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Low response rates to immunotherapy have been reported in soft tissue sarcoma

(STS). There are few predictive biomarkers of response, and the tumor immune

microenvironment associated with progression and prognosis remains unclear in STS.

Gene expression data from the Cancer Genome Atlas were used to identify the

immune-related prognostic genes (IRPGs) and construct the immune gene-related

prognostic model (IGRPM). The tumor immune microenvironment was characterized

to reveal differences between patients with different prognoses. Furthermore, somatic

mutation data and DNA methylation data were analyzed to understand the underlying

mechanism leading to different prognoses. The IGRPMwas constructed using five IRPGs

(IFIH1, CTSG, STC2, SECTM1, and BIRC5). Two groups (high- and low-risk patients)

were identified based on the risk score. Low-risk patients with higher overall survival time

had higher immune scores, more immune cell infiltration (e.g., CD8T cell and activated

natural killer cells), higher expression of immune-stimulating molecules, higher stimulating

cytokines and corresponding receptors, higher innate immunity molecules, and stronger

antigen-presenting capacity. However, inhibition of immunity was observed in low-risk

patients owing to the higher expression of immune checkpoint molecules and inhibiting

cytokines. High-risk patients had high tumor mutation burden, which did not significantly

influence survival. Gene set enrichment analysis further revealed that pathways of

cell cycle and cancers were activated in high-risk patients. DNA methylation analysis

indicated that relative high methylation was associated with better overall survival. Finally,

the age, mitotic counts, and risk scores were independent prognostic factors for STS.

Five IRPGs performed well in risk stratification of patients and are candidate biomarkers

for predicting response to immunotherapy. Differences observed through the multi-omic
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study of patients with different prognoses may reveal the underlying mechanism of the

development and progression of STS, and thereby improve treatment.

Keywords: immune-related prognostic genes (model), tumor immune microenvironment, somatic variants, DNA

methylation, multi-omic study

INTRODUCTION

Unlike cancers with epithelial origins, soft tissue sarcoma (STS)
evolved from mesenchymal tissues in different anatomical sites
(1). Despite its lower incidence vs. cancers, STS with high
aggressive behavior was responsible for 5,270 deaths according
to the 2019 Cancer Statistics (2). Occurrence of STS in the
limbs increases the risk of disability in patients (3). Moreover,
STS is characterized by high rates of relapse (4). Therefore, the
treatment of STS is a challenge to most clinicians.

Patients with early-stage and localized STS (5, 6) can recover
from radical surgical resection and achieve higher survival
rates. However, patients with metastatic and recurrent STS are
linked to rapid progression of disease and death due to poor
response to surgical techniques and adjuvant radiotherapy (7).
Conventional treatment does not meet the requirements for
longer survival time and higher quality of life. An increasing
number of studies revealed that the tumor microenvironment
and the expression of immune checkpoint molecules accelerated
the progression of cancers (8–10). The use of immune checkpoint
inhibitors markedly improved the prognosis of cancers (e.g.,
melanoma) (11, 12). Based on the immune-related pathogenesis
in cancers, the use of immunotherapy may promote survival in
STS. Recent clinical cases reported favorable response to immune
checkpoint inhibitors in classic Kaposi sarcoma (13) and myxoid
chondrosarcoma (14). Nevertheless, there is insufficient evidence
regarding the efficacy of immunotherapy in STS. Therefore,
studies investigating the immune microenvironment or immune
gene-related prognostic biomarkers, which have been identified
in cervical cancer (15), lung adenocarcinoma (16), and cancers of
the digestive system (17) are warranted. Such studies will assist
in understanding the effect of immune infiltration on STS and
predict response to immunotherapy, thereby improving efficacy
against STS.

The aim of the present study was to identify immune gene-
related prognostic biomarkers and construct a prognostic model
to determine patients with better response to immunotherapy
for precision treatment in STS. Moreover, integrated analysis
of multi-omic data in patients with different prognoses may
elucidate the mechanism involved in tumorigenesis, metastasis,
and high aggressive behavior of STS.

