc Farm (Jeju-do, Republic of Korea)
from May to June 2017. Dried green tea extracts were obtained from a solution prepared with aqueous
ethanol (70% (v/v)) at 60 ◦C for 3 h. The FLG and FLA were obtained by enzymatic treatment and
preparative HPLC purification.

3.3. Preparation of BBMVs

Whole ileum mucosa containing BBMVs was prepared according to the method used by Gnoth et
al. [48]. The mucosa was gently scraped from the underlying muscular tissue of porcine small intestine
using a glass slide. The mucosa fraction (500 mg) in buffer (2 mM Tris-HCl and 50 mM mannitol; pH
7.1) was mixed using a homogenizer (Ultra-Turrax T25; IKA-Works, Inc., Cincinnati, OH, USA) for
30 s at 24,000 rpm. MgCl2 was added to the homogenized mucosa fraction to a final concentration of
10 mM, and the mixture was allowed to stand for 15 min. After the homogenate was centrifuged at
1400 g for 12 min, the supernatant was collected and centrifuged at 16,000 g for 20 min. The supernatant
was discarded, and the pellet was resuspended in phosphate-buffered saline (PBS; pH 7.0) and then
homogenized in a loose-fitting glass-Teflon tissue grinder at low speed. After another centrifugation at
16,000 g for 20 min, the pellet was resuspended in PBS (100 µL). The efficiency of the BBMV preparation
was assessed by measuring the activity of marker enzymes (isomaltase, lactase, maltase, and sucrase),
through the glucose liberation during incubation of the BBMV with isomaltose, lactose, maltose, and
sucrose, respectively.

3.4. In Vitro Digestibility of Pure Flavonols, FLG, and FLA

Three flavonol aglycones (kaempferol, myricetin, and quercetin), FLG, and FLA were used to
evaluate in vitro digestibility in four reaction conditions—gastric, pancreatin, BBMV, and co-treatment
with pancreatin and BBMV. The last three mimic intestinal conditions. In vitro digestion was
accomplished using the modified method indicated by Minekus et al. [49] (Table 3). Pure flavonols
(3.0 mg), FLG (3.0 mg), and FLA (3.0 mg) were reacted in 2.5 mL mixed solution with enzyme and
buffer. SGF (pH 3.0) consisted of 6.9 mM KCl, 0.9 mM KH2PO4, 25 mM NaHCO3, 47.2 mM NaCl,
0.1 mM MgCl2·6H2O, 0.5 mM (NH4)2·CO3, and 0.15 mM CaCl2·2H2O. SIF (pH 7.0) was made up of
6.8 mM KCl, 0.8 mM KH2PO4, 85 mM NaHCO3, 38.4 mM NaCl, 0.33 mM MgCl2·6H2O, and 0.6 mM
CaCl2·2H2O. Pepsin solution (25,000 units/mL) and pancreatin solution (800 units/mL; as pancreatin
α-amylase activity) were prepared in SGF and SIF, respectively. The enzyme reactions were stopped by
the addition of stopping solution. The reaction tubes were instantly frozen by immersion in liquid
nitrogen and were then stored at −80 ◦C prior to use. The frozen samples were solubilized by sonication
for 20 min and appropriately diluted with 10% (v/v) DMSO in methanol for analyses.
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Table 3. Conditions of in vitro digestion of pure flavonols, FLG, and FLA.

Conditions a Digestive Enzyme Buffer Stopping Solution
Reaction

Temperature
and Time

Gastric pepsin (160 µL)
SGF b (750 µL), 0.3 M CaCl2
(0.5 µL), 1 M HCl (1.0 µL),

water (88.5 µL); pH 3.0

solvent 1 c (400 µL)
+ water (100 µL) 37 ◦C, 2 h

Pancreatin pancreatin (250 µL)
SIF d (550 µL), bile (125 µL),
0.3 M CaCl2 (2 µL), 1 M HCl

(10 µL), water (63 µL); pH 7.0

solvent 2 e (400 µL)
+ water (100 µL) 37 ◦C, 2 h

BBMVf BBMV (100 µL)
SIF (550 µL), bile (125 µL),

0.3 M CaCl2 (2 µL),1 M HCl
(10 µL), water (213 µL); pH 7.0

solvent 2 (400 µL) +
water (100 µL) 37 ◦C, 4 h

Pancreatin +
BBMV

pancreatin (250 µL),
BBMV (100 µL)

