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Abstract: The high proportion of CO2/CH4 in low aggregated value natural gas compositions can
be used strategically and intelligently to produce more hydrocarbons through oxidative methane
coupling (OCM). The main goal of this study was to optimize direct low-value natural gas conversion
via CO2-OCM on metal oxide catalysts using robust multi-objective optimization based on an entropic
measure to choose the most preferred Pareto optimal point as the problem’s final solution. The
responses of CH4 conversion, C2 selectivity, and C2 yield are modeled using the response surface
methodology. In this methodology, decision variables, e.g., the CO2/CH4 ratio, reactor temperature,
wt.% CaO and wt.% MnO in ceria catalyst, are all employed. The Pareto optimal solution was
obtained via the following combination of process parameters: CO2/CH4 ratio = 2.50, reactor
temperature = 1179.5 K, wt.% CaO in ceria catalyst = 17.2%, wt.% MnO in ceria catalyst = 6.0%.
By using the optimal weighting strategy w1 = 0.2602, w2 = 0.3203, w3 = 0.4295, the simultaneous
optimal values for the objective functions were: CH4 conversion = 8.806%, C2 selectivity = 51.468%,
C2 yield = 3.275%. Finally, an entropic measure used as a decision-making criterion was found to
be useful in mapping the regions of minimal variation among the Pareto optimal responses and the
results obtained, and this demonstrates that the optimization weights exert influence on the forecast
variation of the obtained response.

Keywords: low-value natural gas; carbon dioxide oxidative coupling of methane; robust multi-
objective optimization; normal boundary intersection; entropic measure

1. Introduction

A mixture of various hydrocarbons such as methane (CH4), ethane (C2H6), propane
(C3H8), butane (C4H10) and inert diluents such as molecular nitrogen (N2) and carbon
dioxide (CO2) are found in natural gas compositions. Natural gas composition variations
are affected by several parameters such as the geographical source, the time of year, and
the treatment applied during production or transportation [1–3].

CH4 and CO2 are believed to contribute to the greenhouse effect [4]. Although
the amount of CH4 in the atmosphere is less than CO2, its global warming potential is
approximately 25 times greater [5]. Large amounts of methane are widely available in
nature in the form of natural gas, although methane is a greatly underutilized resource for
chemical and liquid fuels [6].
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Large amounts of natural gas reserves are located in remote areas [7,8] and pipelines
may not be available to transport that remote gas to regions where it can be used, and
liquefication for transportation via ship is quite expensive. Almost 11% of this gas is
reinjected, while another 4% is flared or vented [5,9,10], generating waste [10].

The conversion of CH4 and CO2 into value-added chemicals has attracted attention
from the academic community and industries [4,11–13]. The abundance of these two gases
makes them stand out as raw materials for fuels and chemical synthesis. Furthermore, CH4
is considered to be the cheapest carbon source for the petrochemical industry [14].

Among these reserves, there are large amounts of low-value natural gas containing a
high concentration of CO2. Currently this natural gas is sold as liquefied natural gas after
a carbon dioxide clean up using CO2 separation facilities. The impurities from both the
separation stages are then injected underground to dispose of the waste using a sub-surface
aquifer, but at an estimated 49% of the total cost of the project [15]. The high CO2/CH4
ratio in low-value natural gas compositions could be strategically utilized to produce
value-added chemicals, such as higher hydrocarbons and liquid fuels without having to
separate the CO2 first [16]. The synthesis of liquid fuels and commodity chemicals from
CO2 is a promising approach for clean energy production. For this reason, much academic
and industrial effort has been devoted to exploring efficient means of reducing CO2 [17].

Several studies have been undertaken with the objective of making conversion of
methane viable, either by direct or indirect routes. The indirect routes focus on steam
reform to produce synthesis gas (CO + H2), which can be converted into the liquid fu-
els [18]. The direct route, on the other hand, converts methane into higher hydrocarbons
in one step through oxidative methane coupling reactions (OCM). Therefore, it is con-
sidered more economically viable and, consequently, it has been the subject of several
studies [4,12,14,16,19–31]. The general reactions for the formation of C2 hydrocarbons from
methane and carbon dioxide are expressed by [24]:

2CH4 + CO2 
 C2H6 + CO + H2O (1)

2CH4 + 2CO2 
 C2H4 + 2CO + 2H2O (2)

Although the OCM reaction is a highly exothermic reaction, it requires high tempera-
tures and a suitable catalyst because the binding energy of hydrogen-carbon in methane is
very large [32] and the bond dissociation energy of CO-O is also high. Because of the low
reactivity of CO2, the product (C2H4, C2H6) of the OCM reaction, with CO2 as an oxidant,
is less likely to react with CO2. Therefore, high C2 (C2H4, C2H6) selectivity is expected in
the CO2-OCM [31].

Nevertheless, a possible increase in temperature will result in total oxidation instead of
partial oxidation of C2 hydrocarbons, such as ethylene [6]. We therefore see the importance
of catalyst selection for the OCM reaction. The catalyst determines at what temperature
and composition the maximum yield and selectivity for the reaction will be defined [30].

Considerable efforts have been placed on developing OCM catalysts in order to make
the product yields commercially feasible [4,12,14,19–21,23,24,27,29–31].

Of the various catalysts for CO2 activation, ceria (CeO2) is attracting increased interest
due to its high oxygen storage capacity [11]. Indeed, oxidation and reduction reactions of
Ce4+ and Ce3+ are effective in activating carbon dioxide to form oxygen active species, while
the C2 selectivity is related to the basicity of a catalyst due to enhanced CO2 chemisorption
on the catalyst surface [11,27]. Wang et al. [25] and Wang et al. [26] proposed using a ceria
catalyst modified with CaO. According to these authors the CaO/CeO2 is the most effective
catalyst for conversion at high temperatures of CH4 to C2H6 and C2H4 by CO2 among a
series of CeO2 catalysts modified with alkali and alkaline earth metal oxides. Istadi and
Amin [28] and Istadi and Amin [16] proposed using CaO/CeO2 and MnO/CeO2 catalysts
in the multi-objective optimization of CO2-OCM process. According to these authors, the
optimal operating parameters, such as the CO2/CH4 ratio and reactor temperature, and
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the catalyst compositions in the ceria catalyst, provide essential information for industrial
CO2-OCM processes.

