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ABSTRACT
The sentences “More than half of the students passed the exam” and “Fewer than half of the
students failed the exam” describe the same set of situations, and yet the former results in
shorter reaction times in verification tasks. The two-step model explains this result by
postulating that negative quantifiers contain hidden negation, which involves an extra
processing stage. To test this theory, we applied a novel EEG analysis technique focused on
detecting cognitive stages (HsMM-MVPA) to data from a picture-sentence verification task. We
estimated the number of processing stages during reading and verification of quantified
sentences (e.g. “Fewer than half of the dots are blue”) that followed the presentation of pictures
containing coloured geometric shapes. We did not find evidence for an extra step during the
verification of sentences with fewer than half. We provide an alternative interpretation of our
results in line with an expectation-based pragmatic account.
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1. Introduction

In the 1960s, studies first showed that sentences with
negation (e.g. “Nine is not an even number”) take
longer to process than affirmatives (e.g. “Nine is an
odd number”) (Wason, 1961). However, this effect
cannot be straightforwardly attributed to the
meaning of negation itself. Amongst other reasons,
this is because explicit negation lengthens the sen-
tence: the longer the sentence, the more complex it
is, and, therefore, the longer it takes to process (see
Grodzinsky et al., 2020, for methodological discussion).
To avoid this confound, Just and Carpenter (1971)
tested three types of negation: explicit syntactic nega-
tives (e.g. none), implicit syntactic negatives (e.g. few),
and semantic negatives (e.g. a minority). They found
that participants verified all types of negatives longer
than affirmatives. Because the sentences with implicit
syntactic and semantic negatives and affirmatives
were the same length, this study confirmed that the
processing difficulties related to negation are not just
a function of the length of the sentence but are

inherent to negation. This highly replicable effect is
called the polarity effect, a general linguistic phenom-
enon of negative expressions (including sentential
negation) being more difficult to process than their
affirmative counterparts (Deschamps et al., 2015; Just
& Carpenter, 1971, see Clark, 1976 for review).

Several theoretical proposals aimed to explain this
effect (e.g. Clark & Chase, 1972; Grodzinsky et al., 2018;
Kaup et al., 2006). In this paper, we discuss and test
one of the general approaches, namely the two-step
model (see Clark, 1976, for review). We refer to the
two-step model as a class of models that share a
common assumption: they postulate that negation and
negative expressions involve an extra processing step.
To control for the confound caused by the explicit nega-
tion (the length of the sentence), we investigated the
polarity effect by testing a pair of quantifiers that were
comparable in length: positive (more than half) and
negative ( fewer than half).

The two-step model was inspired by studies on sen-
tential negation (Clark, 1976; Clark & Chase, 1972; Kaup
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et al., 2006). It is also well-grounded in the semantic
analysis of negation and negative expressions (Grod-
zinsky et al., 2018). It appeals to the idea that a sentence
is processed in a sequence of stages. These processing
stages correspond to the mental operations of building
the representation of the sentence. The more complex
the sentence, the more operations it involves. The
main assumption of the two-step model is that negative
expressions (e.g. the quantifier fewer than half) involve
an additional mental operation. This extra mental oper-
ation explains the longer latency of sentence processing
involving negative expressions. It should therefore be
reflected in reaction time differences, namely, it should
take longer to process negatives than affirmatives. This
prediction bore out in behavioural studies on explicit
negation, expressed in English by no, not, it is not true
that (Just & Carpenter, 1971); and implicit negation,
expressed by negative quantifiers (e.g. few, fewer than
half, Schlotterbeck et al., 2020), adjectives (e.g. short,
Tucker et al., 2018), or location words (e.g. below, Clark
& Chase, 1972).

Thus far, the two-step model has mostly been tested
indirectly. The experimental studies measuring mean
reaction times (e.g. Clark & Chase, 1972; Just & Carpen-
ter, 1971; Kaup et al., 2006) or event-related potentials
(ERPs) (e.g. Farshchi et al., 2020; Fischler et al., 1983)
can only indirectly support the two-step model by pos-
tulating a linking assumption between the model’s pre-
dictions and the data pattern. For example, in the
reaction time experiments, it is assumed that the differ-
ence in mean reaction times between experimental con-
ditions reflects the extra processing step. Similarly,
electroencephalographic (EEG) experiments assume
that the difference in the ERP components is due to
the extra processing step.

The idea that the upcoming information (for
example, a sentence) is processed in a series of cogni-
tive stages has a long tradition not only in linguistics
but also in experimental psychology (Donders, 1969;
Sternberg, 1969). The processing stages postulated in
cognitive models are also reflected in the stages of pro-
cessing in the brain (Zylberberg et al., 2011). Recent
advancements in computational modelling allow us
to directly estimate the number of processing stages
in simple cognitive tasks (Anderson et al., 2016). This
approach (HsMM-MVPA) makes use of the multivariate
nature of EEG to estimate the most likely onsets of cog-
nitive processing stages. As a result, the method also
identifies the most likely number of processing stages
for a particular task or experimental condition. This
way, we can directly test the two-step model, as it pre-
dicts that the number of processing stages is related to
the polarity effect.

In the next sections, we will explain the key concepts
of the two-step model and present experimental
findings that indirectly support its predictions. Then,
we will point out the limitations of these studies and
show how we can directly test the two-step model by
using the Hidden semi-Markov Model Multivariate
Pattern Analysis (HsMM-MVPA).

1.1. Two-step models

Broadly speaking, the two-step models of (explicit or
implicit) negation assume that an additional processing
step related to the processing of negation could be
mapped onto cognitive stages. This family of models
roots from studies on sentential negation, but it can
be extended to other types of negatives. Two-step
models postulate two sources of processing difficulties.
The first one is at the level of mental representation
and refers to the complexity of this representation
(Agmon et al., 2022; Clark & Chase, 1972; Grodzinsky
et al., 2018; Kaup et al., 2006). The second source lies
in the verification procedure and steps involved in the
computation of a sentence truth value (Agmon et al.,
2022; Clark & Chase, 1972; Grodzinsky et al., 2018).

Various semantic analyses explain the source of the
representational complexity of negatives. According to
the two-step simulation hypothesis, the representation
of sentences negation like “A is not above B” contains
the positive proposition “A is above B”, called the to-
be-negated state (Kaup et al., 2006). To access the rep-
resentation of the actual state of affairs, firstly, partici-
pants have to represent the to-be-negated sentence
and mentally tag it as false. The simulation account
explicitly postulates an extra step in the processing of
the negated sentence. The model found supportive evi-
dence coming from reaction time data from picture-sen-
tence verification experiments (Kaup et al., 2006, 2007).
For example, Kaup et al. (2006) showed that a delay of
1500 ms of picture presentation is sufficient for partici-
pants to shift their attention from the representation
of the to-be-negated state and focus on the actual
state of affairs.

Already Clark and Chase (1972), (see also Clark, 1976)
observed that implicit negations (e.g. locatives below)
take longer to process than positives (above). Their
model of sentence negation processing, the so-called
“true” model of negation (Clark & Chase, 1972, see also
Clark, 1976, also known as the schema-plus-tag
model), included a parameter relating to this difference
in the encoding time.

Agmon et al. (2019) proposed that the property of
negative polarity adds complexity to the mental rep-
resentation of negatives. According to their proposal,
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positive expressions always have denotations above a
certain reference point on a mental scale. For example,
more than half means more than the threshold of half,
tall means more than a certain height, and above
means more up than the reference point see similar argu-
ment in Clark (1976). Negatives, in turn, refer to the
opposite direction. They are cognitively costly because
they reverse a natural order on the scale. As a result,
negative expressions have a more complex represen-
tation because they contain hidden negation and
involve a computation of less than scale reversal
operation.

Furthermore, in the realm of quantifiers, Grodzinsky
et al. (2018) proposed that representational complexity
is related to the number of downward entitling oper-
ators. Downward and upward entailment refers to the
opposite entailment patterns. For sets A and A’ if A⊆A’,
then a quantifier Q is upward entailing if Q(A)⊆Q(A’)
and downward entailing if Q(A’)⊆Q(A). For example,
the sentence “More than half of the men run fast”
entails that “More than half of the men run,” while the
sentence “Fewer than half of the men run” entails that
“Fewer than half of the men run fast ”. According to
Grodzinsky et al. (2018), the comparative more is rep-
resented as many + er, while fewer is represented as
little + many + er, where little is an extra downward
entailing operator not present in more (cf. Heim,
2006).1 Recently, Agmon et al. (2022) suggested that
downward monotonicity might contribute to the
polarity effect by increasing working memory load.
When verifying negative quantifiers, participants have
to retrieve a non-default entailment pattern, which in
turn results in increasing the processing cost.

Concerning the verification of negative expressions,
already early models of negation (Clark & Chase, 1972;
Young & Chase, 1971b) made different predictions
about the interaction between the sentence polarity
and the sentence truth value. The “true” model of nega-
tion predicts the interaction, namely that affirmative
sentences should be verified faster when they are true
than when they are false, and the opposite pattern of
reaction times for negative sentences.2 The “conversion”
model, in contrast, assumes that a negative sentence can
be converted into an affirmative sentence and verified
after the conversion. This model postulates longer reac-
tion times for all negative sentences (see Clark, 1976, for
a detailed description of this model) and predicts only
the main effects of truth value and negation, but no
interaction.3 While some studies support the “conver-
sion” model (Young & Chase, 1971a as cited in Clark,
1976, cf. Wason, 1961), the model’s application is
limited to tasks with two contradictory predicates (e.g.
odd number vs. even number) where one is a negation

of another (e.g. odd number means not even number).
Similar to sentence negation, implicit negatives involve
a longer verification procedure. Grodzinsky et al. (2018)
postulated that quantifiers, in addition to represen-
tational complexity, require a more complex verification
procedure (verification complexity, cf. Barwise & Cooper,
1981). The predictions of this model bore out in recent
reaction time experiments (Agmon et al., 2022).

To conclude, the two-step models of sentence
negation and various implicit negations make two
main predictions concerning the additional step of
processing. Firstly, they predict that a more complex
semantic representation of negatives involves an
additional mental operation. Secondly, they predict
that the procedure of truth value computation
might involve more steps in the case of negative
than positive expressions.