SIF (550 µL), bile (125 µL),
0.3 M CaCl2 (2 µL),1 M HCl

(10 µL), water (63 µL); pH 7.0
solvent 2 (400 µL) 37 ◦C, 2 h or

37 ◦C, 4 h

a Three milligrams of FLG or FLA dissolved in 1 mL of water were used to evaluate digestive stability. The total
reaction volume in each condition was 2.5 mL. b SGF: simulated gastric fluid. c Solvent 1: 50% (v/v) DMSO in
methanol. d SIF: simulated intestinal fluid. e Solvent 2: 10% (v/v) DMSO and 10% (v/v) formic acid in methanol.
f BBMV: brush border membrane vesicle.

3.5. In Vitro Fecal Batch Fermentation of FLG and FLA

Fresh feces were collected from seven healthy adult human donors who were confirmed for
no administration of antibiotics, prebiotics, or probiotics and no recent history of gastrointestinal
disorders. In vitro fecal batch fermentation with FLG and FLA was performed according to the method
indicated by Mandalari et al. [50]. For the fermentation, a 135 mL portion of the basal growth medium
(2 g/L of peptone water, 1 g/L of yeast extract, 2 g/L of NaHCO3, 0.1 g/L of NaCl, 40 mg/L of K2HPO4,
40 mg/L of KH2PO4, 10 mg/L of MgSO4·7H2O, 10 mg/L of CaCl2·2H2O, 0.5 g/L of bile salts, 0.5 g/L
of l-cysteine hydrochloride, 50 mg/L of hemin, 10 µL/L of vitamin K1, and 2 mL/L of Tween 80) was
added to water-jacketed fermenter vessels (300 mL capacity). To obtain a fecal slurry, 10% (w/v) of
fecal matter in 100 mM PBS (pH 7.0) was homogenized. The resulting slurry (15 mL) and 150 mg
FLG or FLA were poured into the water-jacketed fermenter vessels and stirred magnetically. The
pH and temperature of the fermenter were automatically maintained at 6.8 and 37 ◦C, respectively.
Throughout the fermentation, oxygen-free nitrogen gas was sparged into the fermenter at a flow rate
of 15 mL/min for the maintenance of anaerobic conditions. After 12 and 24 h of fermentation, 5 mL of
the reaction media from the vessels were collected for quantitative real-time polymerase chain reaction
(qRT-PCR) and SCFA analysis.

3.6. Enumeration of Intestinal Bacteria Using qRT-PCR

To enumerate intestinal bacteria, qRT-PCR was conducted using genus-specific primer sets
according to the methods previously reported in Seong et al. [51]. The method of extraction,
amplification, and detection of purified bacterial DNA was the same as that presented in Section 2.4.
in Seong et al. [51]. Furthermore, the relative quantities and ratios of target genes encoding 16S
rRNA gene sequences of the bacterial taxa were calculated as the following calculations: E∆CT

and E∆CT (fermentation sample)/E∆CT (original bacterial community), respectively, where E is the efficiency of the
primer calculated from the slope of the standard curve (E = 10−1/slope), and ∆CT is the CT value of the
target bacterial population normalized against the CT value of the total bacterial population [52].

3.7. Determination of Flavonoids, Lactate, and SCFAs Using HPLC Systems

The flavonoid analysis was performed according to the previous research with minor
modifications [27]. Briefly, the flavonoid standards, in vitro digesta of FLG and FLA, and in vitro
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fermentation samples were dissolved in 10% (v/v) DMSO in absolute methanol and filtered through a
0.2 µm regenerated cellulose filter (Sartorius, Göttingen, Germany). Afterward, flavonol content of
samples was quantified using Waters Alliance HPLC (Milford, MA, USA) installed with a UV detector
and a C18 column (Poroshell 120 SB; 4.6 × 150 mm, 120 Å, 2.7 µm; Agilent Technologies, Inc., Santa
Clara, CA, USA). The column temperature was maintained at 30 ◦C. Flavonols were monitored at a
wavelength of 365 nm. Five microliters of injection were carried out. The flow rate was 0.8 mL/min.
Two mobile phases consisted of 0.1% (v/v) formic acid in water (solvent A) and 0.1% (v/v) formic acid in
acetonitrile (solvent B). Refer to the detailed elution program of our previous study [27].