At the same time, multi-objective optimization allows one to find the point that
represents the final solution to the problem, in addition to treating the reliability of that
solution as an important factor. It then follows that the variance of the prediction would be
of great concern [33].

The aim of this study is to optimize the conversion of natural gas, rich in carbon
dioxide, using robust multi-criteria decision-making processes, based on an entropic mea-
sure, to determine the ideal Pareto point as the final solution to the problem. The normal
boundary intersection method (NBI) together with the mixture design of experiments
(MDE), will be used to optimize these responses simultaneously.

2. Multi-Objective Optimization

Industrial processes, when translated into optimization problems, are usually treated
as multi-objective problems, since they involve more than one desirable resource. When
the objective functions are not in conflict, each objective function reaches its optimal value,
and a solution is found, without the need for any special method [34]. These objectives are
often conflicting [35]. A multi-objective optimization (MOP) problem can be formulated in
order to study the tradeoffs between these conflicting objectives, as in:

Min
x∈Ω

Λ = {F1(x), F2(x), . . . , Fk(x)} (3)

where Λ is the vector of the objective functions that comprise the conflicting k criteria and
Fi is the vector of the decision variables x belonging to the viable set Ω.

Their restrictions are represented in the form of inequalities or equalities, according to:

Ω =
{

x ∈ Rn∣∣gr(x) ≤ 0, r ∈ I, hq(x) = 0, q ∈ J
}

(4)

where gr and hq are the inequality and equality constraint functions, respectively and I
and J are the index sets containing as many elements as there are inequality and equality
constraints, respectively.

When looking for an MOP solution, the goal is to find efficient solutions. Some
variations in the concept of efficiency are concepts of local efficiency, weak efficiency, and
weakly local efficiency. Hence, a solution x∗ ∈ X is locally efficient if δ > 0 such that x∗ is
efficient in X ∩ N(x∗, δ), where N(x, δ) = {y|y ∈ Rn, ‖x− y‖ < δ}. A solution x∗ ∈ X is
weakly efficient if there is no other point x ∈ X such that f (x) < f (x∗). A solution x∗ ∈ X
is locally weakly efficient if δ > 0 such that x∗ is weakly efficient in X ∩ N(x∗, δ).

However, for a given decision vector x∗ to be the solution to an optimization problem,
it must satisfy some conditions, which we call optimality conditions. The simplest situation
for which we can define the optimality conditions is that in which we have a single function
for which we wish to find the optimal point, and there are no constraints. In the case of
unconstrained optimization, the necessary first-order condition is:

If x∗ is to be a local minimizer of the function f (x), differentiable at x∗, then∇ f (x∗) = 0.
At this point, Miettinen [34] is used, which shows that a function fi : Rn → R is

differentiable at x∗ if:

fi(x∗ + d)− fi(x∗) = ∇ fi(x∗)
Td + ‖d‖ε(x∗, d) (5)

where ∇ fi(x∗) is the gradient of fi at x∗ and ε(x∗, d)→ 0 as ‖d‖ → 0 .
Furthermore, fi is continuously differentiable at x∗ if all of its partial derivatives

∂ fi(x∗)
∂xj

(j = 1, . . . , n), i.e., all the gradient components, are continuous at x∗. Still, with
respect to the unconstrained optimization, the necessary second-order condition is:

If x∗ is to be a local minimizer of the function f (x), twice differentiable at x∗, then
∇ f (x∗) = 0 and ∇2 f (x∗) must be positive semidefinite, i.e., it has eigenvalues (λi) greater
than or equal to zero.
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According to Miettinen [34], a function fi : Rn → R is twice differentiable at x∗ if:

fi(x∗ + d)− fi(x∗) = ∇ fi(x∗)
Td +

1
2

dT∇2 fi(x∗)d + ‖d‖2ε(x∗, d) (6)

where: ∇ fi(x∗) is the gradient, the symmetric matrix, n× n; ∇2 fi(x∗) is a Hessian matrix
of fi at x∗; and ε(x∗, d)→ 0 as ‖d‖ → 0 .

The Hessian matrix of a twice differentiable function consists of second-order partial

derivatives ∂2 fi(x∗)
∂xj∂xl

(j, l = 1, . . . , n), and it can be presented as:

∇2 fi(x∗) =


∂2 fi(x∗)

∂x2
1

· · · ∂2 fi(x∗)
∂x1∂xn

...
. . .

...
∂2 fi(x∗)
∂xn∂x1

· · · ∂2 fi(x∗)
∂x2

n

 (7)

Furthermore, fi is twice continuously differentiable at x∗ if all of its second-order
partial derivatives are continuous at x∗.

With respect to optimality conditions in unconstrained optimization, we see that only
the presented conditions are necessary, since the first and second order terms can be null,
still leaving doubt about the nature of x∗. Therefore, a sufficient condition for x∗ to be a
strict local minimizer of the function f (x), twice differentiable at x∗, is ∇ f (x∗) = 0 and
∇2 f (x∗) as a positive definite, i.e., it has eigenvalues (λi) greater than zero.

To analyze the critical points the second order derivatives of the function must exist
and be different from zero, which can be verified by performing a Taylor series expansion
around the optimal point. Since the first derivative is null, we have:

fi(x)− fi(x∗) =
1
2
(x− x∗)T∇2 fi(x∗)(x− x∗) (8)

The values of the function near the critical point depend on the Hessian. In summary,
we have the following relation between the Hessian matrix eigenvalue signals and the
critical point:

• if all eigenvalues are positive, we have a minimum point;
• if all eigenvalues are negative, we have a maximum point; and
• if the eigenvalues show different signs, we have a saddle point.

This analysis still allows us to deduce the convexity of the function. Similarly, when
working with Response Surface Methodology (RSM), the determination of the convexity
of a function is done by characterizing the nature of the stationary point. The stationary
point is the level of x1, x2, . . . , xk, that optimizes the predicted response. This point, if it
exists, will be the set of x1, x2, . . . , xk, for which the partial derivatives are equal to zero.
A general mathematical solution for locating the stationary point may be obtained. The
second-order model is expressed in the matrix notation as [36]:

ŷ = β̂0 + xTb + xTBx (9)

where:

x =


x1
x2
...

xk

, b =


β̂1
β̂2
...

