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Use of therapeutic peptides in cancer therapy has been receiving considerable attention in the recent years.
Present study describes the development of computational models for predicting and discovering novel
anticancer peptides. Preliminary analysis revealed that Cys, Gly, Ile, Lys, and Trp are dominated at various
positions in anticancer peptides. Support vector machine models were developed using amino acid
composition and binary profiles as input features on main dataset that contains experimentally validated
anticancer peptides and random peptides derived from SwissProt database. In addition, models were
developed on alternate dataset that contains antimicrobial peptides instead of random peptides. Binary
profiles-based model achieved maximum accuracy 91.44% with MCC 0.83. We have developed a webserver,
which would be helpful in: (i) predicting minimum mutations required for improving anticancer potency;
(ii) virtual screening of peptides for discovering novel anticancer peptides, and (iii) scanning natural
proteins for identification of anticancer peptides (http://crdd.osdd.net/raghava/anticp/).

ancer with leading cause of deaths remains the matter of health concern for both developed and devel-

oping countries'. Despite the advances in cancer treatments, mortality rate due to this deadly disease is still

very high'. Owing to the development of resistance by cancer cells towards current anti-cancer chemother-
apeutic drugs, there is an urgent need to add new weapons in the anti-cancer drug arsenal to fight with this deadly
disease. In the last decade, small peptides having anticancer properties have emerged as a potential alternative
approach for cancer therapy’. Peptide-based therapy has numerous advantages over small molecules that involve
high specificity, low production cost, high tumor penetration, ease of synthesis and modification etc’.

Anticancer peptides (ACPs) are small (5-30 amino acids) peptides, often derived from antimicrobial peptides
(AMPs) and are cationic in nature*. Previous studies have demonstrated that many cationic AMPs, which are
toxic to bacteria but not to normal cells, show a broad spectrum cytotoxicity against various cancer cells.
Although ACP is a rapidly emerging field, their mechanism of action remains elusive. However, few studies have
suggested that there are few differences between the cell membranes of cancer and normal cells and selective
killing of cancer cells by certain ACPs could be due to these differences**. In this context, electrostatic interactions
between cationic amino acids of ACPs and anionic components of cancer cell membranes are suggested to be one
of the major contributing factors in the selective killing of cancer cells by ACPs*. Also, high membrane fluidity and
high cell-surface area®” of cancer cells compared to untransformed cells lead to enhance the lytic activity of ACPs
and binding of the increased number of ACPs, respectively. In addition, few ACPs induce apoptosis (program cell
death) by disrupting mitochondrial membrane when delivered into the cancer cells®. Many peptide-based ther-
apies to treat various tumor types are currently being evaluated in various phases of preclinical and clinical
trials®'%. The success of these peptides in clinics has open the door for ACPs to reach clinical settings.
Keeping in mind the immense therapeutic importance of ACPs, in the present study, we have made a

systematic attempt to develop in silico methods for the prediction and designing of ACPs. Support vector machine
(SVM) based models using various features of peptides like amino acid composition, dipeptide composition and
binary profile pattern have been developed. In addition, models discriminating ACPs from AMPs have also been
developed. Binary profile-based SVM model using NT10 dataset achieved maximum accuracy of 91.44% with
MCC and AUC values 0.83 and 0.94 respectively. To assist scientific community, for the first time, a user-friendly
webserver, AntiCP, has been developed to predict and design highly efficacious ACPs.

Results

Compositional analysis. We wanted to develop in silico models, which can differentiate ACPs from non-ACPs,
as well as ACPs from AMPs. Therefore, first we sought to determine the frequency of occurrence of all 20 amino
acids in these peptides. For this, percent average composition of amino acids in ACPs, non-ACPs (random
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peptides) and AMPs were calculated and compared. As shown in
Figure 1, certain residues, including Gly, Lys, Cys, Phe, Ile, and Trp
were found to be abundant in ACPs compared to non-ACPs while
Gly, Ala, Lys and Leu were abundant in AMPs compared to ACPs
and non-ACPs. Since terminal residues play crucial roles in
biological functions of peptides", we computed and compared the
percent average amino acid composition of N-terminal and C-
terminal residues (split amino acid composition) in these peptides.
As shown in Figure 2A and 2B, average amino acid compositions of
terminal residues are more or less similar to whole amino acid
composition. However, among N-terminal residues, only Cys was
found to be in a higher proportion in ACPs compared to both AMPs
and non-ACPs. In C-terminal residue analysis, Tyr and Trp were
found to abundant in ACPs compared to both AMPs and non-ACPs
(Figure 2B).