MATERIALS AND METHODS

Collection and Preprocessing of Gene
Expression and Clinical Data
The latest version of normalized gene expression data (07-
20-2019) in the Cancer Genome Atlas (TCGA) database
were downloaded from the UCSC (University of California,
Santa Cruz) Xena browser (https://gdc.xenahubs.net). Raw gene

expression data (GSE21050) (18) were also downloaded from
the Gene Expression Omnibus (GEO) database. Subsequently,
the gene expression profiles were preprocessed. The “RMA”
algorithm (19) was used to process the GSE21050. During
the procedure of probe mapping to gene symbols, mean
values were maintained when multiple probes shared the
same gene symbol. The gene symbols with mean expression
value in all samples <0.5 were removed (20). For the
subsequent analyses, we selected common genes with top
25% variances in TCGA and GEO datasets (21). In addition,
clinical data of the TCGA and GEO samples were downloaded
and preprocessed.

Weighted Gene Co-expression Network
Analysis (WGCNA)
WGCNA, a new bioinformatics method, is effective in processing
gene expression, proteomic, and metabolomic datasets (22,
23). It has been applied to the identification of potential
crucial biomarkers in many types of diseases (24, 25) and
key genes associated with phenotypic traits (26). There
was no information regarding the survival status in the
GSE21050 dataset. Therefore, WGCNA was performed to
identify prognostic genes based on the expression matrix
obtained from TCGA database. The gene expression matrix of
genes with top 25% variance was used to construct a gene
co-expression network and identify modules. Subsequently, we
related modules to clinical information for the detection of
modules highly associated with survival. All these procedures
were performed using the “WGCNA” package (22) in R 3.5.3
software. Function enrichment analyses were conducted using
the “clusterProfiler” package (27) in R software to further
determine whether interesting modules were associated with
survival. Following the completion of WGCNA, genes identified
in the survival-related modules (interesting modules) were
extracted as the preliminary immune-related prognostic genes
(IRPGs) in STS.

Identification and Validation of the Immune
Gene-Related Prognostic Model (IGRPM)
Immune-related genes (IRGs) identified in the Immunology
Database and Analysis Portal (ImmPort) database (28) were
overlapped with the prognostic genes detected in the WGCNA.
The expression matrix containing common immune genes
from TCGA and GEO datasets was processed through the
“sva” package of R software (29) to remove the batch effect.
Subsequently, it was used to identify and validate IRPGs and
construct the prognosticmodel. Firstly, univariate Cox regression
analysis of common immune genes was performed based on the
“survival” package of the R software. Least absolute shrinkage and
selection operator (LASSO) regression analysis (30) was applied
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for genes with p < 0.05 in the univariate Cox regression analysis.
Through the 1000 cross-validations method, more reliable IRPGs
would be obtained using the “glmnet” and “survival” packages
(31). Genes identified from the LASSO regression analysis were
further determined via multivariate Cox regression analysis. The
genes that demonstrated significance in the multivariate Cox
regression analysis were considered the IRPGs in this study.
According to the coefficient of IRPGs in the multivariate Cox
regression analysis, the “predict” function in the “survMisc”
package was used to construct the IGRPM and compute the risk
score for each patient. Based on the median risk scores, patients
with risk scores more than the median risk scores were classified
into high-risk groups. Similarly, patients with risk scores less than
themedian were classified into low-risk groups. Subsequently, we
plotted the receiver operating characteristic (ROC) curve using
the “survivalROC” package and performed overall survival (OS)
analysis to evaluate the IGRPM. Differences in gene expression,
survival status, and risk scores between the high- and low-risk
groups were also visualized to evaluate the prognostic model.

Finally, the GSE21050 dataset was used to validate the accuracy
of the model based on the same cutoff value applied to the TCGA
dataset. Owing to the lack of survival status in this dataset, the
rates of metastasis-free survival were used as OS rates to validate
the IGRPM.