β̂k

, and B =


β̂11 β̂12/2 · · · β̂1k/2

β̂21/2 β̂22 · · · β̂2k/2
...

...
. . .

...
β̂k1/2 β̂k2/2 · · · β̂kk

 for β̂ij = β̂ ji (10)
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The derivative of ŷ with respect to the elements of the vector x equated to zero is:

∂ŷ
∂x

= b + 2Bx = 0 (11)

The stationary point described in Equation (12) is the solution of Equation (11):

xs = −
1
2

B−1b (12)

The predicted response at the stationary point is given by:

ŷs = β̂0 +
1
2

xs
Tb (13)

In general terms, the nature of a stationary point can be determined from the sign
of the eigenvalues or root characteristics of a given matrix B. The eigenvalues (λi) of the
matrix B are the solutions to the following equation:

|B− λI| = 0 (14)

Then, these are defined as follows:

• if the values of λi are all negative, the function is concave and xS is a maximum point;
• if the values of λi are all positive, the function is convex, and xS is a minimum point;
• if the values of λi present different signs, the function is neither concave nor convex,

and xS is a saddle point.

In multi-objective optimization two approaches can be used to aid in solving problems:
(i) converting all objective functions into a single problem; (ii) optimizing one objective,
considering other objectives as constraints [37]. In this second approach, the objective
function is prioritized and the relevance of the others is relegated to a lower extent.

According to Shahraki and Noorossana [37], the methods that result in obtaining a
set of optimal Pareto solutions are recommended, since they provide the best solutions
among all other given options in terms of efficiency. The weighted sum method (WSM)
is widely used to obtain optimal Pareto solutions in MOP, as it is easy to implement
and interpret. However, if the set of Pareto optimal solutions is nonconvex, the frontier
becomes nonconvex and discontinuous, forming clusters of solutions in regions of great
curvature, yet discontinuous in the solution space. In such situations, the WSM, which is
the standard method for generating the Pareto set in MOP, barely finds solutions in the
nonconvex section. Moreover, the WSM cannot generate an equally spaced frontier, even if
the distribution of weights is uniform [38,39], which can confuse the decision maker by not
clarifying the conflicting behavior and the trade-offs between different objective functions.

Das and Dennis [40] presented the Normal Border Intersection (NBI) method as
an option that can overcome the disadvantages presented by the WSM method. This
method presents the Pareto surface distributed evenly independent of relative scales and
the convexity of the objective functions.

However, Das and Dennis [40] argue that a disadvantage, inherent to methods that
seek to find a large number of efficient points in MOP, is that these methods cannot find
globally Pareto optimal points. The points generated by the NBI are only locally guaranteed
as Pareto optimal points. Nevertheless, we will use the NBI method in this study, given its
robustness when working with nonconvex problems.

Thus, the NBI method is used to solve the MOP using the following equation [40]:

Max
(x, D)

D

s.t. : Φw− DΦe = F(x)
x ∈ Ω

(15)
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where w is the convex weighting; D is the distance between the Utopia line and the Pareto
frontier; F(x) is the vector containing the individual values of the normalized objectives in
each run; e is a column vector of one and Φ and Φ are the payoff and normalized payoff
matrices, respectively, and can be written as:

Φ =

 f ∗1
(

x∗1
)
· · · f1(x∗m)

...
. . .

...
fm
(

x∗1
)
· · · f ∗m(x∗m)

⇒ Φ =


f ∗1 (x∗1)− f ∗1 (x∗1)
f1(x∗m)− f ∗1 (x∗1)

· · · f1(x∗m)− f ∗1 (x∗1)
f1(x∗m)− f ∗1 (x∗1)

...
. . .

...
fm(x∗1)− f ∗m(x∗m)

fm(x∗1)− f ∗m(x∗m)
· · · f ∗m(x∗m)− f ∗m(x∗m)

fm(x∗1)− f ∗m(x∗m)

 (16)

3. Criteria for Defining the Ideal Pareto Solution

When solving an MOP, there are usually an infinite number of efficient solutions
that form the ideal set of Pareto (called efficient set) points [34]. The process that seeks
to generate optimal Pareto alternatives is known as multi-objective optimization. From a
mathematical standpoint, every Pareto ideal point is an acceptable solution for a MOP, if
the objective is to obtain a point as the final solution [41].

It is difficult to define the degree of importance to be attributed to each objective [42].
The definition of the weights for each function can be influenced by the preferences of
the decision maker. This affects the influence of weights used to determine the relative
importance of the functions, in order to identify the most important parameters during the
optimization process, and the preferences are selected [43].

The priority given to the criteria significantly affects the final result, since this result
depends on the importance attached to each objective [44–46]. This can become a problem
as decision makers are often unsure about the exact weights of objective functions [44].
Considerable cognitive effort is necessary [47] in order to obtain information on direct
preference from the analyst,

The Pareto set includes rational options, from which the analyst can select the final
solution by comparing several objectives with each other [44]. As such, the search is for a set
of ideal solutions in the broadest sense (Pareto optimal). Several techniques from literature
address optimal Pareto solutions in the solution space. However, the disadvantage of these
methods is the variety of solutions from which one must choose. We therefore can identify
a need to bridge the gap between exclusive solutions and Pareto ideal sets [44].

When solving a linear multi-objective optimization problem, Zeleny [48,49] sought
to answer the following questions: (i) what is the most preferred solution among the
generated, non-dominated and extreme solutions? (ii) Can the set of non-dominated
solutions be reduced to consist of fewer points to determine a final decision? To answer
these questions, he proposed the “traditional measure of entropy” as a parameter to assess
the importance of functions and define the weights to be used in solving the problem.

Following a different approach, some authors (see [50–52]) used the Shannon entropy
index [53] associated with an error measure, to determine the most preferred Pareto ideal
point in a MOP in a vertical turning process, resolved using the NBI method. The authors
state that Shannon’s entropy index can provide a more reliable assessment of the relative
weights of objectives in the absence of analyst preferences. Furthermore, the authors state
that when combined with an error measure, it minimized the error of Pareto’s preferred
point related to individual optimal responses. The weighting metric ξ is obtained by [50,52]:

Max ξ = Entropy
GPE

s.t. :
n
∑

i=1
wi = 1

0 ≤ wi ≤ 1

(17)

where wi are the weights to be assigned to the objectives that are to be optimized.
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The Entropy equation can be calculated by [53]:

Entropy = −
m

∑
i=1

wi ln wi (18)

The GPE equation is represented by [54]:

GPE =
m

∑
i=1

∣∣∣∣y∗iTi
− 1
∣∣∣∣ (19)

where y∗i is the value of the Pareto-optimal responses; Ti is equal to the defined target and
m is equal to the number of objectives.