Residue preference. In order to understand residue preference at
both termini of peptides, we computed sequence logos. The sequence
logos of 10 N-terminal and 10 C-terminal residues are shown in
Figure 3A and 3B. As shown, no exclusive preference of residues
was observed except Gly at the first position at N-terminus.
However, there are few residues like Leu, Lys, Ala and Phe at N-
terminus and Val, Cys, Leu and Lys at C-terminus which are also
preferred but relatively less preferred than Gly at various positions.

Support vector machine models. SVM models were developed on
both realistic datasets (main datasets and alternate datasets) and
balanced datasets (balanced dataset-1 and balanced dataset-2)
using amino acid composition, dipeptide composition, and binary
profiles as input features.

SVM model based on amino acid composition. Since certain resi-
dues were found to be abundant over others in ACPs and AMPs,
ACPs can be discriminated from non-ACPs and AMPs on the basis
of their amino acid composition. Therefore, we have developed
whole amino acid composition-based SVM models. The perfor-
mance of whole composition-based SVM models has been shown
in Table 1 and 2. The whole composition-based SVM model
developed on balanced dataset-1 achieved maximum accuracy of
88.89% with MCC and AUC values 0.78 and 0.94 respectively
(Table 1 and Figure 4A). In addition, SVM models based on split
amino acid composition (NT5, CT5, NT5CT5, NT10, CT10, and
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NT10CT10) were also developed. The performance of these models
is summarized in Table 1. Model developed with NT10CT10 dataset
performed similar to whole composition-based model and achieved
maximum accuracy of 88.4% with MCC and AUC values of 0.77 and
0.93, respectively (Table 1). The performance of models developed on
main dataset was comparable to models developed on balanced
dataset-1 (Table 1).

Similarly, SVM models on balanced dataset-2 and alternate data-
set were also developed using amino acid composition as input fea-
tures. The performances of these models are summarized in Table 2.
The overall performances of the models developed with balanced
dataset-2 were more or less similar to models developed with
balanced dataset-1. The whole composition-based SVM model
developed on balanced dataset-2 achieved maximum accuracy of
85.33% with MCC and AUC values 0.71 and 0.90 respectively.
Similarly, models based on split amino acid composition were also
developed (Table 2) and the model developed on NT10CT10 dataset
achieved maximum accuracy of 87.73% with MCC and AUC values
0.75 and 0.92 respectively (Table 2). Amino acid composition based
models developed on alternate dataset performed poorer than the
models developed on balanced dataset-2 (Table 2).

Dipeptide composition-based SVM model. In many previous studies,
SVM model based on dipeptide composition has been developed to
discriminate different classes of peptides'* . Dipeptide composition is
a simple feature, and it encapsulates information of the amino acid
fraction as well as local order of amino acids. Therefore, SVM models
based on dipeptide composition have been constructed on all the
datasets. Performances of dipeptide composition-based models are
summarized in Table 3 and 4. Models developed on balanced
dataset-1 achieved maximum accuracy of 87.78% with an MCC and
AUC values 0.76 and 0.93 respectively (Table 3, Figure 4B). For
balanced dataset-2, models developed on whole peptide and
NT5CT5 datasets achieved maximum accuracy of 86.89% with
MCC and AUC values 0.74 and 0.91 respectively.