The amounts of SCFAs and lactate produced in the fecal fermentations were analyzed using a
1260 Infinity HPLC (Agilent Technologies, Inc.) with an Aminex HPX-87H column (300 × 7.8 mm, 9 µm;
Bio-Rad Laboratories, Inc., Hercules, CA, USA). The mobile phase was 5 mM H2SO4 in water. Flow rate,
injection volume, and detection wavelength were 0.6 mL/min, 20µL, and 215 nm, respectively. Amounts
of SCFAs and lactate after fermentation were calculated using their standard curves corresponding to
concentrations of 1 and 200 mM.

3.8. Statistical Analysis

Data are presented as the means ± standard errors of the mean (n = 3). One-way analysis of
variance was performed using comparisons for all pairs by the Tukey–Kramer honest significant
difference test (p < 0.05) using JMP 12 for Windows 7 or higher (SAS Institute Inc., Cary, NC, USA).
Statistical analysis of the SCFAs, lactate, and qRT-PCR data was performed with SPSS for Windows
Version 22 (IBM, Chicago, IL, USA).

3.9. Ethical Statement

The experiment using BBMV from slaughtered porcine did not entail any ethical issues as it was
obtained as is from a commercial source. The human fecal samples were obtained according to the
guidelines of the Division of Animal, Horticultural, and Food Sciences at Chungbuk National University
(CBNU; Cheongju, Republic of Korea). The study protocol and consent forms were approved by the
Institutional Review Board of CBNU, Republic of Korea (CBNU-201905-BR-839-01).

3.10. Data Availability

The datasets generated during and/or analyzed during the current study are available from the
corresponding authors on reasonable request.

4. Conclusions

Green tea fractions rich in flavonol glycosides and aglycones, termed FLG and FLA, were obtained
after tannase and cellulase treatments, respectively. The digestive stabilities of the FLG and FLA were
found to depend on the type of aglycone, glycosidic bond, and sugar moiety. Kaempferol glycosides
were most stable in in vitro digestive conditions among the flavonols tested in this study. Fermentation
with FLG and FLA increased the populations of the lactic acid bacteria Lactobacilli spp. and Bifidobacteria
spp. in anaerobic human fecal fermentation in vitro, during which acetate, butyrate, propionate,
and lactate are produced. Thus, the findings in this study indicate that the digestive stability of
flavonoids influences their bioaccessibility in the gastrointestinal tract and that the populations of
intestinal microflora also affect the bioactivity of flavonoids and their metabolites in the body. Further
studies to evaluate the bioavailability of FLG and FLA in animal models in vivo and to study the
pharmacodynamic interactions of these fractions and green tea catechins in clinical trials are warranted.

5. Patents

The source of FLG and FLA are part of the patent application no. KR10-2019-0054542 entitled
“Method for manufacturing green tea extract, and green extract therefrom.”
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Abbreviations

BBMV brush border membrane vesicle
DMSO dimethyl sulfoxide
FLA flavonol-aglycone-rich fraction
FLG flavonol-glycoside-rich fraction
HPLC high-performance liquid chromatography
LPH lactase-phlorizin hydrolase
PBS phosphate-buffered saline
qPCR quantitative polymerase chain reaction
qRT-PCR quantitative real-time polymerase chain reaction
SCFA short-chain fatty acid
SGF simulated gastric fluid
SIF simulated intestinal fluid

References

1. Khan, N.; Mukhtar, H. Tea polyphenols for health promotion. Life Sci. 2007, 81, 519–533. [CrossRef]
[PubMed]

2. Wu, C.; Xu, H.; Héritier, J.; Andlauer, W. Determination of catechins and flavonol glycosides in Chinese tea
varieties. Food Chem. 2012, 132, 144–149. [CrossRef] [PubMed]