As discussed earlier, many of the weighting strategies used during the optimization
and decision-making process rely on inaccurate and subjective elements in at least one of
the stages. Thus, weighting method analysis shows that significant contributions can be
made, since a large portion of these strategies still employ elements susceptible to error.

Only Shahraki and Noorossana [34] proposed a way of evaluating any variability
parameter when selecting the best Pareto optimal solution. We therefore see the theoretical
gap, that we intend to address in this study: the behavior of the prediction variance in
relation to the weighting strategies.

Now, consider the following problem [55]:

Min
x

n
∑

i=1
wi fi(x)

s.t. : ∑n
i=1 wi = 1

wi ≥ 0, i = 1, . . . , n

(20)

where fi(x) are the objective functions to be optimized and wi are the weights assigned to
each objective function.

In order to calculate the variance for the function described in Equation (20), the
following process is considered:

Var
[

n
∑

i=1
wi fi(x)

]
=

n
∑

i=1

[
∂wi fi(x)

∂ fi(x)

]2
σ2

fi
+ 2

n
∑
i

n
∑
j

[
∂wi fi(x)

∂ fi(x)

][
∂wj f j(x)

∂ f j(x)

]
σfi f j

=
n
∑

i=1
w2

i σ2
fi(x) + 2

n
∑
i

n
∑
j

wiwjσfi f j

=
n
∑

i=1
w2

i Var[ fi(x)] + 2
n
∑
i

n
∑
6=j

wiwjρ fi f j

√
Var[ fi(x)]×Var

[
f j(x)

] (21)

where ρ fi f j
is the correlation between the functions fi and fj.

Considering that it is possible to calculate the variance of fi (x) at a certain point

x0
T =

[
1 x01 x02 . . . x0k

]
, as Var[ fi(x0)] = σ̂2

fi
x0

T(XTX)
−1

x0, Equation (21) can be
modified to:

Var
[

n
∑

i=1
wi fi(x0)

]
=

n
∑

i=1
w2

i

[
σ̂2

fi
x0

T(XTX)
−1

x0

]
+

2
n
∑
i

n
∑
6=j

wiwjρ fi f j

√[
σ̂2

fi
x0T(XTX)

−1
x0

]
×
[
σ̂2

f j
x0T(XTX)

−1
x0

] (22)

Now, consider the term Var[ f (x0)] = σ̂2
f x0

T(XTX)
−1

x0 as constant for each function at
a given point. Analyzing Equation (22), we see that the variance of the estimated responses
is minimized by diversification, i.e., by the uniform distribution of weights among the
functions involved in the MOP. Furthermore, negative correlations between responses
tend to decrease variance. We propose the following: using entropic metrics to choose the
optimal weights in MOP can reduce prediction variance.
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Figure 1 shows the step-by-step proposal.
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4. Experimental Design

The experimental data presented by Istadi and Amin [28] and Istadi and Amin [16]
were used in this study. The authors sought to optimize a CO2-OCM process, by determin-
ing the condition that led to maximum CH4 conversion, C2 selectivity, and C2 yield.

The CaO/CeO2 and MnO/CeO2 catalysts were prepared by impregnating ceria (CeO2)
with aqueous solutions of Ca(NO3)2 and Mn(NO3)2, respectively, as described in Istadi
and Amin [56] and Istadi and Amin [16]. The catalytic performances were tested in
an experimental set-up as described in Istadi and Amin [56]. The CH4 conversion, C2
selectivity, and C2 yield are calculated as defined by Wang et al. [26], considering that the
carbon in methane is converted to C2H6, C2H4 and CO.

The most frequently used experimental design for data collection, for modeling the
response surface functions, is a Central Composite Design (CCD). According to Myers
et al. [36], a CCD is chosen because it is an efficient design for sequential experimentation,
allowing a reasonable amount of information to test the error without requiring a large
number of experiments. Additionally, the design accommodates a spherical region with
five levels for each factor, which is advantageous from an experimental region point of
view. The CCD was then employed in the experimental design. Using CO2/CH4 ratio
(dimensionless), reactor temperature (K), wt.% CaO in ceria catalyst and wt.% MnO in ceria
catalyst as the decision variables, a full factorial design 24 was performed with eight axial
points and two center points, generating 26 experiments. The experimental matrix is shown
in Table 1 in which x1 is the CO2/CH4 ratio, x2 is the reactor temperature, x3 is the wt.%
CaO in ceria catalyst, x4 is the wt.% MnO in ceria catalyst, y1 is the CH4 conversion (%),
y2 is the C2 selectivity (%), and y3 is the C2 yield (%). The fixed experimental conditions
are [16,28]: catalyst weight = 2 g; total feed flow rate = 100 mL/min; total pressure = 1 atm;
gas hourly space velocity = 3000 mL/(g h).
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Table 1. CCD for CH4 conversion (y1), C2 selectivity (y2) and C2 yield (y3).

N x1 x2 x3 x4 y1 y2 y3

1 1.5 1048 10 3 2.63 69.01 1.82
2 2.5 1048 10 3 2.68 60.20 1.61
3 1.5 1198 10 3 7.95 32.71 2.60
4 2.5 1198 10 3 9.74 18.73 1.82
5 1.5 1048 20 3 1.76 24.62 0.43
6 2.5 1048 20 3 2.92 55.95 1.63
7 1.5 1198 20 3 9.92 27.84 2.76
8 2.5 1198 20 3 13.41 16.21 2.17
9 1.5 1048 10 7 2.20 78.15 1.72