1.2. Electroencephalographic evidence for two-
step models

Besides the evidence from reaction time experiments,
the two-step model is also supported by electroence-
phalographic (EEG) findings. Classical EEG studies on
language processing use the event-related potential
(ERP) technique, which involves averaging the signal
over trials and participants. Two components are par-
ticularly interesting for language processing – the
N400 and P600 (Delogu et al., 2019). The N400 com-
ponent is sensitive to semantic mismatch and incon-
gruency (Kutas & Hillyard, 1980), as well as to world
knowledge, discourse, cloze probability, and non-lin-
guistic meaning processing (see Kutas & Federmeier,
2011, for review). It is a signature of the lexical retrieval
processes (Delogu et al., 2019). The P600, in turn, was
first linked to syntactic processing (Hagoort et al.,
1993; Kaan et al., 2000; Osterhout & Holcomb, 1992),
but is also related to semantic integration (Brouwer
et al., 2017, 2012).

Early EEG evidence for the two-step processing of
negation comes from the phenomenon called nega-
tion-blind N400 (Fischler et al., 1983). A sentence like
“A dog is a fish” is false and semantically incongruent.
It should, therefore, elicit an N400 on the final word of
the sentence (fish). Fischler et al. (1983) showed that
the N400 was induced not only by false sentences like
“A dog is a fish,” but also by true negative sentences
like “A dog is not a fish,” which is a correct and semanti-
cally congruent sentence. The amplitude difference and
latency of the N400 were comparable between affirma-
tive and negative sentences. The lack of an N400
reduction in the presence of negation was interpreted
as evidence of a delay in processing. Palaz et al. (2020)
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showed a similar result in a more pragmatically felicitous
context.

In another study, Dudschig and Kaup (2018) used the
lateralised readiness potential (LRP) and showed that the
to-be-negated information is initially activated. They
argued that the clash between negated information
and the actual state of the world is processed similarly
to a conflict in conflict-monitoring tasks (Botvinick
et al., 2001; Van Maanen & Van Rijn, 2010; Van Maanen
et al., 2012). The idea that negation requires switching
between two mental representations was further sup-
ported by the EEG signatures of response inhibition in
negation processing (Beltrán et al., 2019). These
findings support the idea that the explicit negation is
represented in two steps and that additional cognitive
resources are needed to choose between the
representations.

A few studies (Augurzky et al., 2020; Nieuwland, 2016;
Urbach et al., 2015; Urbach & Kutas, 2010) tested the
online processing of negative and positive quantifiers.
For example, Urbach and Kutas (2010) manipulated the
lexical-semantic associations between quantifiers
(most, few), adverbs (often, rarely) and nouns to create
typical and atypical sentences. They expected to find a
cross-over interaction between quantifier/adverb and
typicality, as reflected by an N400 component. What
they found, however, was an asymmetry in N400 ampli-
tude for positive vs. negative quantifiers. The N400 effect
followed the predicted patterns only for positive
expressions. Moreover, they found that the prefrontal
positivity in atypical sentences was more pronounced
for negative expressions, suggesting that negative
expressions require additional processing compared to
positive ones. In a follow-up experiment, Urbach et al.
(2015) demonstrated that in a pragmatically appropriate
discourse context, the N400 pattern follows the
expected full cross-over interaction pattern. Further
studies (Nieuwland & Kuperberg, 2008; Urbach et al.,
2015) demonstrated that negative expressions can be
processed easier in a pragmatically felicitous context,
while others (Orenes et al., 2016) showed that sentences
with negation are still processed slower than affirmative
sentences.

Further evidence for a delay in the processing of
negative quantifiers comes from a picture-sentence ver-
ification task (Augurzky et al., 2020). Because previous
studies (Nieuwland & Kuperberg, 2008; Urbach & Kutas,
2010) showed that discourse information can affect the
processing of negative quantifiers or negation, Augurzky
et al. (2020) presented participants contexts given as a
picture instead of a sentence. Pictures, in contrast to
world-knowledge-based sentences, were equally infor-
mative for all quantifiers in the experiment. In addition,

by presenting quantified sentences in the context of a
picture, Augurzky et al. (2020) were able to control for
lexical associations as a potential confounding factor.

Moreover, previous experiments (Urbach et al., 2015;
Urbach & Kutas, 2010) tested the polarity effect by com-
paring quantifiers, for example few and most. However,
in addition to polarity, this pair of quantifiers differs
also in other semantic properties. For example, most is
a superlative quantifier (Hackl, 2009), while few is not.
For this reason, Augurzky et al. (2020) chose the quan-
tifiers more than half and fewer than half with highly
comparable semantic properties. They tested the
online verification of sentences such as “More than
half/Fewer than half of the dots are yellow ”, and found
a contrast in the N400 measured on the adjective
onset for false vs. true sentences when the quantifier
was more than half and no effect for fewer than half.
They interpreted this finding as evidence for the delay
in processing negative quantifiers.

In addition to the analysis of the N400 effect,
Augurzky et al. (2020) conducted an exploratory analysis
and found a greater late positivity activation for fewer
than half than for more than half. They measured the
ERPs from the onset ofmore/fewer, which was presented
separately from than half. The authors discussed two
possible interpretations of this finding. According to
the first one, processing of fewer than half is more cog-
nitively costly thanmore than half, and the late positivity
reflects an increase in attentional demands. According to
the second interpretation, the positive component is
related to a contextual update. The participants
encoded the picture in terms of the larger proportion,
and as soon as they processed fewer than half, they
had to revise their current discourse model. Both expla-
nations suggest that the origin of the N400 delay effect
could be traced back to difficulties in processing the
negative quantifier.

The analysis of the above-mentioned late positivity
was exploratory and did not directly show that the
difficulties in processing negative quantifiers were
associated with an extra processing step. However,
their interpretations of the late positivity could be
framed in the two-step model. For example, increasing
attentional demands might reflect the processing of
hidden negation (Clark & Chase, 1972; Grodzinsky
et al., 2018; Kaup et al., 2006) or downward monotonicity
(Agmon et al., 2019; Grodzinsky et al., 2018).

To summarise, the two-step model found substantial
support in experimental data on processing negative
sentences (Clark, 1976; Clark & Chase, 1972; Just & Car-
penter, 1971; Kaup et al., 2006). However, its predictions
were tested rather indirectly. To directly test the two-
step model, we reanalysed EEG data from the
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experiment of Augurzky et al. (2020) with the HsMM-
MVPA developed by Anderson et al. (2016). This reanaly-
sis had a two-fold goal. Firstly, we aimed to test one
explanation of the late positivity found by Augurzky
et al. (2020) namely, processing of negative quantifiers
involves an additional step of processing related to the
complexity of representation. A positive finding would
support the two-step model. Secondly, we wanted to
test if the procedure of truth value computation for
negative quantifiers involves an additional step of pro-
cessing as also predicted by the two-step model. In
the next section, we elaborate on the main theoretical
assumptions of HsMM-MVPA and its relation to the tra-
ditional ERP analysis.

1.3. Hidden semi-Markov model multivariate
pattern analysis

The potential of HsMM-MVPA has been shown in several
cognitive tasks (see Borst & Anderson, 2021, for review).
In domains close to quantification, Zhang, Walsh et al.
(2018) validated the HsMM-MVPA in a mathematical
problem-solving task, and Berberyan et al. (2021) discov-
ered the stages of processing in a lexical decision task.
HsMM-MVPA was also applied to an associative recog-
nition task and a Sternberg Working Memory task
(Anderson et al., 2016), a perceptual speed-accuracy
trade-off task (Van Maanen et al., 2021), perceptual
decision-making task (Berberyan et al., 2020), working
memory task (Zhang, van Vugt et al., 2018), a numerical
cognition task (Groeneweg et al., 2021), and a mental
rotation task (Heimisch et al., 2023). Together, the
method’s validity is well-established in cognitive tasks
that involve only a few processing stages. The methodo-
logical advancement of the current study is to apply this
method to a task in which participants have to process a
stream of stimuli, such as the words of a sentence.

HsMM-MVPA has been applied in a top-down
manner to test computational models of specific tasks
(Anderson et al., 2016) as well as in a bottom-up
manner (Walsh et al., 2017) when the computational
model of the task is unknown, and the goal is to
infer the number of processing stages from the
neural data. In this paper, we applied a hybrid
approach. On the one hand, we do not have a fully
established processing model of quantified sentences
that would predict a precise number of processing
stages. In the absence of such a model, we applied
the bottom-up strategy. On the other hand, we
aimed to test a very precise, theory-driven prediction
that there should be at least one more stage in one
experimental condition than the other. This could be
considered a top-down test of our main prediction.

HsMM-MVPA allows us to test our main hypothesis,
namely the presence of an extra processing step that
the two-step model predicts. This is because HsMM-
MVPA aims to identify the onset of cognitive events in
the EEG signal on a trial-by-trial basis, so-called bumps
(cf., Makeig et al., 2002; Yeung et al., 2004, 2007),
under the assumption that these cognitive events
occur on every trial and are from the same temporal dis-
tribution. The durations between bumps (so-called flats)
can differ under the assumption that cognitive pro-
cesses vary in duration as well, e.g. because of variation
in task demands between different experimental con-
ditions. Moreover, flats are variable from trial to trial
under the assumption that information processing by
participants is also prone to trial-by-trial variability.
Because the first bump might not occur exactly with
the onset of a stimulus presentation, the first stage
starts with a flat. Therefore, for n bumps, there are
always n + 1 stages.

HsMM-MVPA can be used to estimate the most likely
distribution over time of the bump locations, as well as
their amplitudes. A subsequent comparison of models
with different numbers of bumps provides evidence
for a particular number of bumps (see the appendix in
Anderson et al., 2016, for discussion and mathematical
details). This entails that under the two-step hypothesis,
the processing of negative quantifiers requires an
additional bump, signalling an additional cognitive
event.

1.3.1. HsMM-MVPA and ERP methods
Thus far, we have outlined the HsMM-MVPA at a concep-
tual level. To apply the method to the EEG data, Ander-
son et al. (2016) proposed a linking assumption between
the EEG signal and bumps estimated by the HsMM-
MVPA. They postulated that HsMM-MVPA identifies
bumps of EEG activity, which correspond to the ERPs.
This assumption is compatible with two theories of
ERP generation (Makeig et al., 2002): the classical
theory and the synchronised oscillation theory.