Binary profile based SVM model. Since apart from composition,
order of amino acid is also important feature, therefore, to imple-
ment information about frequency as well as the order of residues, we
developed models based on binary profiles of peptides. We have used
the following three approaches.

mACP ENon-ACP mAMP

Lys Leu Met Asn Pro Gln Arg Ser Thr Val Trp Tyr

Figure 1| Comparison of average whole amino acid composition of anticancer, non-anticancer, and antimicrobial peptides.
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Figure 2 | Comparison of average amino acid composition of ten (A) N- and (B) C-terminal residues of anticancer, non-anticancer, and antimicrobial

peptides.

N-terminal (NT) approach. For balanced dataset-1, the accuracies
of the models developed on NT5 and NT10 datasets were 80.89% and
83.95% with MCC 0.62, 0.68 and AUC 0.87, 0.91 respectively
(Table 5). For balanced dataset-2, models developed on NT5 and
NT10 datasets achieved maximum accuracies 88.44% and 91.44%
with MCC 0.77 and 0.83 and AUC values 0.93 and 0.94 respectively
(Table 6 and Figure 4C).

C-terminal (CT) approach. Similarly, models were developed using
5 and 10 C-terminal residues and performances are summarized in
Table 5 and 6. For balanced dataset-1, model developed using 5 and
10 C-terminal residues (CT5 and CT10) achieved accuracies 74.67%
and 79.75% with MCC 0.51, 0.60 and AUC 0.79, 0.84 respectively

(Table 5). For balanced dataset-2, models developed on CT5 and
CT10 datasets achieved maximum accuracies 78.22% and 78.7%
with MCC 0.57 and 0.58 and AUC values 0.83 and 0.86
respectively (Table 6).

N + C-terminal (NTCT) approach. Similar strategy, as used in the
N- and C-terminal approaches, was applied in this approach also. The
comparative performances of SVM model based on N + C terminal
residues are shown in Table 5 and 6. For balanced dataset-1, model
developed on NT10CT10 datasets achieved maximum accuracy
84.94% with MCC 0.70 and AUC 0.91 (Table 5). For balanced
dataset-2, model developed on NTIOCT10 dataset achieved
maximum accuracy 90.74% with MCC 0.82 and AUC 0.94 (Table 6).
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Figure 3 | Sequence logo of (A) first ten residues of N-terminus and (B) last ten residues of C-terminus of anticancer peptides where size of residue is

proportional to its propensity.

Performance on independent dataset. In order to validate our
models, we have evaluated the performances of our best models on
an independent dataset. The amino acid composition-based model
achieved accuracy 86% with MCC 0.72 while model based on binary
profiles (NT10) achieved accuracy 89% with MCC 0.78. These results
indicate that our models performed equally well on an independent
dataset suggesting that our models are not over trained and may also
work in real life. We evaluated the performance of both models
(amino acid composition and binary (NT10) based models) using
five-fold and ten-fold cross-validation and achieved similar results.
In addition, we evaluated the performance of our models 100 times,
each time training and testing set of peptides were reshuffled
randomly. We computed average performance of these 100 models
with standard error, which is summarized in the supplementary
information. The average performance of our models indicates
that even after repeating 100 times, models performed similarly.
This evaluation further demonstrates the reliability of models
developed in this study.

Implementation and description of webserver. In order to serve the
scientific community, the best SVM-based models were imple-
mented to build a webserver (AntiCP, Figure 5) using a CGI/Perl

script. Various tools have been integrated to assist users to design and
predict ACPs (Figure 5). Users may submit the peptide, and the
server will generate all the possible single substitution mutants of a
given peptide. Besides generating mutants, server will also give
prediction status as ACP or non-ACP. Along with this, server
calculates key physico-chemical properties in a Tabular format. In
addition, user can discover novel ACPs by screening multiple
peptides at a time. For this, virtual screening tool has been
integrated where user has to submit multiple peptide sequences in
FASTA format. Another powerful tool is protein scan, which will be
useful for the detection of putative ACP regions in the protein. Here,
user may submit the protein sequence, and overlapping peptides will
be generated by the server, where all the peptides will be clickable.
Sorting of results in ascending/descending order of their values is
another attractive feature provided with the web server. AntiCP is
freely accessible at http://crdd.osdd.net/raghava/anticp.