10 2.5 1048 10 7 2.29 78.37 1.80
11 1.5 1198 10 7 7.80 35.98 2.81
12 2.5 1198 10 7 8.70 33.12 2.88
13 1.5 1048 20 7 1.25 42.64 0.53
14 2.5 1048 20 7 1.55 64.79 1.00
15 1.5 1198 20 7 9.03 34.62 3.13
16 2.5 1198 20 7 10.89 30.78 3.35
17 1.0 1123 15 5 2.27 70.51 1.60
18 3.0 1123 15 5 2.47 65.18 1.61
19 2.0 973 15 5 0.54 24.30 0.13
20 2.0 1273 15 5 16.59 14.32 2.38
21 2.0 1123 5 5 4.33 74.63 3.23
22 2.0 1123 25 5 3.70 66.30 2.45
23 2.0 1123 15 1 4.71 74.07 3.49
24 2.0 1123 15 9 4.53 75.24 3.41
25 2.0 1123 15 5 4.81 72.58 3.49
26 2.0 1123 15 5 5.06 75.64 3.83

It is important to note that the experimental matrix presented in Table 1 was planned
using only 2 CP. This can be very detrimental to the stability of the prediction variance.
Myers et al. [36] do not recommend using a CCD with only two CP, because this practice
does not guarantee good dispersion of the prediction variance throughout the experimental
region, and analyzing how the proposed method behaves in such designs is important.
This was why we chose this experimental matrix.

The decision variables were analyzed in coded form. They were decoded only at the
end of the analyses. This was done using the following equation [51]:

Xuncoded =
Hi + Lo

2
+ Xcoded

Hi− Lo
2

(23)

where: Hi and Lo are related to the values of level +1 and −1, respectively.
The parameters used in the experiments and their levels are shown in Table 2.

Table 2. Parameters used in the experiments.

Factors Symbol
Levels

−2 −1 0 1 2

CO2/CH4 ratio x1 1 1.5 2 2.5 3
Reactor temperature (K) x2 973 1048 1123 1198 1273

wt.% CaO (%) x3 5 10 15 20 25
wt.% MnO (%) x4 1 3 5 7 9

In the search for an optimization model that allows for the simultaneous conversion of
CH4, C2 selectivity, and C2 yield, the decision-making process, based on multiple criteria,
proposed by Rocha et al. [52] can be used. The authors sought to build a uniformly
distributed Pareto frontier and a way to select the preferred Pareto optimal points as the
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ideal solution to a given problem. The authors used the NBI method, overcoming the
disadvantages of the WSM method. To verify the robustness of the final result obtained,
a variance metric was adopted. Although there are different measures of prediction
performance to compare experimental designs, SPV is commonly adopted [57]. However,
if direct comparisons between the expected variation of estimation are desired, UPV may
be more appropriate.

5. Results and Discussion

The analysis of experimental data shown in Table 1 generated the mathematical
modeling presented in Table 3.

Table 3. Objective functions mathematical models.

Terms y1 y2 y3

Constant 4.9350 74.1100 3.6600
x1 0.4183 0.0800 0.0200
x2 3.8442 −10.9875 0.6450
x3 0.2283 −5.2283 −0.1508
x4 −0.3192 3.9800 0.0925

x1x1 −0.4700 −3.9140 −0.5610
x2x2 1.0788 −16.0477 −0.6485
x3x3 −0.0588 −3.2590 −0.2523
x4x4 0.0925 −2.2115 −0.0998
x1x2 0.4025 −4.8250 −0.1638
x1x3 0.2488 3.9650 0.1338
x1x4 −0.2088 1.1725 0.0763
x2x3 0.7113 5.4150 0.2913
x2x4 −0.1188 −0.9475 0.2038
x3x4 −0.2050 0.2025 −0.0212

p-value 0.000 0.030 0.000
R2 (%) 97.47% 80.29% 94.82%

Lack-of-fit 0.131 0.106 0.483
The values presented in bold represent the significant terms of the model (thus, p-value < 5%).

Table 3 shows that the R2 values indicate a good fit for the model. The lack-of-fit test is
shown in Table 3. In the lack-of-fit test, small p-values are undesirable. At a 5% significance
level, all presented models were adequate.

In order to establish a comparison of how each decision variable affects each response,
the main effect plots for CH4 conversion (y1), C2 selectivity (y2) and C2 yield (y3) are shown
in Figure 2.

According to this analysis, the reactor temperature (x2) is the most significant factor
in increasing CH4 conversion (y1). The reactor temperature (x2) is also an important
factor when analyzing C2 selectivity (y2) and C2 yield (y3), but in a different way. The
reactor temperature (x2) increases the C2 selectivity (y2) and C2 yield (y3) until reaching
1123 K. When increasing the temperature above 1123 K, C2 selectivity (y2) and C2 yield
(y3) decrease. The drop is greater when analyzing the values of C2 selectivity (y2), and
this could be attributed to more CH4 being converted into CO rather than C2H4 and/or
C2H6 [16]. For C2 selectivity (y2) and C2 yield (y3) the factors wt.% CaO in ceria catalyst
(x3) and wt.% MnO in ceria catalyst (x4) showed very similar behavior, and the highest
values for the responses obtained were extreme factor values, i.e., 5 and 25% CaO, and
1 and 9% MnO in ceria catalyst. The considerable impact that these factors have on C2
selectivity (y2) and C2 yield (y3) highlights the importance of the catalysts in promoting
the product selectivity to C2H4 and/or C2H6, and in inhibiting the reaction to form CO
and H2O [16]. The CO2/CH4 ratio (x1) had different behavior for C2 selectivity (y2) and C2
yield (y3). While the highest value for C2 yield (y3) was observed for the CO2/CH4 ratio
(x1) 2, the highest values for the C2 selectivity (y2) obtained were in the extreme CO2/CH4
ratio (x1) range. The 2.5 CO2/CH4 ratio (x1) led to the highest CH4 (y1) conversion value
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with a drop in the value of this response at CO2/CH4 ratio (x1) 3. The abundance of CO2 in
the high CO2/CH4 ratio most likely decreased the catalyst activity by covering the catalyst
active sites [16]. When analyzing only reactor temperature (x2), we saw that increased
CH4 conversion (y1), C2 selectivity (y2) and C2 yield (y3) would be negatively affected,
which corroborates the results presented by other authors [25–27]. We can see how these
objectives are, thus, conflicting.
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Figure 2. Main effect plots for CH4 conversion (y1), C2 selectivity (y2) and C2 yield (y3).

Figure 3 shows the response surfaces for CH4 conversion (y1), C2 selectivity (y2) and
C2 yield (y3).