Although there is a clear theoretical relationship
between HsMM-MVPA and ERP methods, the advantage
of the former is that it overcomes some shortcomings of
the latter. The main shortcoming of the ERP analysis is
that it usually involves averaging the EEG signal (cf.
Dubarry et al., 2017). Therefore, ERPs cannot account
for the trial-by-trial variability in the onsets of the
endogenous ERP components. As Walsh et al. (2017)
argued, there are two consequences of the loss of trial-
level variability due to averaging. Firstly, averaging
might diminish an ERP effect if the trial-by-trial variability
in the onsets of components is high. Secondly, the infor-
mation about the onset of the cognitive event is lost. In
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contrast to traditional ERPs, HsMM-MVPA analyses the
EEG signal at the single-trial level instead of averaging
it from multiple trials and participants. The HsMM-
MVPA identifies on a trial-by-trial basis the bumps of
EEG activity corresponding to the onsets of ERPs (cf.
Anderson et al., 2016).

Needless to say, the ERP technique advanced our
understanding of how language is processed.
However, HsMM-MVPA is more appropriate when it
comes to testing the two-step model. By comparing
different HsMM-MVPA models with different numbers
of bumps, we can quantify the number of processing
stages in each experimental condition. No such analysis
is possible with ERPs. Moreover, HsMM-MVPA detects
the onsets of processing stages on the trial level,
while the methods of estimating trial-by-trial ERP
latencies have limitations (Walsh et al., 2017). This limit-
ation of classical ERP can be avoided with the help of
HsMM-MVPA. HsMM-MVPA makes it possible to con-
sider the information about trial-by-trial variability in
the EEG signal in the averaging by computing the
bump-related potentials (BRPs, Berberyan et al., 2021).

1.3.2. Bump-related potentials
BRPs (Berberyan et al., 2021) take advantage of both
HsMM-MVPA and ERP methods. Based on the above-
mentioned linking assumption, the bump onsets are sig-
natures of the ERPs. Therefore, BRPs can be computed
using the trial-by-trial information about the bump
onset from HsMM-MVPA. For averaging, BRPs can be
computed in a fixed time window; however, in contrast
to traditional ERPs, the time window is not locked to
stimuli or response onsets but to the onset of the cogni-
tive process of interest. Berberyan et al. (2021) showed
that BRPs can reveal differences between experimental
conditions that were lost during averaging in the tra-
ditional ERP analysis.

The purpose of BRP analysis in this study was two-
fold. Firstly, it allows us to link the ERP results by
Augurzky et al. (2020) with the results of HsMM-
MVPA and enhance the interpretation of the new
findings. Secondly, by aligning the signal to the
bump onsets instead of the stimuli onset we can test
precisely the origin of the difference in EEG amplitude
between conditions. For example, the interaction in
N400 found by Augurzky et al. (2020) between the
polarity of the quantifier and the truth value could
be explained by the general delayed processing of
the negative quantifier due to an extra step preceding
this time window. Under this hypothesis, the bump link
with the N400 component could out-scope the
Augurzky et al. (2020) analysis time window.
However, once the EEG signal is aligned to the bump

onset, the difference in N400 should be visible for
both quantifiers. Alternatively, if an additional proces-
sing step was not a reason for the absence of the
N400 difference for fewer than half, we should replicate
the interaction found by Augurzky et al. (2020) in the
BRP analysis.

2. Methods

We applied the HsMM-MVPA to data from a picture-sen-
tence verification task collected and analysed by
Augurzky et al. (2020) to test the two-step model
hypothesis directly. For a detailed description of partici-
pants, exclusion criteria, experimental design, pro-
cedure, and EEG recording, see Augurzky et al. (2020).
In addition, we conducted ERP analyses to test
whether we could replicate the results from Augurzky
et al. (2020) study (Section 2.6) and statistical analyses
of reaction time data and stage durations estimated
using HsMM-MVPA (Section 2.7).

2.1. Participants

We excluded two participants due to movement EEG
artifacts from the sample of 23 participants analysed
by Augurzky et al. (2020).4

2.2. Experimental design and procedure

The experiment tested the processing of positive and
negative proportional quantifiers in a picture-sentence
verification task employing a within-subjects factorial
design. The Quantifier (more than half vs. fewer than
half) at the beginning of the sentence and the visual
Context (picture A vs. picture B) were manipulated
such that, given a specific picture, the sentences were
true with one of the Quantifiers and false with the
other. In addition, the Length (long vs. short) of the sen-
tence was manipulated as a third factor. Out of a total of
320 trials, 160 contained short sentences and the
remaining 160 long ones. The short sentences had the
structure Q of the dots are ADJ (Q der Punkte sind ADJ),
where Q was one of the two tested quantifiers and
ADJ was an adjective referring to one of two colours
shown in the picture. Pictures contained geometrical
shapes (e.g. circles, triangles, rectangles) in one of two
colours (e.g. red and blue, purple and orange, green
and yellow) randomly paired with a container shape
(e.g. semicircle, squares). The container shape was
important for long sentences, which referred to shapes
inside or outside it. In particular, the long sentences con-
tinued with…that are PREP of the FORM (…die PREP des/
der FORM sind), where FORM referred to the container
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shape shown in the picture, and PREP was one of two
Prepositions (inside vs. outside). The trials with short
sentences thus consisted of factorial combinations of
Quantifiers (more than half, fewer than half) and Truth
Values (true sentence, false sentence), while trials with
long sentences combined Quantifiers (more than half,
fewer than half), Contexts (picture A, picture B), and Pre-
positions (inside, outside). Together, there were 80 trials
per quantifier and per sentence length. For each combi-
nation of Quantifier x Context x Preposition, 20 pairs of
context pictures were generated and paired with each
sentence condition.

The experimental procedure is shown in Figure 1.
Each trial started with the presentation of the context
picture in the centre of the screen for 1500 ms. The
sentences were presented word by word for 500 ms
each and were followed by three question marks,
prompting for a response. Participants evaluated the
truth value of the sentences by pressing the F or J
keys on a keyboard. Response-key assignment was
counterbalanced across participants. They were
instructed to respond as soon as possible. They did
not know whether the sentences would continue
until they saw the punctuation mark, which was pre-
sented on a separate screen. After participants had
responded, a blank screen was displayed for 500 ms
followed by three exclamation marks displayed for
1200 ms. To prevent data contamination due to eye-
movement artefacts, participants were instructed to
blink between trials. The experiment included a

timeout procedure. The initial timeout was 1200 ms.
During the experiment, the timeout was adopted to
participants’ response timing using exponentially
weighted moving averages (Leonhard et al., 2011). Par-
ticipants received feedback encouraging them to
respond more quickly, i.e. the word “Faster!” (Schneller!)
displayed on the screen, if they ran into the timeout.

2.3. Choice of analysis time windows

Previous studies (e.g. Anderson et al., 2016; Berberyan
et al., 2020) have applied HsMM-MVPA from the onset
of the stimuli until the response. Given that in our exper-
iment, each word was displayed for 500 ms, it would not
be possible to include whole sentences in the analysis.
This would make the model too complex and the com-
putation intractable. As mentioned in the introduction,
the two-step model gives two predictions of when the
extra step could occur. It could either occur during the
comprehension of the sentences or during the compari-
son between sentences and pictures (Clark, 1976). There-
fore, we chose two time windows based on previous
analyses (Augurzky et al., 2020) and predictions of the
two-step model.

In the first time window, we tested whether the differ-
ence in amplitude of the late positivity between more
than half and fewer than half found by Augurzky et al.
(2020) was related to an extra processing step during
the comprehension of the quantifier. Therefore, we
chose the first time window from the quantifier onset

Figure 1. Procedure of the experiment (figure from Augurzky et al., 2020).
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(more/fewer) until 800 ms after. For this analysis, we
included both short and long sentences because, at
this point, the sentence type (short vs. long) did not
differ physically, and participants could not have pre-
dicted the sentence type. Additionally, by including
long sentences, we analysed more trials and increased
the power of the analysis (typically, studies using
HsMM-MVPA include at least 100 trials per condition,
cf. Anderson et al., 2018). We analysed two conditions
corresponding to the quantifiers more than half and
fewer than half.

In the second time window, from the onset of the
adjective until the response, we tested whether compar-
ing the propositional sentence meaning and the picture
representation is reflected in the processing stages. In
this time window, Augurzky et al. (2020) found an inter-
action between quantifier polarity and sentence truth
value reflected in N400 amplitude. For this analysis, we
included only short sentences because, at this point,
the sentence type (short vs. long) differed physically.
We analysed four conditions: more than half true sen-
tences, more than half false sentences, fewer than half
true sentences, and fewer than half false sentences.

2.3.1. Expected bumps and components
As already mentioned, there are no existing compu-
tational models that predict the number of bumps
during the processing of quantified sentences.
However, based on previous HsMM-MVPA studies and
Augurzky et al. (2020), we can make certain predictions
about bumps and components that we expect to
observe in the current study. Because participants per-
formed a visual task, we expect to observe an N100 com-
ponent (Luck et al., 2000). For the components related to
linguistic processing, in addition to N400 and P600, we
expect to observe bumps reflecting the P200 (Damba-
cher et al., 2006) and P300 (Jouravlev et al., 2016). We
predicted that the task could elicit components related
to working memory (Ruchkin et al., 1992). In addition,
in the time window from the adjective onset, we
expected to observe late negativity linked to the evalu-
ation of the truth value (Wiswede et al., 2013) and
response-related components such as the late positive
complex (LPC) (De Jong et al., 1990) and the centropar-
ietal positivity (CPP) (Twomey et al., 2015).

2.4. EEG data preprocessing

The data preprocessing consisted of two stages: initial
data preprocessing and artifact rejection, and specific
preprocessing needed for HsMM-MVPA, BRPs and ERPs.
For data preprocessing, we used MATLAB R2019b and
R2021a (The MathWorks, Inc.), MATLAB toolbox EEGlab

2019 and 2021 (Delorme & Makeig, 2004), and prepro-
cessing scripts adapted from Berberyan et al. (2020).