Immune Infiltration Analysis
The immune microenvironment was investigated in this study.
An algorithm using expression data for the estimation of
stromal and immune cells in malignant tumors (ESTIMATE)
was applied (32). The stromal score and immune score for
each patient with STS were computed based on specific
gene expression signatures of stromal and immune cells,
and single-sample gene set enrichment analysis via the
“estimate” package in the TCGA and GSE21050 datasets
(32). Differences in stromal and immune cell infiltration
between high- and low-risk patients were visualized via
the “ggpubr” package (https://CRAN.R-project.org/package=
ggpubr). Furthermore, the correlation of risk scores and immune

FIGURE 1 | Weighted gene co-expression network analysis (WGCNA). (A) Selection of the optimal soft threshold power, β (optimal β = 3, scale free topology index,

R2
= 0·9). (B) Module identification using the Dynamic Tree Cut method. The different color bands provide a simple visual comparison of module assignments. (C)

Module–trait relationship. Six modules were identified and related to clinical traits. Each cell represented the correlation (and p-value) of the module with the

corresponding clinical trait. OS represented the overall survival status (alive or dead). (D) Identification of genes with high significance and module membership in the

survival time-related blue module. (E) Identification of genes with high significance and module membership in the OS-related brown module.
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FIGURE 2 | Function enrichment analyses for the overlapped genes from the WGCNA and the Immunology Database and Analysis Portal (ImmPort) database. (A)

Gene Ontology (GO) analysis for the immune genes. (B) The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways for immune genes.

scores was explored to reveal the effect of immune infiltration
on prognosis. Subsequently, the CIBERSORT algorithm based
on 100 permutations was used to estimate the proportions of
22 types of immune cells following the official manual provided
in the CIBERSORT website (http://cibersort.stanford.edu/)
(33). In addition, based on previous studies, immune-related
molecules and other immune microenvironment components
except immune cells (i.e., chemokines, interleukins, interferons,
other cytokines, corresponding receptors of the aforementioned
molecules, innate immunity molecules, immune inhibitors
including common immune checkpoints, immune stimulators,
and antigen-presenting molecules) were further analyzed to
understand immune infiltration in STS (34–36). A p < 0.05
denoted statistically significant difference between high- and
low-risk patients.

Analysis of Somatic Variants
Notably, gene mutations may lead to neoantigen epitopes and
influence the components of immune microenvironments (16).
Mutation data from the VarScan2 Variant Aggregation and
Masking were downloaded through the UCSC Xena website.
The “maftools” package with functions for summarizing,
analyzing, and visualizing mutation data was used to analyze
somatic variants (37). Firstly, the overall mutation status,
as well as the corresponding risk and immune scores were
determined in all patients. Differential mutations were
investigated in patients with different risk and immune
scores to identify the crucial gene mutations associated
with prognosis and immune filtration, and demonstrate the
relationship between immune filtration and prognosis in STS.

Finally, the tumor mutation burden (TMB) was calculated
between high- and low-risk patients based on a previous
study (38).

Gene Set Enrichment Analysis (GSEA)
We performed the GSEA to elucidate the underlying
mechanism involved in immune infiltration and high
aggressive behavior in STS. The Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway was obtained
via the GSEA 4.0.1 software (39). Based on the
ranking of normalized enrichment scores, the top
10 terms were displayed to identify differences in
biological pathways and behaviors between high- and
low-risk patients.