3. Jiang, H.; Engelhardt, U.H.; Thräne, C.; Maiwald, B.; Stark, J. Determination of flavonol glycosides in green
tea, oolong tea and black tea by UHPLC compared to HPLC. Food Chem. 2015, 183, 30–35. [CrossRef]
[PubMed]

4. Monobe, M.; Nomura, S.; Ema, K.; Matsunaga, A.; Nesumi, A.; Yoshida, K.; Maeda-Yamamoto, M.; Horie, H.
Quercetin glycosides-rich tea cultivars (Camellia sinensis L.) in Japan. Food Sci. Technol. Res. 2015, 21, 333–340.
[CrossRef]

5. Cabrera, C.; Artacho, R.; Giménez, R. Beneficial effects of green tea—A review. J. Am. Coll. Nutr. 2006,
25, 79–99. [CrossRef]

6. Kim, D.-O.; Lee, C.Y. Comprehensive study on vitamin C equivalent antioxidant capacity (VCEAC) of
various polyphenolics in scavenging a free radical and its structural relationship. Crit. Rev. Food Sci. Nutr.
2004, 44, 253–273. [CrossRef]

7. Lea, M.A. Flavonol regulation in tumor cells. J. Cell. Biochem. 2015, 116, 1190–1194. [CrossRef]
8. Nomura, S.; Monobe, M.; Ema, K.; Matsunaga, A.; Maeda-Yamamoto, M.; Horie, H. Effects of flavonol-rich

green tea cultivar (Camellia sinensis L.) on plasma oxidized LDL levels in hypercholesterolemic mice.
Biosci. Biotechnol. Biochem. 2016, 80, 360–362. [CrossRef]

9. Menezes, R.; Rodriguez-Mateos, A.; Kaltsatou, A.; González-Sarrias, A.; Greyling, A.; Giannaki, C.;
Andres-Lacueva, C.; Milenkovic, D.; Gibney, E.R.; Dumont, J.; et al. Impact of flavonols on cardiometabolic
biomarkers: A meta-analysis of randomized controlled human trials to explore the role of inter-individual
variability. Nutrients 2017, 9, 117. [CrossRef]

10. Sanchez-Bridge, B.; Lévèques, A.; Li, H.; Bertschy, E.; Patin, A.; Actis-Goretta, L. Modulation of (−)-epicatechin
metabolism by coadministration with other polyphenols in Caco-2 cell model. Drug Metab. Dispos. 2015,
43, 9–16. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.lfs.2007.06.011
http://www.ncbi.nlm.nih.gov/pubmed/17655876
http://dx.doi.org/10.1016/j.foodchem.2011.10.045
http://www.ncbi.nlm.nih.gov/pubmed/26434273
http://dx.doi.org/10.1016/j.foodchem.2015.03.024
http://www.ncbi.nlm.nih.gov/pubmed/25863606
http://dx.doi.org/10.3136/fstr.21.333
http://dx.doi.org/10.1080/07315724.2006.10719518
http://dx.doi.org/10.1080/10408690490464960
http://dx.doi.org/10.1002/jcb.25098
http://dx.doi.org/10.1080/09168451.2015.1083400
http://dx.doi.org/10.3390/nu9020117
http://dx.doi.org/10.1124/dmd.114.060590
http://www.ncbi.nlm.nih.gov/pubmed/25315342


Int. J. Mol. Sci. 2019, 20, 5890 13 of 15

11. Landis-Piwowar, K.; Chen, D.; Chan, T.H.; Dou, Q.P. Inhibition of catechol-O-methyltransferase activity in
human breast cancer cells enhances the biological effect of the green tea polyphenol (−)-EGCG. Oncol. Rep.
2010, 24, 563–569. [CrossRef] [PubMed]

12. Chung, J.-O.; Lee, S.-B.; Jeong, K.-H.; Song, J.-H.; Kim, S.; Joo, K.-M.; Jeong, H.W.; Choi, J.K.; Kim, J.K.;
Kim, W.G.; et al. Quercetin and fisetin enhanced small intestine cellular uptake and plasma levels of
epi-catechins in vitro and in vivo model. Food Funct. 2018, 9, 234–242. [CrossRef] [PubMed]