We referenced the electrodes to mastoids. We down-
sampled the data from 2048 Hz to 1024 Hz and applied a
0.3 Hz high-pass filter and a 20 Hz low-pass filter. The
filters and references were the same as in Augurzky
et al. (2020). In the next step, we manually cleaned the
data from the artifacts, except for the eye movement-
related artifacts. We interpolated the signal from noisy
electrodes for 8 participants. We did not interpolate
more than 15% of electrodes. Following manual artifact
rejection, we applied Independent Component Analysis
(ICA, runica algorithm Delorme & Makeig, 2004; Delorme
et al., 2007). We removed the components related to eye
movements (usually 1 or 2 components) and com-
ponents related to voltage artifacts. In this way, we
removed 2 components on average.

After cleaning the data, we applied preprocessing
steps specific to the HsMM-MVPA and BRPs and ERPs.
For HsMM-MVPA analysis, we followed the steps from
Berberyan et al. (2020). Downsampling of EEG data is a
necessary preprocessing step for the HsMM-MVPA to
make the computations tractable. We downsampled
data to 100 Hz and removed the incorrect trials. We
also removed trials with too short or too long reaction
times based on the mean +/− 2 SD criterion. Then,
we applied the baseline correction of 200 ms and
epoched the data.

Bump magnitudes and flats are not directly estimated
from the electrode signal. Anderson et al. (2016) per-
formed the Principal Component Analysis (PCA) to
reduce the intercorrelations of the EEG signal. They
included the first 10 components that accounted for
the largest variance of data (above 90%). In the final
step, we also performed the PCA. PCA is also used to
handle the highly correlated brain signal. We included
10 first components, which accounted for 92.99% of
the variance in the time window from quantifier onset
and 91.07% of the variance in the time window from
adjective onset. The data were normalised with a z-
transformation.

For ERP and BRP analyses, we downsampled data to
100 Hz to have the same frequency as in HsMM-MVPA.
Then for ERPs, we epoched the data from the stimuli
onset (quantifier or adjective) until 800 ms after. For
BRPs, we sequentially epoched the data from the trial-
by-trial onset of each bump. To compute the average
from multiple trials, we fixed the durations of the BRP
analyses time window. The duration of this time
window was based on the results of ERP analyses and
HsMM-MVPA (see more in the Results section). We
applied a baseline correction of 200 ms to ERP and
BRP epoched data.
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2.5. HsMM-MVPA

For the HsMM-MVPA analysis, we used MATLAB
R2019b and R2021a (The MathWorks, Inc.), MATLAB
toolbox EEGlab 2019 and 2021 (Delorme & Makeig,
2004), and analysis scripts adapted from Berberyan
et al. (2020, 2021) and available at OSF (https://osf.io/
z49me/).

Firstly, we applied HsMM-MVPA to the data from the
time window from quantifier onset until 800 ms after. In
this time window, the maximum number of bumps was
15.5 We fitted the HsMM-MVPA model separately to
each quantifier. The model uses the data from all par-
ticipants and trials simultaneously to estimate two
sets of parameters: the bump magnitudes and flat dur-
ations. Based on the 10 components that explain 90%
of the variance in the data, the HsMM-MVPA model esti-
mates 10 magnitude values for every bump. The flat
durations are assumed to follow a gamma-2 distri-
bution with a shape parameter fixed to value equals 2
and a free scale parameter. The scale parameter cap-
tures the trial-by-trial variability in flat durations. To
obtain the maximum likelihood, HsMM-MVPA used
the expectation–maximisation (EM) algorithm. To
avoid estimation of local maxima instead of the
global maximum likelihood, we applied the same pro-
cedure described by Zhang, Walsh et al. (2018) (see
also Berberyan et al., 2020, 2021). Firstly, the model
fitted the maximum number of bumps (n) in the time
window. In the next step, the algorithm iteratively
removed one bump and fitted models with bumps (n
−1). Then, all n−1 bumps models were compared,
and the best model was selected. The algorithm
repeated this procedure until it fitted the model with
only one bump.

The log-likelihood of the model increases as the com-
plexity of the model (number of bumps) increases. To
avoid overfitting, we used the leave-one-out cross-vali-
dation following the procedure of Anderson et al.
(2016). The increasing complexity of the model was
only justified when the more complex model fitted
better to a significantly larger number of participants.
This was assessed by a computing sign test on the
number of participants for whom the log-likelihood of
the more complex model increased. In this way, we
chose a model that generalised across the largest
number of participants. The sign test was used in
several previous HsMM-MVPA studies (e.g. Anderson
et al., 2016; Berberyan et al., 2021; Van Maanen et al.,
2021). As a result of the leave-one-out cross-validation,
we obtained the bump magnitudes and scale par-
ameters of the gamma-2 distribution for each
participant.

2.6. ERP and BRP statistical analyses

To test for significant effects in ERPs and BRPs, we used
a cluster-based random permutation test (Maris & Oos-
tenveld, 2007) in Fieldtrip (Oostenveld et al., 2011). The
cluster-based random permutation test is a non-para-
metric test suitable for handling the multiple compari-
son problem. In the first step, for every sample (pair of
channel and time point) the differences between con-
ditions was calculated and quantified by the paired t
test for dependent samples. For the analysis in the
time window from quantifier onset, we compared
two conditions: fewer than half and more than half.
For the analysis in the time window from adjective
onset, we tested interactions between Quantifier and
Truth value. Therefore, firstly, we computed the main
effects of Quantifier and Truth value, and in the next
step, we calculated the interaction effect also using
the dependent t test. In the next step, samples with a
higher t value than the 0.05 thresholds were selected
and clustered. The maximum cluster statistics were
chosen. The Monte Carlo method was used to obtain
Monte Carlo significance probability. The random par-
titions and computation of the cluster statistic was
repeated 1000 times. The Monte Carlo p value was cal-
culated and compared to the conventional p value at
the level 0.05.

Following the findings of Augurzky et al. (2020), we
selected four regions of interest (ROIs): left anterior
(ROI 1: F3, F7, FC1, FC5), right anterior (ROI 2: F4, F8,
FC2, FC6), left posterior (ROI 3: CP1, CP5, C3, P3), and
right posterior (ROI 4: CP2, CP6, C4, P4).

In the ERP analysis in the time window from the quan-
tifier onset, we expected to find a significant difference
in positivity between fewer than half and more than
half around 450 to 800 ms from quantifier onset. In
the analysis in the time window from the adjective
onset, we expected to find a significant interaction
between Quantifiers and Truth value in the 300 to 400
ms time window from the adjective onset. We predicted
that this difference would be reflected in the N400 for
the more than half false sentence condition compared
to the more than half true sentence condition, and a
lack of difference for fewer than half.

Moreover, we tested whether the differences of inter-
est mentioned above will be replicated in the BRP ana-
lyses. The goal of these analyses was to show that
these bumps can be linked with the cognitive process
underlying the difference found in ERPs. Therefore, we
selected one bump for the quantifier onset time
window that preceded the expected late positivity
effect and one for the adjective onset time window
that preceded the expected N400 effect.
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2.7. Statistical analysis of reaction times and
stage durations

The main goal of our analysis was to test the prediction
that sentences with fewer than half have at least one
more stage of processing than sentences with more
than half. We expected the verification of sentences
with a negative quantifier to take longer than with a
positive quantifier because of the extra processing step.

Therefore, we tested the differences in reaction time
data. We selected the same trials as for the HsMM-
MVPA and for ERP analysis. We ran a linear mixed-
effects model with Quantifier (more than half, fewer
than half), Truth value (true, false) and Quantifier x
Truth value interaction as predictors, and tested their
effects on the reaction time data. We included the by-
subject random intercepts, and tested the significance
of the random slope for the trial ( centred). To interpret
the main effects, we used contrast coding.

Moreover, we aimed to link stage durations with reac-
tion times. We expected that some stage durations
might be related to the specific cognitive processes
that affect the length of reaction times, while other
stages could just reflect the fixed processing pattern of
the upcoming input (such as encoding and motor prep-
aration). While the latter stages are not particularly
meaningful for our hypothesis, the former could give
us insight into differences in quantifier processing.

Using a linear mixed-effects regression model, we
tested whether the stage durations (in the time
window from adjective onset) predicted the reaction
times for each experimental condition. We applied a
backward fitting procedure. First, we included all
stages as predictors. Then we excluded the insignificant
predictors one by one according to their p values (we
excluded the predictors with higher p values first) until
only significant predictors were left in the model.

Finally, we selected those stages that were significant
predictors of reaction times in every experimental con-
dition and tested the differences in their duration
between conditions: more than half true sentences, more
than half false sentences, fewer than half true sentences,
and fewer than half false sentences. We ran mixed-effects
models on each stage with the predictors (contrast
coded): Quantifier (more than half, fewer than half), Truth
value (true, false) and their interaction. We also included
the by-subject random intercept and the by-subject
random slope for the trial ( centred) if it was significant.

For all analyses described in this section, we used the
lmer function from the R package lmerTest (Kuznetsova
et al., 2017) to run a regression model and anova func-
tion for model comparison. We log-transformed reaction
time data6 and the stage distributions.

3. Results

3.1. Preliminary analyses

The goal of preliminary analyses was to demonstrate the
polarity effect in behavioural and EEG data. Moreover,
we aimed to replicate the ERP findings of Augurzky
et al. (2020) in 100 Hz frequency to compare the
results with HsMM-MVPA.

3.1.1. Reaction time analysis
We found a significant main effect of Quantifier
(b = −0.15, t = −5.33, p , 0.001), a significant inter-
action (b = −0.15, t = −2.64, p = 0.008),7 and a
significant intercept (b = 5.79, t = 48.50, p , 0.001).
The effect of Truth value was not significant
(b = −0.05, t = −1.83, p = 0.07). The verification of
fewer than half was slower than the verification of
more than half (see Figure 2). Moreover, the effect of
Truth value went in the opposite direction for two quan-
tifiers: reaction times were slower for false responses in
more than half and faster in fewer than half.

3.1.2. ERP analyses
Our ERP analysis from quantifier onset replicated the
finding of Augurzky et al. (2020). We also found a
greater late positivity for fewer than half than more
than half between 450 and 800ms after stimulus onset
(see Figure 2 in Appendix 2.1). We observed this effect
in all regions of interest. However, the difference was
more prominent on the centro-parietal electrodes.