Discussion

The peptide-based therapeutics is gaining tremendous interest now-
adays™, which has been reflected in the papers published in the last
five years. Many peptides-based strategies for targeting and delivering

Table 1 | The performance of amino acid composition-based mod- | | Table 2 | Performances of amino acid composition-based models
els on main dataset on dlternate dataset

Balanced dataset-1 Balanced dataset-2

Dataset Sensitivity  Specificity ~ Accuracy MCC  AUC Dataset Sensitivity  Specificity Accuracy MCC  AUC
Whole peptide  88.00 89.78 88.89 0.78 0.94 Whole peptide ~ 84.44 86.22 85.33 0.71 0.90
NT5 81.33 80.44 80.89 0.62 0.86 NTS 84.00 84.89 84.44 0.69 0.89
CT5 71.11 73.78 72.44 0.45 0.78 CT5 85.33 69.78 77.56 0.56 0.83
NT5CTS 82.22 83.56 82.89 0.66 0.88 NT5CT5 84.00 84.89 84.44 0.69 0.89
NT10 89.37 84.34 86.91 0.74 0.92 NT10 81.64 86.67 84.26 0.68 0.90
CT10 79.23 85.86 82.47 0.65 0.88 CT10 77.29 85.78 81.71 0.63 0.87
NT10CT10 89.37 87.37 88.40 0.77 0.93 NT10CT10 85.51 89.78 87.73 0.75 0.92
Main dataset Aletrnate dataset

Whole peptide  88.89 85.29 85.62 0.52 0.95 Whole peptide ~ 73.78 76.02 75.70 037 079
NTS 73.78 88.22 86.91 0.47 0.86 NT5 68.00 62.03 62.87 0.21 0.70
CT5 61.78 87.64 85.29 0.38 0.80 CT5 69.08 72.25 71.83 0.30 076
NT5CTS 74.67 94.44 92.65 0.61 0.90 NT5CT5 81.33 60.93 63.81 0.30 0.79
NT10 82.61 92.76 91.82 0.63 0.91 NT10 69.08 72.25 71.83 0.30 076
CT10 78.26 83.80 83.29 0.43 0.89 CT10 74.88 72.69 72.98 0.34 079
NT10CT10 88.89 90.55 90.39 0.62 0.94 NT10CT10 75.36 70.77 71.38 0.33 0.80
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Figure 4 | ROC plot shows performance of models developed using (A) amino acid composition (B) dipetide composition, and (B) binary profiles of

patterns (NT10 dataset).

therapeutics to various tumor types have been used over the years?,
and few of them have successfully translated into the clinics. In this
context, ACPs have also been emerged as promising candidates for
cancer therapy*. Identification and development of novel ACPs in the
wet lab is extremely time consuming and labor intensive approach.
Therefore, development of in silico methods, which can predict ACPs
prior to their synthesis is the need of the hour. Such prediction meth-
ods are not only helpful for biologists for designing effective ACPs, but
also save money and time. The present study describes an in silico
method for designing and predicting ACPs. For the development of
SVM models, both positive and negative examples are required.
Therefore, we have collected 225 experimentally validated ACPs from
literature and from various databases'”™'. Since, experimentally vali-
dated non-ACPs were not reported in the literature, equal number of
negative examples were generated randomly from SwissProt proteins
and these peptides were assumed to be non-ACPs. This approach has
been used in number of previous studies'>'**° where sufficient amount
of negative examples were not available in the literature. As it was
observed that most of the ACPs are derived from AMPs, we have

collected AMPs without anti-cancer activities (no anti-cancer activities
reported in the literature) and developed alternate dataset, which
comprises ACPs as positive examples and AMPs without anti-cancer
activities as negative examples. The models developed on this dataset
discriminated ACPs from AMPs.