13. Hollman, P.C.H.; van Trijp, J.M.P.; Buysman, M.N.C.P.; van der Gaag, M.S.; Mengelers, M.J.B.; de Vries, J.H.M.;
Katan, M.B. Relative bioavailability of the antioxidant flavonoid quercetin from various foods in man.
FEBS Lett. 1997, 418, 152–156. [CrossRef]

14. Hollman, P.C.H.; Bijsman, M.N.C.P.; van Gameren, Y.; Cnossen, E.P.J.; de Vries, J.H.M.; Katan, M.B. The sugar
moiety is a major determinant of the absorption of dietary flavonoid glycosides in man. Free Radical Res.
1999, 31, 569–573. [CrossRef]

15. Olthof, M.R.; Hollman, P.C.H.; Vree, T.B.; Katan, M.B. Bioavailabilities of quercetin-3-glucoside and
quercetin-4’-glucoside do not differ in humans. J. Nutr. 2000, 130, 1200–1203. [CrossRef]

16. Walle, T.; Otake, Y.; Walle, U.K.; Wilson, F.A. Quercetin glucosides are completely hydrolyzed in ileostomy
patients before absorption. J. Nutr. 2000, 130, 2658–2661. [CrossRef]

17. Murota, K.; Nakamura, Y.; Uehara, M. Flavonoid metabolism: The interaction of metabolites and gut
microbiota. Biosci. Biotechnol. Biochem. 2018, 82, 600–610. [CrossRef]

18. Jaganath, I.B.; Mullen, W.; Edwards, C.A.; Crozier, A. The relative contribution of the small and large intestine
to the absorption and metabolism of rutin in man. Free Radic. Res. 2006, 40, 1035–1046. [CrossRef]

19. Rechner, A.R.; Smith, M.A.; Kuhnle, G.; Gibson, G.R.; Debnam, E.S.; Srai, S.K.S.; Moore, K.P.; Rice-Evans, C.A.
Colonic metabolism of dietary polyphenols: Influence of structure on microbial fermentation products.
Free Radic. Biol. Med. 2004, 36, 212–225. [CrossRef]

20. Espín, J.C.; García-Conesa, M.T.; Tomás-Barberán, F.A. Nutraceuticals: facts and fiction. Phytochemistry 2007,
68, 2986–3008. [CrossRef]

21. Simons, A.L.; Renouf, M.; Hendrich, S.; Murphy, P.A. Human gut microbial degradation of flavonoids:
Structure−function relationships. J. Agric. Food. Chem. 2005, 53, 4258–4263. [CrossRef] [PubMed]

22. Selma, M.V.; Espín, J.C.; Tomás-Barberán, F.A. Interaction between phenolics and gut microbiota: Role in
human health. J. Agric. Food. Chem. 2009, 57, 6485–6501. [CrossRef] [PubMed]

23. Xiang, D.; Wang, C.-g.; Wang, W.-q.; Shi, C.-y.; Xiong, W.; Wang, M.-d.; Fang, J.-g. Gastrointestinal stability
of dihydromyricetin, myricetin, and myricitrin: An in vitro investigation. Int. J. Food Sci. Nutr. 2017,
68, 704–711. [CrossRef] [PubMed]

24. Yao, Y.; Lin, G.; Xie, Y.; Ma, P.; Li, G.; Meng, Q.; Wu, T. Preformulation studies of myricetin: A natural
antioxidant flavonoid. Pharmazie 2014, 69, 19–26. [CrossRef] [PubMed]

25. Wang, J.; Zhao, X.-H. Degradation kinetics of fisetin and quercetin in solutions affected by medium pH,
temperature and co-existed proteins. J. Serb. Chem. Soc. 2016, 81, 243–253. [CrossRef]

26. Chiang, C.-J.; Kadouh, H.; Zhou, K. Phenolic compounds and antioxidant properties of gooseberry as affected
by in vitro digestion. LWT-Food Sci. Technol. 2013, 51, 417–422. [CrossRef]

27. Rha, C.-S.; Jeong, H.W.; Park, S.; Lee, S.; Jung, Y.S.; Kim, D.-O. Antioxidative, anti-inflammatory, and
anticancer effects of purified flavonol glycosides and aglycones in green tea. Antioxidants 2019, 8, 278.
[CrossRef]