Figure 2. Mean reaction times for short sentences ( fewer than
half is abbreviated as FTH and more than half as MTH). The
error bars represent within-participant SE.
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In addition to the replicated late positivity, we also
found a difference in EEG amplitude around 200 ms
from quantifier onset at some electrodes. The ampli-
tude was higher for fewer than half than for more
than half, which could reflect the difference in P200
potential between quantifiers (see Figure 2 in Appen-
dix 2.1).

In ERP analyses in the time window post adjective
onset, we found an interaction effect between Quan-
tifier and Truth value between 300 to 400 ms in three
regions of interest (the interaction was insignificant
only in ROI 1, see Figure 4 in Appendix 2.2). This
finding shows a greater negative potential for more
than half false sentences compared to more than half
true sentences. Our non-parametric analysis, therefore,
replicated the N400 effect found by Augurzky et al.
(2020). In addition, we found a main effect of Truth
value in all ROIs between 300 and 400 ms after the
adjective onset.

Moreover, we found an interaction effect in ROIs 3
and 4 in the later time window between 450 and 800
ms from stimuli onset. The EEG amplitude was lower
for more than half true sentences compared to more
than half false sentences. In addition, the main
effect of Quantifier in the same time window in ROI
1 and the effect of Truth value in ROI 2 were
significant.

Finally, we also found an interaction effect around
200 ms from the adjective onset in the ROI 4 at one elec-
trode. This effect was not reported previously by
Augurzky et al. (2020).

3.1.3. The summary of preliminary analyses
To summarise, we found evidence for the polarity
effect in both preliminary analyses. The polarity
effect in behavioural data manifested in the longer
reaction times for fewer than half than for more
than half. Moreover, the ERP analyses revealed the
polarity effect and interaction between the polarity
of a quantifier and the truth value of a sentence in
the EEG data. In the time window from quantifier
onset, we replicated the late positivity effect and
also showed the P200 effect. In the time window
from the adjective onset, we found an interaction
effect between the sentence Truth value and Quan-
tifier between 300 to 400 ms and between 450 and
800 ms. We replicated, thus, the Augurzky et al.
(2020) findings in a lower sampling frequency and
using a different statistical analysis that controls
well for the false alarm rate and limits the changes
for the false positive result (Maris & Oostenveld,
2007). Together, the results encourage the stages of
processing analysis.

3.2. Test of the two-step model with HsMM-MVPA

3.2.1. Quantifier onset
We fitted the HsMM-MVPA to two conditions more than
half (average of 118 trials per subject) and fewer than
half (average of 103 trials per subject) separately. The
leave-one-out cross-validation analysis revealed that for
more than half, the model with 8 bumps (9 stages) had
the highest mean log-likelihood (LL = −213.244). This
model had improved fit for a significant number of par-
ticipants (17 out of 21 participants, sign test p<0.05) com-
pared to themodel with 7 bumps. For fewer than half, the
results were not unequivocal. The model with 8 bumps (8
bumps LL = −193.672) had an improved fit for only 11
out of 21 participants and did not significantly
outperform the model with 7 bumps (7 bumps
LL = −193.696) as indicated by a sign test (sign test
p>0.05). Importantly, there was no evidence in favour
of the 9-bumps model because this model did not
have a better fit over the 8-bumps model for any partici-
pant (LL = −1432.21). Because the modelling solution
for fewer than half was ambiguous between 7 and 8
bumps, we ran an additional analysis in which we fitted
one HsMM-MVPA model to the combined data from
both quantifiers (average of 221 trials per subject). We
found that the 8-bump model was better than the 7-
bump model for 18 out of 21 participants (sign test
p<0.05), and it had the highest mean log-likelihood
(LL = −394.585) out of all models. It also outperformed
the separate models (sum of mean LL = −406.916).
Therefore, we are inclined to select a model with 8
bumps for both quantifiers. Together, this finding does
not support the hypothesis that fewer than half has
more processing stages than more than half.

Figure 3 presents the topologies and average stage
duration for the 8-bump (9-stage) model fitted to quan-
tifiers separately. The figure shows that the processing
time courses and bump topologies of the two quan-
tifiers are comparable. Figure 4 shows the topologies
and average stage duration for the 8-bump (9-stage)
combined model.

3.2.2. Adjective onset
We followed the same model comparison procedure as in
the first time window. Firstly, we fitted the HsMM-MVPA
to four conditions: more than half true sentences
(average of 29 trials per subject),more than half false sen-
tences (average of 29 trials per subject), fewer than half
true sentences (average of 23 trials per subject), and
fewer than half false sentences (average of 28 trials per
subject) separately. For all conditions, the model with
10 bumps (11 stages) had the highest log-likelihood:
fewer than half false LL = −77.0794 (better model for
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Figure 3. Bump topologies and stage durations for separate models more than half (MTH) and fewer than half (FTH) from quantifier
onset. The values above bump topologies correspond to the average onset of the bump. The coloured bars indicate the stage dur-
ations. The values above the coloured bars show the mean stage durations. Additionally, the gray lines indicate the ERP analysis time
windows from Augurzky et al. (2020).

Figure 4. Bump topologies and stage durations for the combined model from quantifier onset plotted in each condition separately,
more than half (MTH) and fewer than half (FTH). The coloured bars indicate the stage durations. The values above the coloured bars
show the mean stage durations, and the values below the average onset of the bumps. Additionally, the gray lines indicate the ERP
analysis time windows from Augurzky et al. (2020).

LANGUAGE, COGNITION AND NEUROSCIENCE 643



13 participants than the simpler model), fewer than half
true LL = −72.4346 (better model for 14 participants
than the simpler model), more than half false
LL = −75.4606 (better model for 13 participants than
the simpler model), and more than half true
LL = −40.9431 (better model for 14 participants than
the simpler model). However, there was a substantial
variability in model fit between participants. The models
with the highest mean log-likelihood were not better
for a significant number of participants (sign test p>0.05).

In the next step, we fitted a combinedmodel to all four
conditions together (average of 110 trials per subject).
Because of the great variability in model fit, we wanted
to test whether the 10-bump model would fit all con-
ditions equally well. The 10-bump model with mean
log-likelihood of LL = −246.924 fitted the data best for
a significant number of participants (19 out of 21, sign
test p<0.05). The 10-bump combined model from adjec-
tive onset was better for 15 out of 21 participants than
the separate models (sum of mean LL = −265.9177),
meaning that the more complex, separate models did
not outperform the combined, simpler model.

We plotted the bump topologies and stage durations
of the separate 10-bump models in Figure 5 and of the
combined model in Figure 6. We observed that the varia-
bility in stages durations is greater for separate models
than for the combined model, however, in both cases

the durations of the first 6 processing stages as well as
Stages 8 and 10 were rather fixed across conditions.
Stages 7 and 11 seemed to vary across conditions in
both separate models and the combined model. The
bumps topologies for fewer than half in separate
models were very similar (Figure 5). Moreover, the topol-
ogies of bumps for more than half false sentence were
also similar to those of fewer than halfwith the exception
of the fourth bump, which was more negative in more
than half false sentence condition. This negative bump
was absent in more than half true sentence condition.
Figure 6 shows that the topologies of bumps replicated
in the combined model, however, because the com-
bined model assumes that all bumps are shared across
conditions, the contrast in the topology of fourth
bump disappeared.

3.2.3. HsMM-MVPA summary
The HsMM-MVPA in both time windows did not support
the predictions derived from the two-step model. We
did not find evidence for an extra processing step for
fewer than half compared to more than half. In both
time windows, the more parsimonious combined
model outperformed the more complex, separate
models. Despite the variability in separate model fits,
we did not find support for more processing stages for
fewer than half than more than half. Still, in the time

Figure 5. Bump topologies and stage durations for separate models more than half true sentence (MTH_t), more than half false sen-
tence (MTH_f), fewer than half true sentence (FTH_t), and fewer than half false sentence (FTH_f) from adjective onset until the
response. The values above bump topologies correspond to the average onset of the bump. The coloured bars indicate the stage
durations. The values above the coloured bars show the mean stage durations. Additionally, the gray lines indicate the ERP analysis
time windows from Augurzky et al. (2020).
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window from the quantifier onset, we even found more
evidence for fewer processing stages for fewer than half
than more than half. Nonetheless, our reaction time
analysis (see Section 3.1.1) indicated that fewer than
half was verified more slowly than more than half. We
hypothesised that this difference should be reflected in
the duration of processing stages (see Section 3.5).
Moreover, our ERP analyses demonstrated the polarity
effect in EEG data (see Section 3.1.2) To link the ERP
findings with the HsMM-MVPA results, we performed
BRP analyses.

3.3. BRP analyses

3.3.1. Quantifier onset
In the quantifier time window, the difference in EEG
amplitude between more than half and fewer than half
was detected between 450 to 800 ms from the quantifier
onset. Therefore, for the BRP analysis, we selected Bump
4, which preceded this time window (the average onset
of this bump was 378 ms for more than half and 381 ms
for fewer than half based on the combined model, see
Figure 4). We aligned the EEG signal to trial-by-trial
onsets of this bump and chose a time window of 400
ms duration from the bump onset to cover a similar
time interval as in the ERP analysis.

Our BRP analysis replicated the effects found in ERP
analysis in all ROIs (see Figure 3 in Appendix 2.1). The
EEG amplitude was higher for fewer than half than for
more than half.

3.3.2. Adjective onset
In the adjective time window, the difference in N400
betweenmore than half and fewer than halfwas detected
between 300 to 400 ms from the adjective onset. There-
fore, for the BRP analysis, we selected Bump 3, which pre-
ceded the N400 time window analysis. We aligned the
EEG signal to trial-by-trial onsets of this bump based on
the parameters estimated from the combined model.
The average Bump 3 onsets were 243ms for fewer than
half, 243ms for more than half false, and 235ms for
more than half true (see Figure 6). We chose a time
window from the bump onset until 560ms after to
cover a similar time interval as in the ERP analysis.

Similarly to the ERP analysis, the BRPs revealed an
interaction between sentence truth value and quantifier,
as well as late negativity for more than half true sen-
tences (see Figure 5 in Appendix 2.2).