In order to check the convexity of the functions, before performing the multi-objective
optimization, the nature of the stationary point was analyzed using Equation (14). For
CH4 conversion (y1) the eigenvalues (λi) are [1.2205; −0.5222; −0.1821; 0.1263], i.e., the
different eigenvalues signs indicate that the function is neither concave nor convex and the
stationary point is a saddle point. For C2 selectivity (y2) the eigenvalues (λi) are [−17.1859;
−4.6067;−2.3090;−1.3305]. Thus, the eigenvalue signs indicate that the function is concave
and the stationary point is a maximum point. For C2 yield (y3) the eigenvalues (λi) are
[−0.7656; −0.5133; −0.2047; −0.0781]. The eigenvalue signs indicate that the function is
concave and the stationary point is a maximum point. Through an analysis of the nature
of the stationary point, we see that the functions have different convexities. Thus, the
weighted sum method for multi-objective optimization is not adequate [58]. We therefore
adopted the NBI method. To implement the NBI optimization routine, initially, the payoff
matrix was estimated, obtaining the results shown in Table 4.
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Figure 3. Response surface for CH4 conversion (y1), C2 selectivity (y2) and C2 yield (y3) (hold values:
x3 = 15, x4 = 5).

Table 4. Payoff matrix for the objective functions.

y1 y2 y3

17.118 0.000 2.619
3.376 82.614 2.945
7.793 59.630 3.933

Bold values represent individual optimums.

The payoff matrix is an underlying part of the NBI implementation. After this step,
a mixture design for the weights of each objective function was defined, as presented in
Table 5.
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Table 5. Mixture design.

Weights
y1 y2 y3 Entropy GPE ξ UPV

w1 w2 w3

1.000 0.000 0.000 17.118 0.000 2.619 0.0000 1.3341 0.0000 0.5833
0.900 0.100 0.000 15.744 8.261 2.652 0.3251 1.3061 0.2489 0.5833
0.900 0.000 0.100 16.185 5.963 2.750 0.3251 1.2830 0.2534 0.5833
0.800 0.200 0.000 14.370 16.523 2.684 0.5004 1.2781 0.3915 0.5833
0.800 0.100 0.100 14.811 14.224 2.783 0.6390 1.2550 0.5092 0.5833
0.800 0.000 0.200 15.253 11.926 2.882 0.5004 1.2319 0.4062 0.5833
0.700 0.300 0.000 12.995 24.784 2.717 0.6109 1.2501 0.4887 0.5833
0.700 0.200 0.100 13.437 22.486 2.816 0.8018 1.2270 0.6535 0.5833
0.700 0.100 0.200 13.879 20.187 2.914 0.8018 1.2039 0.6660 0.5833
0.700 0.000 0.300 14.320 17.889 3.013 0.6109 1.1807 0.5173 0.5833
0.600 0.400 0.000 11.621 29.734 2.749 0.6730 1.2622 0.5332 0.5833
0.600 0.300 0.100 12.063 30.747 2.848 0.8979 1.1990 0.7489 0.5833
0.600 0.200 0.200 12.505 28.449 2.947 0.9503 1.1758 0.8082 0.5833
0.600 0.100 0.300 12.946 26.151 3.046 0.8979 1.1527 0.7790 0.5833
0.600 0.000 0.400 13.388 23.852 3.145 0.6730 1.1296 0.5958 0.5833
0.500 0.500 0.000 10.247 36.364 2.782 0.6931 1.2539 0.5528 0.5833
0.500 0.400 0.100 10.689 36.248 2.881 0.9433 1.2044 0.7833 0.5833
0.500 0.300 0.200 11.131 36.710 2.980 1.0297 1.1478 0.8970 0.5569
0.500 0.200 0.300 11.572 34.412 3.078 1.0297 1.1247 0.9155 0.3936
0.500 0.100 0.400 12.014 32.113 3.177 0.9433 1.1016 0.8563 0.3420
0.500 0.000 0.500 12.456 29.815 3.276 0.6931 1.0785 0.6427 0.3215
0.400 0.600 0.000 8.873 42.931 2.815 0.6730 1.2464 0.5400 0.5833
0.400 0.500 0.100 9.315 42.340 2.913 0.9433 1.2026 0.7844 0.5833
0.400 0.400 0.200 9.756 44.972 3.012 1.0549 1.1198 0.9420 0.5118
0.400 0.300 0.300 10.198 42.673 3.111 1.0889 1.0967 0.9929 0.4537
0.400 0.200 0.400 10.640 40.375 3.210 1.0549 1.0736 0.9826 0.3384
0.400 0.100 0.500 11.082 38.077 3.309 0.9433 1.0505 0.8980 0.3119
0.400 0.000 0.600 11.523 35.778 3.407 0.6730 1.0274 0.6551 0.3117
0.300 0.700 0.000 7.499 57.830 2.891 0.6109 1.1269 0.5421 0.3459
0.300 0.600 0.100 7.941 55.531 2.946 0.8979 1.1149 0.8054 0.3320
0.300 0.500 0.200 8.382 53.233 3.045 1.0297 1.0918 0.9431 0.3223
0.300 0.400 0.300 8.824 50.935 3.144 1.0889 1.0687 1.0189 0.3171
0.300 0.300 0.400 9.266 48.636 3.242 1.0889 1.0456 1.0414 0.3142
0.300 0.200 0.500 9.707 46.338 3.341 1.0297 1.0225 1.0070 0.3126
0.300 0.100 0.600 10.149 44.040 3.440 0.8979 0.9994 0.8985 0.3120
0.300 0.000 0.700 10.591 41.741 3.539 0.6109 0.9763 0.6257 0.3115
0.200 0.800 0.000 6.125 63.589 2.880 0.5004 1.1403 0.4388 0.3226
0.200 0.700 0.100 6.566 62.391 2.978 0.8018 1.1039 0.7264 0.3162
0.200 0.600 0.200 6.927 61.494 3.077 0.9503 1.0686 0.8893 0.3119
0.200 0.500 0.300 7.450 59.196 3.176 1.0297 1.0407 0.9894 0.3107
0.200 0.400 0.400 7.892 56.898 3.275 1.0549 1.0176 1.0367 0.3108
0.200 0.300 0.500 8.333 54.599 3.374 1.0297 0.9945 1.0354 0.3114
0.200 0.200 0.600 8.775 52.301 3.473 0.9503 0.9714 0.9783 0.3120
0.200 0.100 0.700 9.217 50.003 3.571 0.8018 0.9483 0.8456 0.3122
0.200 0.000 0.800 9.658 47.704 3.670 0.5004 0.9252 0.5409 0.3124
0.100 0.900 0.000 4.751 69.736 2.912 0.3251 1.1379 0.2857 0.3116
0.100 0.800 0.100 5.192 68.568 3.011 0.6390 1.1011 0.5803 0.3107
0.100 0.700 0.200 5.634 67.371 3.110 0.8018 1.0647 0.7531 0.3132
0.100 0.600 0.300 6.076 66.135 3.209 0.8979 1.0287 0.8729 0.3185
0.100 0.500 0.400 6.448 65.159 3.308 0.9433 0.9936 0.9494 0.3271
0.100 0.400 0.500 6.959 62.861 3.406 0.9433 0.9665 0.9761 0.3275
0.100 0.300 0.600 7.401 60.562 3.505 0.8979 0.9434 0.9519 0.3280
0.100 0.200 0.700 7.843 58.264 3.604 0.8018 0.9203 0.8713 0.3274
0.100 0.100 0.800 8.284 55.966 3.703 0.6390 0.8971 0.7123 0.3268
0.100 0.000 0.900 8.726 53.667 3.802 0.3251 0.8740 0.3719 0.3237
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Table 5. Cont.