A preliminary analysis of amino acid composition has shown that
certain residues are dominated in ACPs/AMPs. These differences in
amino acid composition between ACPs/AMPs and non-ACPs
prompted us to develop SVM models based on amino acid composi-
tion and dipeptide composition of peptides. The whole composition-
based model performed reasonably well and model developed on
balanced dataset-1 performed the best among the rest of the whole
composition-based models. However, models developed on split
amino acid compositions could not perform better than the whole
composition-based models, and it was expected as there was not
significant difference observed in amino acid composition between
ACPs, non-ACPs and AMPs at N- and C-terminal residues (Figure 1
and 2). We compared the performance of models developed on
balanced and realistic datasets and got similar results.
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Dipeptide composition is an attractive feature which encapsulates
the information of fraction of amino acids as well as their local order.
Therefore, we have developed SVM models using dipeptide com-
position. As shown in the result section, performance of dipeptide
composition-based models performed comparable to amino acid
composition-based model.

It is well known that peptide’s function is strongly related to its
residue order. Plethora of studies has suggested that the membrane
interaction and insertion of membrane-active peptides (e.g. AMPs,
cell penetrating peptides, ACPs, etc.) could be due to their conforma-
tion (e.g. helical, B stranded, efc.)*"**, which can be associated to a
particular order of amino acids or distribution of residues. Thus,
apart from composition of amino acids, order of amino acids is also
important feature and might be associated with anti-cancer prop-
erties of ACPs. Therefore, to incorporate the order information,
binary profiles of the peptides were generated. Binary profiles encap-
sulate information of both composition and order of amino acids. In
many previous studies, binary profiles based models have been used
to discriminate various classes of peptide/proteins'>'®. In the present
study, binary-based models performed reasonably well. In order to

Table 3 | Performance of dipeptide composition-based models on | | Table 5 | Performance of binary profile-based model on main
main dataset dataset
Balanced Dataset-1 Balanced dataset-1
Dataset Sensitivity Specificity Accuracy MCC ~ AUC Dataset Sensitivity ~ Specificity Accuracy MCC  AUC
Whole peptide ~ 88.44 87.11 87.78 0.76 0.93 NT5 78.67 83.11 80.89 0.62 0.87
NT5 73.33 86.67 80.00 0.61 0.86 CT5 63.11 86.22 74.67 0.51 0.79
CT5 60.44 79.56 70.00 0.41 0.73 NT5CTS 81.78 86.22 84.00 0.68 0.89
NT5CTS 78.22 88.44 83.33 0.67 0.89 NT10 81.16 86.67 83.95 0.68 0.91
NT10 81.16 88.89 84.94 0.70  0.91 CT10 75.36 84.34 79.75 0.60 0.84
CT10 71.50 86.87 79.01 0.59 0.85 NT10CT10 81.64 88.38 84.94 0.70  0.91
NT10CT10 83.09 88.38 85.68 0.72 0.91 -

Main dataset
Main Dafaset NT5 80.00 8733 8667 050 0.89
Whole peptide ~ 90.22 84.80 85.29 0.52 0.94 CT5 70.67 84.76 83.47 0.40 0.83
NT5 71.11 88.89 87.27 0.46 0.85 NT5CT5 74.22 89.16 87.80 0.49 0.88
CT5 66.22 82.04 80.61 0.33 0.81 NT10 80.19 92.52 91.38 0.60 0.90
NT5CTS 80.00 85.69 85.17 0.47 0.89 CT10 75.85 85.33 84.45 0.44 0.87
NT10 83.09 88.63 88.11 0.54 0.92 NT10CT10 81.16 89.76 88.96 0.55 0.89
CT10 75.85 86.12 85.17 0.45 0.87
NT10CT10 84.54 85.43 85.34 0.50 0.91

provide service to the scientific community, we have implemented
best models in a webserver, AntiCP, which is freely available. We
hope that our method will provide momentum in the discovery and
designing of novel efficient ACPs.