3.3.3. BRP summary
Our BRP analyses replicated the findings of the ERP ana-
lyses. The first BRP analysis showed that in the absence

Figure 6. Bump topologies and stage durations for the combined model from adjective onset until the response plotted separately for
each condition, more than half true sentence (MTH_t), more than half false sentence (MTH_f), fewer than half true sentence (FTH_t),
and fewer than half false sentence (FTH_f). The timing is relative to adjective onset. The coloured bars indicate the stage durations. The
values above the coloured bars show the mean stage durations, and the values below the average onset of the bumps. Additionally,
the grey lines indicate the ERP analysis time windows from Augurzky et al. (2020).
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of a difference in the number of stages or their duration,
the processing of fewer than half was associated with a
larger late positivity than the processing of more than
half. Moreover, the second BRP analysis confirmed that
the N400 effect was present only for more than half
false sentences. This suggests, in contrast to two-step
model predictions, the N400 was absent in the case of
fewer than half sentences, not delayed. Overall, these
findings show the compatibility of the ERP analyses and
HsMM-MVPA and speak against the two-step model
prediction.

3.4. Do stages predict the length of reaction
times?

Based on the HsMM-MVPA results, we concluded that
the difference in reaction times between conditions
can not be attributed to an additional processing step.
In the subsequent analysis, we tested whether the
polarity effect observed as the reaction time differences
between quantifiers (see Section 3.1.1) can be explained
by the difference in duration of some cognitive stages.
This analysis was exploratory. Because the best-fitting
model was the combined model, we used the stage dur-
ations extracted from this model (see Figure 6) as
predictors.

3.4.1. Fewer than half false
The final model8 included Stage 4 (b =
0.35, t = 2.33, p = 0.02), Stage 7 (b = 0.29, t = 3.90,
p = 0.0001), Stage 9 (b = 0.40, t = 5.34, p , 0.0001),
and Stage 11 (b = 0.34, t = 14.64, p , 0.0001) as signifi-
cant predictors of reaction times. The intercept of the
model was not significant (b = −1.42, t = −1.80,
p = 0.07). The reaction times for fewer than half false sen-
tences were thus predicted by Stages 4, 7, 9, and 11.

3.4.2. Fewer than half true
The final model9 included Stage 6 (b = 0.89, t = 4.97,
p , 0.0001), Stage 7 (b = 0.15, t = 2.20, p = 0.03),
Stage 9 (b = 0.39, t = 6.94, p , 0.0001), and Stage 11
(b = 0.35, t = 18.69, p , 0.0001) as significant predic-
tors of reaction times. The intercept of the model was
also significant (b = −3.03, t = −3.91, p = 0.0001).
The reaction times for fewer than half true sentences
were thus predicted by Stages 6, 7, 9, and 11.

3.4.3. More than half false
The final model10 included Stage 6 (b = 0.51, t = 3.20,
p = 0.001), Stage 7 (b = 0.43, t = 6.81, p , 0.0001),
Stage 9 (b = 0.33, t = 5.84, p , 0.0001), Stage 10
(b = 0.29, t = 1.99, p = 0.047), and Stage 11 (b =
0.32, t = 17.10, p , 0.0001) as significant predictors of

reaction times. The intercept of the model was also
significant (b = −3.58, t = −3.90, p = 0.0001). The
reaction times for more than half false sentences were
thus predicted by Stages 6, 7, 9, 10, and 11.

3.4.4. More than half true
The final model11 included Stage 2 (b = 0.49, t = 2.85,
p = 0.004), Stage 4 (b = 0.46, t = 3.09, p = 0.002),
Stage 7 (b = 0.18, t = 2.53, p = 0.01), Stage 9 (b =
0.56, t = 9.02, p , 0.0001), and Stage 11 (b = 0.390,
t = 16.63, p , 0.0001) as significant predictors of reac-
tion times. The intercept of the model was also signifi-
cant (b = −4.60, t = −4.96, p , 0.0001). The reaction
times for more than half true sentences were thus pre-
dicted by Stages 2, 4, 7, 9, and 11.

3.5. Stage durations analysis

In the final step of the analysis, we tested whether a sig-
nificant main effect of Quantifier and an interaction
between Quantifier and Truth value found in the reac-
tion times (see Section 3.1.1) would be reflected in the
duration of stages. We tested stages extracted from
the combined model that were significant predictors
of reaction times for all experimental conditions,
namely Stages 7, 9, and 11 (see also Figure 6).

3.5.1. Stage 7
Firstly, we tested the differences in Stage 7.12 The inter-
action between Quantifier and Truth value was not
significant
(b = 0.003, t = 0.11, p = 0.91, x2(1) = 0.01, p = 0.91).
The best model had a significant intercept
(b = 5.18, t = 191.86, p , 0.001) and two main effects
of Quantifier (b = −0.03, t = −2.14, p = 0.03) and
Truth value (b = −0.04, t = −2.71, p = 0.007). We
found that fewer than half had longer Stage 7 than
more than half and that this stage was longer for false
sentences compared to true sentences (see Figure 7).

3.5.2. Stage 9
Secondly, we tested Stage 9.13 We found that the Quan-
tifier x Truth value interaction was not significant
(b = 0.006, t = 0.21, p = 0.84, x2(1) = 0.04, p = 0.84).
The model without interaction had a significant
intercept (b = 5.25, t = 176.55, p , 0.001), but neither
a main effect of Quantifier (b = −0.02, t = −1.51,
p = 0.13), nor a main effect of Truth value
(b = −0.01, t = −0.77, p = 0.44). We conclude that
this stage did not differ between experimental con-
ditions (see Figure 7).
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3.5.3. Stage 11
Next, we tested Stage 11.14,15 We found that the
Quantifier x Truth value interaction was not significant
(b = −0.10, t = −1.24, p = 0.22, x2(1) = 1.52, p =
0.22). The model without interaction had a significant
intercept (b = 5.80, t = 42.56, p , 0.001), and a main
effect of Quantifier (b = −0.23, t = −5.47, p , 0.001)
and insignificant main effect of Truth value
(b = −0.04, t = −1.05, p = 0.30). We found that fewer
than half had a longer Stage 11 than more than half
(see Figure 7).

3.5.4. Combined effect of stages 7, 9, and 11
Finally, we summed the durations of Stages 7, 9, and 11
to test whether their combined duration could be pre-
dicted by the effect of Quantifier and Truth value. This
effectively tests whether the reaction time effect can
be completely attributed to those stages.16 The inter-
action effect was not significant (x2(1) = 1.36,
p = 0.24). After excluding the interaction from the
model, we found that the main effect of Quantifier
(b = −0.15, p , 0.001) and intercept (b = 6.70,
p , 0.001) were significant. Still, the main effect of
Truth value was not (b = −0.04, p = 0.10).

3.5.5. The summary of stage durations analyses
The analyses of stage durations revealed that Stages 7,
9, and 11 extracted from the combined model
explained some variability found in the reaction
times. Moreover, Stages 7 and 11 were longer for

fewer than half than more than half, showing that the
polarity effect was present at the level of specific pro-
cessing stages.

4. Discussion

The main goal of the current study was to test the two-
step model prediction that the polarity effect, namely
difficulties related to the processing of negative vs.
positive quantifiers, is due to an extra processing step
that negative quantifiers involve. Such an extra step
could be related to a higher complexity of the represen-
tation of negative quantifiers due to the hidden nega-
tion or to a longer verification procedure (e.g. Clark,
1976; Grodzinsky et al., 2018). To test this hypothesis,
we analysed data from a picture-sentence verification
task collected by Augurzky et al. (2020). We used a
novel method, the HsMM-MVPA (Anderson et al.,
2016), to detect the processing stages in the EEG
signal and directly compared these stages between
quantifiers. Our analysis demonstrated the polarity
effect but did not support the two-step model. In the
next sections of the discussion, we summarise our
main findings and give a functional interpretation of
the processing stages that contributed to the expla-
nation of the polarity effect (see functional interpret-
ation of all processing stages in Appendix 4).
Moreover, we propose an explanation of our results in
the light of an alternative account that attributes the
source of the polarity effect to contextual factors.
Finally, we elaborate on the methodological impli-
cations of our study.

4.1. Test of the two-step model

Firstly, we analysed the time window from quantifier
onset until 800 ms after. We fitted separate HsMMs for
each quantifier. Our finding in this time window did
not support the hypothesis that there is an extra proces-
sing step in the comprehension of fewer than half. Both
separate models favoured the 8-bump solution,
although the superiority of the 8-bump solution was
weaker for the negative quantifier, and the model with
7 bumps was equally good. Crucially, we did not find
support for the 9-bump solution for fewer than half. Sec-
ondly, we found that the 8-bump model with combined
conditions of both quantifiers fitted the data better than
the separate models. In addition, we observed that the
onsets of bumps were very similar across conditions
and that there was little variation in stage durations
between quantifiers (see Figures 3 and 4). Therefore,
we endorse the conclusion that the time course of pro-
cessing the quantifier at the beginning of the sentence is

Figure 7. Mean durations of stages 7, 9, and 11. Fewer than half
is abbreviated as FTH and more than half as MTH. The error bars
represent within-participant SE.
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fixed, and the processing of fewer than half was not
delayed.

In addition to the quantifier position, we also ana-
lysed the time window from the adjective onset until
the response. The 10-bump model had the highest
mean log-likelihood for all quantifier and truth value
combination conditions. We also fitted a combined
model to all conditions jointly and established that
the model with 10 bumps fitted the data most accu-
rately. The combined model also outperformed the
four separate models, meaning that, in the time
window from the adjective onset, we again did not
find support for an extra processing step for the nega-
tive quantifier.

4.2. Differences in processing of positive and
negative quantifiers

The results of the HsMM-MVPA did not support the two-
step model. However, our additional analyses showed
some differences in the processing of negative and posi-
tive quantifiers. The polarity effect was present in reac-
tion time data and EEG data. In this section, we discuss
the evidence for the polarity effect and the functional
interpretation of the stages associated with this effect
(see the functional interpretation of all processing
stages in Appendix 4).