28. Xiao, J.; Capanoglu, E.; Jassbi, A.R.; Miron, A. Advance on the flavonoid C-glycosides and health benefits.
Crit. Rev. Food Sci. Nutr. 2016, 56(Sup. 1), S29–S45. [CrossRef]

29. Goh, L.M.L.; Barlow, P.J. Flavonoid recovery and stability from Ginkgo biloba subjected to a simulated
digestion process. Food Chem. 2004, 86, 195–202. [CrossRef]

30. Németh, K.; Plumb, G.W.; Berrin, J.-G.; Juge, N.; Jacob, R.; Naim, H.Y.; Williamson, G.; Swallow, D.M.;
Kroon, P.A. Deglycosylation by small intestinal epithelial cell β-glucosidases is a critical step in the absorption
and metabolism of dietary flavonoid glycosides in humans. Eur. J. Nutr. 2003, 42, 29–42. [CrossRef]

31. Boyer, J.; Brown, D.; Liu, R.H. In vitro digestion and lactase treatment influence uptake of quercetin and
quercetin glucoside by the Caco-2 cell monolayer. Nutr. J. 2005, 4, 1. [CrossRef] [PubMed]

32. Oliveira, E.J.; Watson, D.G. In vitro glucuronidation of kaempferol and quercetin by human UGT 1A9
microsomes. FEBS Lett. 2000, 471, 1–6. [CrossRef]

http://dx.doi.org/10.3892/or_00000893
http://www.ncbi.nlm.nih.gov/pubmed/20596647
http://dx.doi.org/10.1039/C7FO01576C
http://www.ncbi.nlm.nih.gov/pubmed/29168878
http://dx.doi.org/10.1016/S0014-5793(97)01367-7
http://dx.doi.org/10.1080/10715769900301141
http://dx.doi.org/10.1093/jn/130.5.1200
http://dx.doi.org/10.1093/jn/130.11.2658
http://dx.doi.org/10.1080/09168451.2018.1444467
http://dx.doi.org/10.1080/10715760600771400
http://dx.doi.org/10.1016/j.freeradbiomed.2003.09.022
http://dx.doi.org/10.1016/j.phytochem.2007.09.014
http://dx.doi.org/10.1021/jf0500177
http://www.ncbi.nlm.nih.gov/pubmed/15884869
http://dx.doi.org/10.1021/jf902107d
http://www.ncbi.nlm.nih.gov/pubmed/19580283
http://dx.doi.org/10.1080/09637486.2016.1276518
http://www.ncbi.nlm.nih.gov/pubmed/28114854
http://dx.doi.org/10.1691/ph.2014.3076
http://www.ncbi.nlm.nih.gov/pubmed/24601218
http://dx.doi.org/10.2298/JSC150706092W
http://dx.doi.org/10.1016/j.lwt.2012.11.014
http://dx.doi.org/10.3390/antiox8080278
http://dx.doi.org/10.1080/10408398.2015.1067595
http://dx.doi.org/10.1016/j.foodchem.2003.08.035
http://dx.doi.org/10.1007/s00394-003-0397-3
http://dx.doi.org/10.1186/1475-2891-4-1
http://www.ncbi.nlm.nih.gov/pubmed/15644141
http://dx.doi.org/10.1016/S0014-5793(00)01355-7


Int. J. Mol. Sci. 2019, 20, 5890 14 of 15

33. Parkar, S.G.; Stevenson, D.E.; Skinner, M.A. The potential influence of fruit polyphenols on colonic microflora
and human gut health. Int. J. Food Microbiol. 2008, 124, 295–298. [CrossRef] [PubMed]

34. Kawabata, K.; Sugiyama, Y.; Sakano, T.; Ohigashi, H. Flavonols enhanced production of anti-inflammatory
substance(s) by Bifidobacterium adolescentis: Prebiotic actions of galangin, quercetin, and fisetin. BioFactors
2013, 39, 422–429. [CrossRef] [PubMed]

35. Koh, A.; De Vadder, F.; Kovatcheva-Datchary, P.; Bäckhed, F. From dietary fiber to host physiology: Short-chain
fatty acids as key bacterial metabolites. Cell 2016, 165, 1332–1345. [CrossRef] [PubMed]