Methods

Datasets. We have extracted 225 experimentally validated anticancer peptides from
literature and databases like antimicrobial database (APD, http://aps.unmc.edu/AP/
main.php)", collection of antimicrobial peptides (CAMP, http://www.bicnirrh.
res.in/antimicrobial)'®, and database of anuran defense peptides (DADP, http://
split4.pmfst.hr/dadp/)"®. Majority of these peptides are AMPs with a broad spectrum
anticancer activities. All these peptides were unique and considered as positive
examples. Since there are very few experimentally proved non-anticancer peptides,
we derived 2250 random peptides from SwissProt proteins. In this study, we assign
these random peptides as non-ACPs (negative examples), though it is possible that
some of these random peptides have anticancer properties. We also extracted AMPs
from above databases like APD, CAMP, DADP for which no anticancer activity was
reported in the literature and considered as non-ACPs. Following datasets were
derived from the above data.

Main dataset. This dataset contains 225 experimentally validated anticancer (positive
examples) and 2250 random or potential non-anticancer peptides (negative examples).

Alternate dataset. This dataset contains 225 experimentally validated anticancer
peptides and 1372 non-anticancer (AMPs without anticancer activities, negative
examples).

Table 4 | Performance of dipeptide composition-based model on
alternate dataset

Table 6 | Performance of binary profile-based model on alternate
Balanced dataset-2 dataset
Dataset Sensitivity ~ Specificity ~Accuracy MCC  AUC Balanced dataset-2
\I:l\{I!?Ie peptide gg?? ggg; gggg 8;21 82& Dataset Sensitivity ~ Specificity ~Accuracy MCC  AUC
CT5 76.00 75.56 75.78 0.52 0.83 NT5 87.11 89.78 88.44 0.77 0.93
NT5CT5 87.56 86.22 86.89 0.74 0.91 CT5 82.67 73.78 78.22 0.57  0.83
NT10 84.06 86.67 85.42 071 0.91 NT5CT5 88.89 89.78 89.33 0.79 0.93
CT10 84.06 75.56 79.63 0.60 0.86 NT10 89.37 93.33 91.44 0.83 0.94
NT10CT10 85.51 83.56 84.49 0.69 0.89 CT10 85.51 72.44 78.70 0.58 0.86

NT10CT10 85.02 96 90.74 0.82 0.94
Alternate dataset
Whole peptide 7778 7478 752 039 079 Alternate datasef
NT5 74.22 62.17 63.87 026 0.75 NT5 67.56 73.69 72.82 0.31 0.75
CT5 71.50 70.70 70.81 0.30 0.78 CT5 71.56 71.43 71.45 0.31 0.75
NT5CTS 73.78 63.41 6487 026 077 NT5CT5 70.22 75.87 75.08 035 0.79
NT10 71.50 70.70 70.81 0.30 0.78 NT10 71.01 71.96 71.83 0.31 0.77
CT10 69.57 64.58 6524 024 074 CT10 65.22 78.08 76.38 033 077
NT10CT10 78.26 64.94 66.71 0.30 0.79 NT10CT10 75.85 69.23 70.1 032 079

| 3:2984 | DOI: 10.1038/srep02984 6


http://aps.unmc.edu/AP/main.php
http://aps.unmc.edu/AP/main.php
http://www.bicnirrh.res.in/antimicrobial
http://www.bicnirrh.res.in/antimicrobial
http://split4.pmfst.hr/dadp
http://split4.pmfst.hr/dadp

Home Peptide Design Virtual Screening  Protein Scan Mot Scan Aigorithm Datasets Help Team Contact Us

Welcome to AntiCP

s Carpet model Barrel-Stave model Toroidal model

S e — : R iy
000000000000000000000000000000000000 -'.'MMMIMMMM‘NMWMBM

Various modcls of membrane permeation by anti-cancer peptides

AntiCP is web based prediction server for Anticancer peptides. SVM models developed are based on
amino acid composition and binary profile features. Positive dataset consists of 225 antimicrobial
peptides with anticancer properties. This server is useful for the working in the
field of Anticancer peptides. This server allows the users to design ACPs and their mutants with different
physicochemical properties.

Major Features include:

(1) Peptide Design: This module allows the users to generate all possible single mutant analogs of their
peptides and predict whether the analogs are having anti cancer property or not.