In the ERP and BRP analyses, we replicated the pre-
vious result of Augurzky et al. (2020). There was a
greater late positivity for fewer than half than more
than half. The process underlying the observed late posi-
tivity had already started with the onset of Bump
4. Importantly, the onset of this bump was comparable
between fewer than half and more than half, suggesting
that the processing of fewer than half was not delayed at
this point. The late positivity continued in Stage 6, which
began with a parietal distributed positive bump. The
increasing positive activity may reflect the P600 poten-
tial often found in sentence-level linguistic tasks (see
Brouwer et al., 2017, 2012, for review). In our study,
the positive parietal activity is characteristic for four con-
secutive stages (Stages 4 to 7). This observation is con-
sistent with literature that shows multiple functional
interpretations of the P600 and is probably linked to
different underlying components (Regel et al., 2014).
For example, the P600 is sensitive to ungrammatical
structures as well as pragmatic manipulation e.g. pre-
supposition triggers (Domaneschi et al., 2018; Jouravlev
et al., 2016), or irony (Regel et al., 2014). The so-called
pragmatic P600 is preceded by the P200 component
(also cf. Jouravlev et al., 2016 the P3b/P600 complex).
Moreover, while the syntactic P600 is widespread over
the scalp, the pragmatic P600 is mostly visible on

central and parietal electrodes. However, both com-
ponents have a similar latency of around 500 ms after
the stimuli onset. We found a pattern of results charac-
teristic to the pragmatic P600: a large peak of the P200
component with a significant difference between quan-
tifiers in Stage 3 (see the ERP analysis in Figure 2 in the
Appendix, results of the HsMM-MVPA in Figure 4 for
stages onsets, and Appendix 4), and a P600 difference
in the time window of Stage 6. We therefore suggest
that Stage 6 can be interpreted as a stage of processing
pragmatic properties (we will come back to this point in
Section 4.3).

Moreover, in the time window from the adjective
onset, we replicated the ERP effects found by Augurzky
et al. (2020). We found the N400 effect only for more
than half false sentences and later amplitude deflection
for more than half true sentences. The HsMM-MVPA
showed that Stages 4 and 5 jointly contributed to the
N400 effect captured in the ERP analysis. The BRP
analysis replicated the N400 effect when the EEG
signal was aligned with the trial-by-trial onset of
Stage 4. The topology of Bump 4 in the more than
half false sentence condition resembles the N400
component (see Figure 5). The N400 was captured in
ERP analysis (Appendix, Figure 4) and, crucially, in
BRP analysis (Appendix, Figure 5) as well. Based on
this analysis, we arrived at the interpretation of the
fifth stage as the semantic encoding stage.

In addition, we demonstrated that the polarity effect
was present in reaction time data. Verifying fewer than
half took longer than the verification of more than half.
We further explored the differences between conditions
in the stage durations estimated with HsMM-MVPA. We
found that Stages 7, 9, and 11 predicted reaction times
across conditions.

We found the polarity effect in Stage 7. We replicated
the larger negativity for more than half true sentences
found by Augurzky et al. (2020) in the time window
from the adjective onset that overlaps with Stage
7. Moreover, this stage was longer for fewer than half
than for more than half and for false than for true sen-
tences. Therefore, we suggest that this stage is related
to a cognitive process that is crucial to the truth evalu-
ation. For example, this stage could reflect a comparison
between a picture and a sentence in working memory.
As mentioned in Section 2.3.1, we expected to observe
negative components related to the truth evaluation
of the sentence. The Bump 6 with a negative frontal dis-
tribution could reflect the working memory processes
(Ruchkin et al., 1992). Participants involved their
working memory in the comparison between picture
and sentence representations. Our findings align with
the recent hypothesis that negative quantifiers add
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more load to working memory than positive ones
(Agmon et al., 2022).

Asmentioned in Section 2.3.1, we expected to observe
bumps related to response preparation and execution.
Stages 9 and 11 could be related to these processes
because they also contribute to the explanation of the
polarity effect in reaction times. Stage 9 begins with a
left frontal positive bump,whichmay reflect the expected
late positive complex (LPCDe Jong et al., 1990). The LPC is
related, among others, to the successful inhibition of a
response (Kiefer et al., 1998). The response inhibition in
the current experiment might be related to the fact that
participants had to wait for the three question marks
signal to respond.

The last stage, Stage 11, ends with the participants’
response. The differences in duration of this stage
between conditions reflected the Quantifier effect but
not the Truth value and interaction effects. Previous
HsMM-MVPA studies (Anderson et al., 2016; Berberyan
et al., 2021) showed that the response stage is short. In
contrast, this stage was the longest in our analysis. The
atypical duration of the response stage in our exper-
iment could be explained by the higher complexity of
the task or the specific experimental procedure
employed. Participants may have made a decision
before the onset of the signal to respond, and they
drifted their attention elsewhere (cf., Kaup et al., 2006).

To sum up, our results contribute to understanding
the time course of the processing of quantified sen-
tences. Our analyses clearly demonstrated behavioural
and EEG evidence for the polarity effect. At the same
time, our analyses indicate that this effect is not due to
an additional processing step that negative quantifiers
involve. Therefore, we suggest an alternative interpret-
ation of this effect in the light of a pragmatic account.

4.3. Alternative explanations of the polarity
effect

As in the case of the two-step model, we use the label
“pragmatic account” to indicate a broader class of propo-
sals that explain the differences between negatives and
affirmatives in terms of the speaker’s pragmatic prefer-
ences and interaction between processed sentence and
discourse context. For example, the expectation-based
account (e.g. Nieuwland, 2016) proposes that negation
is usually unexpected and thus generates the processing
cost. The pragmatic account does not predict the number
of processing stages testable with HsMM-MVPA as the
two-step model does. Therefore, we only highlight the
compatibility of our results with this theoretical proposal.

The pragmatic account found support in EEG studies
on negation and quantifiers. Pragmatic information

influences the processing of negation more than the
processing of affirmative sentences (Orenes et al.,
2016). For example, Nieuwland and Kuperberg (2008)
showed in an EEG experiment that difficulties in proces-
sing negation disappear in a pragmatically licensed
context. Moreover, negative quantifiers (such as few)
can also be processed fully incrementally in an appropri-
ate discourse context (Urbach et al., 2015). Nieuwland
(2016) demonstrated that the difficulties of processing
quantifiers are dependent on the predictability of the
sentence continuation.

Augurzky et al. (2020) argued that the complexity of
the quantifiers mediated the participants’ ability to
build expectations about the sentence. In other words,
participants were more efficient in formulating predic-
tions about more than half sentences than fewer than
half. Because of the higher complexity of fewer than
half, the generation of expectations was delayed.

Our findings substantially extend the expectation-
based interpretation of Augurzky et al. (2020). As men-
tioned in the introduction, Augurzky et al. (2020) pro-
vided two possible explanations of how predictions
could have been generated. According to one of
these explanations compatible with our findings, par-
ticipants encoded the picture in terms of the greater
set (Clark, 1976). Based on the picture encoding, they
could have immediately generated the expectations
for more than half sentences, but not for fewer than
half sentences. The late positivity can reflect the
attempt to build expectations for fewer than half
when it becomes clear that a negative quantifier has
to be processed. The extra effort leads to the engage-
ment of more cognitive resources and differences in
EEG amplitude. This attempt is not fully successful, as
reflected by the lack of N400 difference on the adjective
for fewer than half sentences.

This explanation is consistent with our findings. Par-
ticipants’ expectations about sentence continuations
were reflected in an N400 effect observed in the time
window from adjective onset (ERP and BRP analyses).
However, neither in HsMM-MVPA nor in BRP analysis
did we observe a processing delay for fewer than half.
We hypothesise thus that the lack of the N400 effect
for fewer than half false sentences (ERP and BRP ana-
lyses) could indicate that the generation of expectations
may not have been successful. Our findings give further
insights into the interpretation of the N400 in Augurzky
et al. (2020) study. While some studies link the N400
effect with the truth evaluation process (Augurzky
et al., 2017, 2020), our results are in line with the
access/retrieval account for N400 (Brouwer et al., 2017,
2012). According to this account, N400 reflects lexical
retrieval but not the integration process (Delogu et al.,
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2019), and it is not directly modulated by the truth value
of the sentence (Kounios and Holcomb, 1992).

Finally, the larger negativity for more than half true
sentences observed in Stage 7 after the adjective
onset and the differences in duration of this stage
between conditions can also be explained by referring
to expectations. To successfully perform that verification
task, participants had to retain in memory the infor-
mation about the quantifier, the numerosity of objects,
and the adjective. The expectations and default encod-
ing of the picture in terms of a larger proportion
influence the working memory load (cf. Clark & Chase,
1972). The verification of more than half true sentences
requires retaining only the matching information in
working memory (expected quantifiers, larger set, and
the colour of the larger set). To verify fewer than half, par-
ticipants had to retain information about the smaller set
as well. The additional working memory load explains
the quantifier effect in the duration of Stage 7 (cf.
Agmon et al., 2022 similar explanation referring to
working memory load). To verify false sentences, partici-
pants had to carry additional information that the colour
of the set they encoded and the adjective colour did not
match. This explains the effect of the truth value.17

While there is general agreement that successful
language comprehension requires building predic-
tions about the upcoming linguistic input (Grisoni
et al., 2017, 2021), the explanation of mechanisms
behind the expectations generation is less under-
stood. The dynamic pragmatic account by Tian et al.
(2010) proposes such a mechanism by referring to
the so-called Questions Under Discussion (QUDs)
(Roberts, 2012). This account assumes that language
users process the information that has already been
accommodated into the discourse context by the rel-
evant QUDs faster. According to this approach, posi-
tive questions are considered by comprehenders as
the default, because they are more frequent than
negative questions. For example, when verifying the
sentence “The glass is not empty,” comprehenders
assume that the relevant QUD is “Is the glass
empty?” rather than “Is the glass not empty?”. As
mentioned earlier, the P600 effect observed in Stage
6 after the quantifier onset could be related to the
processing of pragmatic properties of negative quan-
tifies. One of these properties could be the accommo-
dation of the non-default QUD triggered by the
negative expression. To directly test the dynamic
pragmatic account, we would have to introduce an
explicit manipulation of the QUDs that would affect
the encoding of the picture. The exploration of how
the manipulation of QUDs would affect the stage dur-
ations can be tested in future work.

4.4. Methodological implications

Our study has several methodological implications.
Firstly, it showed the dissociation between behavioural
measures (reaction times) and EEG-based measures
(stage durations). Secondly, we demonstrated the
benefit of using different EEG data analysis methods.
For example, we observed that differences in EEG
signal amplitude between quantifiers (in ERP and BRP
analyses) were not due to an additional processing
step and were not reflected in differences in stage
durations.