Weights
y1 y2 y3 Entropy GPE ξ UPV

w1 w2 w3

0.000 1.000 0.000 3.377 82.614 2.945 0.0000 1.0540 0.0000 0.3984
0.000 0.900 0.100 3.818 80.315 3.044 0.3251 1.0309 0.3153 0.5597
0.000 0.800 0.200 4.260 78.017 3.142 0.5004 1.0078 0.4965 0.5833
0.000 0.700 0.300 4.702 75.719 3.241 0.6109 0.9847 0.6203 0.5833
0.000 0.600 0.400 5.097 73.420 3.340 0.6730 0.9643 0.6979 0.5833
0.000 0.500 0.500 5.447 71.122 3.439 0.6931 0.9465 0.7323 0.5122
0.000 0.400 0.600 5.834 68.824 3.538 0.6730 0.9266 0.7263 0.3236
0.000 0.300 0.700 6.319 66.525 3.637 0.6109 0.9010 0.6780 0.3541
0.000 0.200 0.800 6.910 64.227 3.735 0.5004 0.8691 0.5757 0.3964
0.000 0.100 0.900 7.352 61.929 3.834 0.3251 0.8460 0.3842 0.3562
0.000 0.000 1.000 7.794 59.631 3.933 0.0000 0.8229 0.0000 0.3106
0.333 0.333 0.333 9.429 47.415 3.166 1.0986 1.0703 1.0264 0.3107
0.667 0.167 0.167 13.274 23.707 2.892 0.8676 1.2022 0.7216 0.3697
0.167 0.667 0.167 6.403 63.621 3.055 0.8676 1.0790 0.8040 0.3109
0.167 0.167 0.667 8.611 53.523 3.549 0.8676 0.9466 0.9165 0.3131

Table 5 presents the Pareto optimal set for the MOP under analysis. As shown in
Rocha et al. [59], the prediction variance was affected by the weights assigned to the
objectives.

Table 6 shows the Pearson Correlation analysis between the values that were pre-
viously presented in Table 5. Using the Pearson Correlation analysis we see that the ξ
weighting metric has a statistically negative and significant correlation with the UPV. There-
fore, when maximizing this metric, the variance values tend to be lower. This information
indicates that the search for the most preferred Pareto optimal point in multi-objective
optimization using this metric leads to a robust response from a variability point of view.

Table 6. Pearson correlation coefficients.

Entropy GPE ξ

GPE
−0.008
0.950

ξ
0.967 −0.232
0.000 0.054

UPV
−0.228 0.642 −0.378
0.057 0.000 0.001

Using data presented in Table 5, the entropy modeling, GPE, weighting metric (ξ), and
UPV were performed. Their canonical mixing polynomials (Equations (24)–(27)), response
surfaces and contour graphics were obtained (Figures 4–7), which are presented below:

Entropy = −0.0074w1 − 0.0074w2 − 0.0074w3 + 2.7705w1w2 + 2.7705w1w3+
2.7705w2w3+5.4207w1w1w2w3+5.4207w1w2w2w3+5.4207w1w2w3w3+

1.4619w1w2(w1 − w2)
2 + 1.4619w1w3(w1 − w3)

2 + 1.4619w2w3(w2 − w3)
2

(24)

GPE = 1.3312w1 + 1.0624w2 + 0.8233w3 + 0.1419w1w2−
0.1680w1w2(w1 − w2)− 1.2977w1w2w2w3

(25)

ξ = −0.0123w1 − 0.0081w2 + 0.0016w3 + 2.2476w1w2 + 2.5539w1w3 + 2.9199w2w3−
0.2272w1w2(w1 − w2)− 0.6622w1w3(w1 − w3)− 0.3965w2w3(w2 − w3)+

3.8644w1w1w2w3+5.3402w1w2w2w3+6.2119w1w2w3w3 + 1.4004w1w2(w1 − w2)
2+

1.5386w1w3(w1 − w3)
2 + 1.5177w2w3(w2 − w3)

2

(26)
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UPV = 0.6054w1 + 0.4386w2 + 0.3849w3 + 0.3919w1w2 − 0.3719w1w3 + 0.2859w2w3+
0.8779w1w2(w1 − w2) + 0.9531w1w3(w1 − w3) + 0.9960w2w3(w2 − w3)−
11.9662w1w2w2w3 − 2.6199w1w2(w1 − w2)

2
(27)
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Figure 4. Entropy response surface and contour plot.

It is interesting to note that all canonical polynomials of mixtures showed a good fit,
with R2 close to 100%. The adopted variance metric, UPV, had the worst adjustments, with
an R2 value equal to 82.83%. However, this value may be acceptable [36]. This analysis
highlights the fact that it is possible to model the variance metric in terms of weights. This
is because the weights interfere in the solution space. However, since the optimization of
distinct functions is performed simultaneously, the solution space is not the same as the
initial area of the DOE, and therefore, its shape is distinguished from the Hat Matrix shape
when modeling the variance.