(2) Virtual Screening: This module of AntiCP allows the user to predict anti cancer property in bulk
deposited query peptides.

(3) Protein Scan: This module generates all possible overlapping peptides and their single mutant
analogs of protein submitted by the user. It also predicts whether overlapping peptide/analog is ACP or
not.

(4) Motif Scan: Allows user to identify motifs related to anti cancer property in their sequences.

e to Protein Scan Page

of AntiCP

out novel ant cancer peptides. it wil

AntiCP:- Designing of Anticances Reptides

to Virtual

Page of AntiCP

Welcome to Motif Scan Page of AntiCP

This to0i allows ser 15 scan ant Cancer and HoA-ant Cancer peptide MOtds in their query sequences. User can

to of type peptde ind server wil scan peptdes for the presence of all possio ant cancerinon-
G e O GanCOr POpIde ORfs a0 Gspiay the resuls In tabulr format cemonsiTating NUMBer of POSEVG and
et el e A ative MOLES i Query $0QuecHs. For More information cick Help.

St o rem N
P

s

Trse o paste paptide sequence n Fasta termar

i) V0 e Oosen

Satect el from Mot arch Mt agarst ACP Samses o MO ag0est AP Gaabas

Figure 5 | Schematic representation of AntiCP webserver (developed with scienceslides software, http://www.visiscience.com/) and its various

modules.

Balanced datasets. It is a well known fact that classification techniques, particularly
machine learning techniques performed best on balanced datasets. Thus, we gener-
ated balanced datasets for both main and alternate datasets. Our main balanced
dataset contains 225 anticancer and 225 non-anticancer or random peptides (ran-
domly obtained 2250 SwissProt peptides). Similarly, alternate balanced dataset
contains 225 anticancer and 225 non-anticancer or AMPs (randomly obtained from
1372 AMPs).

Independent dataset. For developing independent dataset, we collected 50 experi-
mentally validated ACPs from literature and patents and an equal number of random
peptides were generated from SwissProt proteins and considered as negative exam-
ples. None of the peptides in independent dataset is identical to peptides in training or
testing dataset.

Support vector machine. In this study, we developed models for discriminating
anticancer and non-anticancer peptides using a highly successful machine learning
technique, support vector machine (SVM)*. We developed SVM models using
SVM"e" Version 6.02 package. Various features, including amino acid composition,
dipeptide composition and binary profile of pattern were used as input features.

Residue composition as input features. In order to develop SVM models based on
machine learning techniques, one needs fixed length input features. Our dataset
contains peptides of variable length; thus we have computed composition profile of
peptides. In this study, we computed amino acid and dipeptide composition where
information is encapsulated in a vector of 20 and 400 dimensions respectively. The
calculation of amino acid and dipeptide composition was described previously'>'°.

Binary profile of patterns. Binary profiles is a key feature and has been used in a
number of existing methods.

It encapsulates information of both composition and order of amino acid in
peptides. Therefore, binary profiles for first 5 and 10 residues from N- and C-ter-
minus were generated for each peptide, where each amino acid is represented by a
vector of dimensions of 20 (e.g. Ala by 1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0) as
described previously'®.

Sequence logos. The sequence logos, which provides information about the position
specific frequency of amino acids in peptide, were generated using the WebLogo
software*.

Performance measures. The performance of models were evaluated using threshold-
dependent and threshold-independent parameters. Sensitivity (Sn), specificity (Sp),
accuracy (Ac) and Matthew’s correlation coefficient (MCC) were used as threshold-
dependent parameters as previously described'. For threshold-independent

parameter, ROC (Receiver Operating Characteristic) for all of the models were
created in order to evaluate the performance of models.

Cross validation technique. The ten-fold cross validation technique was used to
evaluate the performance of various SVM models. In this technique, sequences are
randomly divided into ten sets, of which nine sets are used for training and the
remaining tenth set for testing. The process is repeated ten times in such a way that
each set is used once for testing. Final performance is obtained by averaging the
performance of all the ten sets.
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