The HsMM-MVPA was previously applied to tasks
such as associative recognition (Anderson et al., 2016;
Van Maanen et al., 2021), lexical decision (Berberyan
et al., 2021), or perceptual decision (Berberyan et al.,
2020) tasks that involved a few cognitive stages. In con-
trast, we applied the HsMM-MVPA to a sentence-level
task. This posed additional challenges to our analysis.
For example, we could not analyse the processing of
the whole sentence, but we had to select constrained
time windows. Moreover, the processing stages related
to one stimulus overlapped with the display of new
stimuli.

In the next subsections, we elaborate on these two
key methodological aspects in more detail. We also
discuss the limitations of our study.

4.4.1. The dissociation between different measures
We found different effects in the reaction time data and
the duration of the stages. In the behavioural data, we
found an interaction between Quantifier and Truth
value (see also Section 4.4.2). Next, we tried to explain
this effect with the stage durations estimated from
HsMM-MVPA (see Section 3.5). Three stages contributed
to explaining reaction times across conditions. However,
none of the stages alone nor their combined duration
reflected the interaction effect found in reaction time
data. This might have happened because the interaction
effect in reaction times could be an effect of a unique
combination of multiple stages, different for each con-
dition, which were not included in the regression
model. This finding indicates that the comparison
between mean reaction times can be misleading
because reaction times are affected by many different
processing stages. Previous studies showed that the
mapping between processing stage durations and
differences in reaction times is complex. For example,
Zhang et al. (2017) found in an associative recognition
task that one experimental manipulation can have an
opposite effect on two processing stages. While the
effect of the manipulation is obscured in reaction
times measure, it can be observed in HsMM-MVPA.18 In
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sum, these findings suggest that the combined effect of
multiple stages can explain reaction times.

Moreover, we showed the complexity of mapping the
psychological concepts such as processing difficulties on
different measures of brain activity such as EEG signal
amplitude, number of processing stages, or durations
of these stages. In the time window from quantifier
onset, we replicated the results of Augurzky et al.
(2020). We found a greater late positivity in the ERP
analysis for fewer than half than formore than half. More-
over, in the BRP analysis, in which the EEG signal was
aligned to the trial-by-trial onset of Bump 4, we also
showed that processing of fewer than half was associ-
ated with a greater late positivity than more than half.
Importantly, the greater neural activity for fewer than
half was not reflected in stage duration differences
between quantifiers.

The lesson to be learned from our analyses is that the
mapping between the length of particular cognitive pro-
cesses, reaction times, and the amplitude of the EEG
signal might be equivocal. To better understand the
relationship between different measures, we suggest
jointly analysing the behavioural and neural data in
future studies.

4.4.2. Methodological limitations
We notice several methodological limitations of our
study. Firstly, for some of the HsMM-MVPA models, we
had a relatively small number of trials per condition
compared to previous studies (e.g. Anderson et al.,
2016; Berberyan et al., 2020; Van Maanen et al.,
2021).19 We acknowledge that in the time window
from the adjective onset, the number of trials that
were input to the separate models was substantially
smaller than in the typical HsMM-MVPA study.
However, in the time window from quantifier onset,
the separate models were fit to the typical number of
trials (on average, for each subject, there were more
than 100 trials per condition), yet the extra step of pro-
cessing was not detected. This means that while the
results of separate models in the time window from
adjective onset should be treated with caution, the
results in the time window from quantifiers onset are
fully robust.

Secondly, we noticed the greatest variability in model
fit was present in the time window from adjective onset
for separate models. The variability in model fit of separ-
ate models could be explained frommethodological and
theoretical perspectives. Methodologically, the problem
with model fit could result from an insufficient number
of trials per condition. Theoretically, the variation in
model fit across participants could reflect individual
differences in the processing of quantified sentences.

Individual differences were found previously in semantic
representations of vague quantifiers (Ramotowska et al.,
2023) and in the processing of pragmatically underinfor-
mative sentences (Spychalska et al., 2016). Given the
small number of trials per condition as the input to
these HsMM-MVPA models, we can not exclude any of
the discussed interpretations.

In addition, the variation in the data was also
present in reaction times (see Appendix 1). The time-
outs changed the typical reaction time distribution,
and the log-transformation failed to fully compensate
for it (e.g. the normality of residuals assumption was
not fully satisfied). When the reaction times that
exceeded the timeout were excluded from the analy-
sis, the interaction effect between Quantifier and
Truth value was not significant (see Appendix 1). More-
over, the analysis of Stage 11 with excluded timeout
reaction times did not reveal differences between
experimental conditions. This suggests that the long
responses at least partially drove the differences in
reaction times and Stage 11.

Participants’ response strategies may have also intro-
duced a greater variability into the EEG data. One source
of variability may be movement artifacts, even though
we cleaned the data and removed trials containing
larger artifacts. The variability could also be a result of
the experimental procedure. For example, while partici-
pants waited for a signal to respond, their attention may
have drifted away from the task. Moreover, the timeout
procedure may have pressured participants’ responses.
Augurzky et al. (2020) argued against the speed-accu-
racy trade-off. Nonetheless, the deadlines for the
response affect the decision-making process, as shown
by previous studies where participants were asked to
make decisions under time pressure (Katsimpokis et al.,
2020; Miletić & Van Maanen, 2019).

The timeout trials constituted a large proportion of
trials (see Appendix 1). Moreover, we noticed that they
were more frequent for fewer than half than for more
than half. The tendency for participants to exceed the
time limit more for one quantifier could be a result of
processing difficulties associated with it. This poses a
challenge to the interpretation of the reaction times
that exceeded the time limit. On the one hand, if the
timeout reaction times are due to participants’ attention
drifting away before responding, it would be better to
exclude trials with a timeout. The focus of attention
can lead to different processing stages (Van Maanen
et al., 2021). However, we would have to exclude the
timeout trials from all of our analyses because we do
not know at what timepoint participants were dis-
tracted. This would lead to a significant reduction in
the number of trials. On the other hand, the timeout
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reaction times were associated more with fewer than half
thanmore than half. They could also be a relevant source
of information about processing differences. From a
methodological perspective, the decision to exclude
timeout trials is equivocal.

Finally, while our findings speak against an extra pro-
cessing step for negative quantifiers, they can not rule
out the two-step model hypothesis for other types of
negatives. In particular, the two-step model originated
from the studies on sentential negation. For example,
Agmon et al. (2022) found that the polarity effect
decreases (but does not fully diminish) for sentential
negation when participants are given more time to
process a sentence. No such effect was found for quan-
tificational negation, meaning that the additional time
did not aid the processing. It would be desirable to
test for an extra processing step when negation refers
explicitly to the to-be-negated state of affairs. Once
explicitly mentioned, the representation of the to-be-
negated state of affairs could be activated and pro-
cessed in the extra stage. In conclusion, further studies
should test the two-step model predictions in different
experimental setups and with various types of negatives.

4.5. Conclusions

According to the two-step processing hypothesis, the
hidden negation in negative quantifiers increases their
complexity and gives rise to the polarity effect. In this
study, we challenged this hypothesis in quantified sen-
tences. By using a novel method to analyse the EEG
data, we estimated the number of processing stages
for sentences with the two quantifiers more than half
and fewer than half. To the best of our knowledge, this
is the first study that directly tested the difference in pro-
cessing stages in quantified sentences and directly
addressed the two-step processing hypothesis. We pro-
vided an interpretation of the processing stages and
linked them to the predictions of the expectation-
based account.

Notes

1. Note that both operators -er and and little are downward
entailing operators: -er is a comparative downward
entailing operator, and little is a negation operator.

2. See similar predictions in Szymanik andZajenkowski (2013).
3. See similar predictions in Barwise and Cooper (1981).
4. For details about ethics approvals and informed consent

see Augurzky et al. (2020).
5. We noted that 800 ms divided into 50 ms should

result in a maximum number of bumps 16, not 15.
The 15-bump maximal model is a result of the down-
sampling. The shortest time window had in some

trials 79 samples, not 80. Therefore, 79 samples
divided into 5 samples gave a 15 bump maximal
model.

6. During the data analysis, we observed that the reaction
times had somewhat bimodal distributions with large
proportions of long reaction times that were not fully
excluded with the outliers procedure. We ran a separate
mixed-effects model on reaction times, which were not
classified as timeouts. See Appendix 1 for details of
this analysis.

7. In the mixed-effects regression model of RT, we included
by-subject random slope for trial as it significantly
improve model fit (x2(1) = 255.49; p , 0.001).

8. For fewer than half false sentences, we did not include the
by-subject random slope for trial (x2(1) = 0.73, p = 0.39)
because it did not significantly improve model fit.

9. For fewer than half true sentences, we included the by-
subject random slope for trial (x2(1) = 20.20, p , 0.001).

10. For more than half false sentences, we included the by-
subject random slope for trial (x2(1) = 10.73, p = 0.001).

11. For more than half true sentences, we included the by-
subject random slope for trial (x2(1) = 11.08, p = 0.001).

12. We included the by-subject random slope for trial
(x2(1) = 22.49, p , 0.001).

13. We included the by-subject random slope for trial
(x2(1) = 25.92, p , 0.001).

14. We observed the same problem with Stage 11 distri-
bution as with reaction time distribution. The stage of
the distribution was binomial even after log-transform-
ation, and, therefore, the model did not fit the assump-
tion of normal distribution of residuals. We ran an
additional analysis on the data without timeout reaction
times in Appendix 3

15. We included the by-subject random slope for trial
(x2(1) = 92.14, p , 0.001).

16. We found that the random slope for trial was significant
(x2(1) = 126.08, p , 0.001).

17. Additional support for our interpretation of Stage 7
comes from the analysis of long sentences (cf. Ramo-
towska, 2022).

18. See also Berberyan et al. (2020) and Van Maanen et al.
(2021) for comparison between processing stages esti-
mated using HsMM-MVPA and another computational
model.

19. See also the discussion about the sufficient number of
trials to estimate parameters of other cognitive
models, e.g. Wagenmakers (2009), Lerche et al. (2017),
Osth et al. (2017) and Boehm et al. (2018).
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