36. Walker, A.W.; Duncan, S.H.; Leitch, E.C.M.; Child, M.W.; Flint, H.J. pH and peptide supply can radically
alter bacterial populations and short-chain fatty acid ratios within microbial communities from the human
colon. Appl. Environ. Microbiol. 2005, 71, 3692–3700. [CrossRef]

37. El Aidy, S.; Derrien, M.; Merrifield, C.A.; Levenez, F.; Doré, J.; Boekschoten, M.V.; Dekker, J.; Holmes, E.;
Zoetendal, E.G.; van Baarlen, P.; et al. Gut bacteria-host metabolic interplay during conventionalisation of
the mouse germfree colon. ISME J. 2013, 7, 743–755. [CrossRef]

38. Macfarlane, S.; Macfarlane, G.T. Regulation of short-chain fatty acid production. Proc. Nutr. Soc. 2003,
62, 67–72. [CrossRef]

39. Siebold, M.; Frieling, P.v.; Joppien, R.; Rindfleisch, D.; Schügerl, K.; Röper, H. Comparison of the production
of lactic acid by three different Lactobacilli and its recovery by extraction and electrodialysis. Process Biochem.
1995, 30, 81–95. [CrossRef]

40. Adamberg, S.; Tomson, K.; Vija, H.; Puurand, M.; Kabanova, N.; Visnapuu, T.; Jõgi, E.; Alamäe, T.;
Adamberg, K. Degradation of fructans and production of propionic acid by Bacteroides thetaiotaomicron are
enhanced by the shortage of amino acids. Front. Nutr. 2014, 1, 21. [CrossRef]

41. Bränning, C.E.; Nyman, M.E. Malt in combination with Lactobacillus rhamnosus increases concentrations of
butyric acid in the distal colon and serum in rats compared with other barley products but decreases viable
counts of cecal bifidobacteria. J. Nutr. 2011, 141, 101–107. [CrossRef] [PubMed]

42. Belenguer, A.; Duncan, S.H.; Calder, A.G.; Holtrop, G.; Louis, P.; Lobley, G.E.; Flint, H.J. Two routes of
metabolic cross-feeding between Bifidobacterium adolescentis and butyrate-producing anaerobes from the
human gut. Appl. Environ. Microbiol. 2006, 72, 3593–3599. [CrossRef] [PubMed]

43. Louis, P.; Flint, H.J. Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the
human large intestine. FEMS Microbiol. Lett. 2009, 294, 1–8. [CrossRef] [PubMed]

44. Chang, P.V.; Hao, L.; Offermanns, S.; Medzhitov, R. The microbial metabolite butyrate regulates intestinal
macrophage function via histone deacetylase inhibition. Proc. Natl. Acad. Sci. USA 2014, 111, 2247–2252.
[CrossRef]

45. Aura, A.-M.; O’Leary, K.A.; Williamson, G.; Ojala, M.; Bailey, M.; Puupponen-Pimiä, R.; Nuutila, A.M.;
Oksman-Caldentey, K.-M.; Poutanen, K. Quercetin derivatives are deconjugated and converted to
hydroxyphenylacetic acids but not methylated by human fecal flora in vitro. J. Agric. Food. Chem. 2002,
50, 1725–1730. [CrossRef]

46. Hein, E.-M.; Rose, K.; van’t Slot, G.; Friedrich, A.W.; Humpf, H.-U. Deconjugation and degradation of
flavonol glycosides by pig cecal microbiota characterized by fluorescence in situ hybridization (FISH). J. Agric.
Food. Chem. 2008, 56, 2281–2290. [CrossRef]

47. Choi, E.-H.; Rha, C.-S.; Balusamy, S.R.; Kim, D.-O.; Shim, S.-M. Impact of bioconversion of gallated catechins
and flavonol glycosides on bioaccessibility and intestinal cellular uptake of catechins. J. Agric. Food. Chem.
2019, 67, 2331–2339. [CrossRef]

48. Gnoth, M.J.; Kunz, C.; Kinne-Saffran, E.; Rudloff, S. Human milk oligosaccharides are minimally digested
in vitro. J. Nutr. 2000, 130, 3014–3020. [CrossRef]