Lastly, when maximizing ξ, as described in Equation (26), weights w1, w2, and w3, re-
lated to the final solution, were identified as being w1 = 0.2603, w2 = 0.3202, and w3 = 0.4195.
These optimal weights were used in a multi-objective optimization of CH4 conversion (y1),
C2 selectivity (y2), and C2 yield (y3), reaching 8.806%, 51.468%, and 3.275%, respectively.
This result is different from that obtained by Istadi and Amin [28] and Istadi and Amin [16].
When optimizing the responses using a bio-objective optimization process, the authors
neglected the real trade-off behavior between the responses. The lower diversification
among the responses almost led to a single-response optimization. The greatest challenge
of this process is to achieve both high CH4 conversion (y1) and high C2 selectivity (y2), since
it has been proven that these responses are in conflict one with the other [25–27]. Despite
this trade-off, the results are acceptable [25] especially with respect to using low-valued
natural gas.
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The optimal coded values of the decision variables are CO2/CH4 ratio (x1) = 1.0060,
reactor temperature (x2) = 0.7536, wt.% CaO in ceria catalyst (x3) = 0.4358, and wt.% MnO
in ceria catalyst (x4) = 0.4822. Using Equation (23), the encoded values were transformed
into uncoded values. Therefore, the optimal values of the decision variables are CO2/CH4
ratio (x1) = 2.50, reactor temperature (x2) = 1179.5 K, wt.% CaO in ceria catalyst (x3) = 17.2%,
and wt.% MnO in ceria catalyst (x4) = 6.0%. The high CO2/CH4 ratio (x1) favors CH4
conversion (y1) [26]. A high reactor temperature (x2) leads to high CH4 conversion (y1),
but the C2 yield (y3) decreases at reactor temperatures higher than 1173 K, due to low
C2 selectivity (y2) [26,27]. The high wt.% CaO (x3) and wt.% MnO (x4) in ceria catalyst
increases CH4 conversion (y1) and C2 selectivity (y2). According to Wang and Ohtsuka [27],
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these catalysts can activate CO2 to produce active oxygen for CH4 conversion (y1) and their
basicity leads to improvements in C2 selectivity (y2).

The data presented in Table 5 were used to construct Figure 8. Here, the Pareto frontier
constructed using the NBI method is presented, with the ideal point highlighted.
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Figure 8. Pareto frontier for CH4 conversion (y1), C2 selectivity (y2) and C2 yield (y3) optimization.

Figure 8 shows the uniform distribution of the optimal Pareto points on the frontier.
This also presents the most preferrable Pareto point, which is the final solution for the MOP.
The confidence interval values are shown in Table 7.

Table 7. Confidence interval values for the responses.

Responses Lower Limit Mean Upper Limit

y1 7.583 8.806 10.029
y2 32.802 51.468 70.133
y3 2.845 3.275 3.704

For α = 5%, the confidence interval of 100(1− α)%, for the mean response, at point
x0

T =
[

1 x01 x02 . . . x0k
]

is:

ŷ(x0)− tα/2, n−p

√
σ̂2x0T(XTX)

−1
x0 ≤ µy|x0

≤ ŷ(x0) + tα/2, n−p

√
σ̂2x0T(XTX)

−1
x0 (28)

When analyzing the question involving variability, the final solution obtained that
maximizes the ξ metric is robust, since this metric leads the solution in a region of minimum
variance, with less variability, and greater reliability. However, the confidence interval
of the C2 selectivity (y2) is higher than the other responses. This demonstrates that C2
selectivity (y2) is the most difficult parameter to control in the process.

Figure 9 shows the overlap of the different objective functions defining the feasible
region for the analyzed problem.

Figure 9 shows the conflicting nature between CH4 conversion (y1) and C2 selectivity
(y2). An increase in CH4 conversion (y1) leads to a decrease in C2 selectivity (y2). In this
study, the optimum point was chosen based on the maximization of metric ξ, and still, it
was shown to be the most robust point. However, one can see that the region of maximum
C2 yield (y3) lies within the feasible region for the problem, and is obtainable, even though
this is not the most reliable, from a statistical process control point of view.
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6. Conclusions

This paper studied direct low-value natural gas conversion using carbon dioxide
oxidative coupling of methane over CaO/CeO2 and MnO/CeO2 catalysts to produce C2
hydrocarbons. The NBI method was adopted to simultaneously optimize CH4 conversion,
C2 selectivity, and C2 yield. This method helped build an evenly distributed Pareto frontier
for the three responses, regardless of the convexity of the functions.

The mathematical response model showed acceptable fitting, and the functions were
proven adequate. Some results described in literature have been corroborated, e.g., the
positive influence of reactor temperature in CH4 conversion, the negative influence of
reactor temperature in C2 selectivity, the synergistic effect between reactor temperature, the
wt.% CaO in ceria catalyst in increasing CH4 conversion and C2 yield, and the synergistic
effect between reactor temperature and wt.% MnO in ceria catalyst in increasing C2 yield.

An entropic measure was used to select the most preferred ideal Pareto point for the
final solution. The decision-making criteria was useful and fundamental in identifying and
mapping regions with minimum variation within the optimal Pareto responses obtained in
the optimization processes. Furthermore, this study demonstrates that the weights used in
the multi-objective optimization process have an influence on the variation in the forecast
of the responses obtained. This study also proves the robustness of the weighting process
used in choosing the final solution.

The simultaneous optimal values for the objective functions were
CH4 conversion = 8.806%, C2 selectivity = 51.468%, and C2 yield = 3.275%. These re-
sults were obtained by using the following process parameter combinations: CO2/CH4
ratio = 2.50, reactor temperature = 1179.5 K, wt.% CaO in ceria catalyst = 17.2%, and wt.%
MnO in ceria catalyst = 6.0%. The analyses of the confidence interval for the responses
showed that C2 selectivity has greater variability, and was the most difficult parameter to
control in the process.

From an environmental point of view, this is an efficient process since it helps reduce
CO2 and CH4 emissions and reduces waste, as hydrocarbon resources, specifically from
low-value natural gas, can be used.
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