49. Minekus, M.; Alminger, M.; Alvito, P.; Ballance, S.; Bohn, T.; Bourlieu, C.; Carrière, F.; Boutrou, R.;
Corredig, M.; Dupont, D.; et al. A standardised static in vitro digestion method suitable for food—An
international consensus. Food Funct. 2014, 5, 1113–1124. [CrossRef]

50. Mandalari, G.; Nueno-Palop, C.; Bisignano, G.; Wickham, M.S.J.; Narbad, A. Potential prebiotic properties of
almond (Amygdalus communis L.) seeds. Appl. Environ. Microbiol. 2008, 74, 4264–4270. [CrossRef]

http://dx.doi.org/10.1016/j.ijfoodmicro.2008.03.017
http://www.ncbi.nlm.nih.gov/pubmed/18456359
http://dx.doi.org/10.1002/biof.1081
http://www.ncbi.nlm.nih.gov/pubmed/23554103
http://dx.doi.org/10.1016/j.cell.2016.05.041
http://www.ncbi.nlm.nih.gov/pubmed/27259147
http://dx.doi.org/10.1128/AEM.71.7.3692-3700.2005
http://dx.doi.org/10.1038/ismej.2012.142
http://dx.doi.org/10.1079/PNS2002207
http://dx.doi.org/10.1016/0032-9592(95)87011-3
http://dx.doi.org/10.3389/fnut.2014.00021
http://dx.doi.org/10.3945/jn.110.122226
http://www.ncbi.nlm.nih.gov/pubmed/21106924
http://dx.doi.org/10.1128/AEM.72.5.3593-3599.2006
http://www.ncbi.nlm.nih.gov/pubmed/16672507
http://dx.doi.org/10.1111/j.1574-6968.2009.01514.x
http://www.ncbi.nlm.nih.gov/pubmed/19222573
http://dx.doi.org/10.1073/pnas.1322269111
http://dx.doi.org/10.1021/jf0108056
http://dx.doi.org/10.1021/jf073444o
http://dx.doi.org/10.1021/acs.jafc.8b05733
http://dx.doi.org/10.1093/jn/130.12.3014
http://dx.doi.org/10.1039/C3FO60702J
http://dx.doi.org/10.1128/AEM.00739-08


Int. J. Mol. Sci. 2019, 20, 5890 15 of 15

51. Seong, H.; Bae, J.-H.; Seo, J.S.; Kim, S.-A.; Kim, T.-J.; Han, N.S. Comparative analysis of prebiotic effects of
seaweed polysaccharides laminaran, porphyran, and ulvan using in vitro human fecal fermentation. J. Funct.
Foods 2019, 57, 408–416. [CrossRef]

52. Hellemans, J.; Mortier, G.; De Paepe, A.; Speleman, F.; Vandesompele, J. qBase relative quantification
framework and software for management and automated analysis of real-time quantitative PCR data.
Genome Biol. 2007, 8, R19. [CrossRef] [PubMed]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.jff.2019.04.014
http://dx.doi.org/10.1186/gb-2007-8-2-r19
http://www.ncbi.nlm.nih.gov/pubmed/17291332
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results and Discussion 
	Stabilities of Kaempferol, Myricetin, and Quercetin in In Vitro Digestion 
	Gastrointestinal Stabilities of FLG and FLA in In Vitro Digestion 
	Modulating Interaction of FLG and FLA on Microbial Populations in In Vitro Fecal Fermentation 
	Effects of FLG and FLA on SCFAs and Lactate Production in In Vitro Fecal Fermentation 

	Materials and Methods 
	Chemicals and Reagents 
	Preparation of FLG and FLA 
	Preparation of BBMVs 
	In Vitro Digestibility of Pure Flavonols, FLG, and FLA 
	In Vitro Fecal Batch Fermentation of FLG and FLA 
	Enumeration of Intestinal Bacteria Using qRT-PCR 
	Determination of Flavonoids, Lactate, and SCFAs Using HPLC Systems 
	Statistical Analysis 
	Ethical Statement 
	Data Availability 

	Conclusions 
	Patents 
	References