DNA Methylation Analysis
Illumina Human Methylation 450 k data were download from
the UCSC Xena website. Using the “ChAMP” package, we
filtered the non-cg probes; the CpG falls near a single-
nucleotide polymorphism; the probe aligns to multiple locations;
and from the X and Y chromosomes (40). Subsequently, the
remaining probes were used to conduct the differential analysis
between high- and low-risk patients. The mean methylation
value of the differential probes was utilized to display the
methylation of the promoter, body, 3′untranslated regions
(3′UTR), and intergenic regions (IGR) in high- and low-risk
patients. Furthermore, the association between methylation and
prognosis was investigated. Finally, the differential probes were
enriched using the “missMethyl” package to observe potential
mechanisms involved in different prognoses.
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FIGURE 3 | Construction, validation, and assessment of the prognostic model. (A,B) Identification of prognostic genes using the least absolute shrinkage and

selection operator (LASSO) regression analysis. (A) Coefficients of the LASSO regression analysis. (B) Selection of tuning parameters based on the 1000

cross-validations method. (C) The receiver operating characteristic (ROC) curves of the prognostic model in TCGA dataset. The survival curve for high- and low-risk

patients in TCGA (D) and GSE21050 (E) datasets. Differences in risk score, survival time, and gene expression of the optimal immune-related prognostic genes

(IRPGs) between high- and low-risk patients from TCGA (F) and GSE21050 (G) datasets.

Identification of Independent Prognostic
Factors (IPF) for STS
Clinical factors (i.e., age, sex, margin status, and metastatic
diagnosis), mitotic counts, total necrosis percent of tumors,
risk scores, and immune scores were included in the univariate
and multivariate Cox regression analyses to further evaluate the
prognostic model and identify IPF. Only factors with p < 0.05 in
both analyses were considered IPF. In addition, the prognostic
ability of risk scores and immune scores was evaluated via
ROC curves.

RESULTS

Collection and Preprocessing of Gene
Expression and Clinical Data
The datasets of TCGA contained 263 samples with STS and two
matched controls. After removing the two matched controls,
the gene expression data were analyzed. The GSE21050 dataset

TABLE 1 | The multivariate Cox regression analysis of genes for overall survival.

Genes Overall survival

coef HR 95% CI p-value

IFIH1 −0.373 0.689 0.505 0.939 0.018

CTSG −0.215 0.806 0.671 0.968 0.021

STC2 0.195 1.215 1.027 1.438 0.023

SECTM1 −0.259 0.772 0.631 0.944 0.012

BIRC5 0.229 1.258 1.033 1.530 0.022

coef, coefficient; HR, hazard ratio; CI, confidence interval.

comprised 310 samples with STS. Using a preliminary filter,
4,113 and 5,046 genes with top 25% variances were obtained
from TCGA and GEO datasets, respectively. Notably, they shared
2,447 genes with the WGCNA. The corresponding clinical data
of patients were matched to their corresponding gene expression
profiles for the subsequent analysis. A total of 256 patients with
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FIGURE 4 | Analysis of immune infiltration in the TCGA dataset. Comparison of the immune scores (A) and stromal scores (B) between high- and low-risk patients.

(C) Spearman’s correlation of risk scores with the immune scores. (D) Comparison of 22 types of immune cells in high- and low-risk patients. (E) Comparison of the

TMEM173, the initiation molecule of innate immunity between high- and low-risk patients. Comparison of the other molecules of innate immunity (F), major

histocompatibility complex (MHC) molecules (G), and immune-stimulating molecules (H), and cytokines (I) between high- and low-risk patients. Low-risk patients

exhibited high expression of most of these molecules. Relationships of immune infiltration (immune scores) and immune-stimulating molecules (J). Immune infiltration

was positively correlated with most immune-stimulating molecules. ImmS represents the immune scores. ****p < 0.0001; ***p < 0.001; **0.001 < p < 0.01; *0.01 < p

< 0.05; ns (not significant), p > 0.05.

survival information were included in the survival or prognosis
analysis in TCGA dataset. The patient (GSM525864) lacking
information regarding survival and metastasis were not included
in these analyses of the GSE21050 dataset.

Two Modules Containing 1,141 Genes Were
Associated With Survival
As shown in Figure 1A, an adjacency matrix was constructed
based on the soft threshold power β (optimal β = 3; R2 = 0·9),
determined through the scale-free topology criterion. Figure 1B
illustrates the identified modules obtained using the Dynamic
Tree Cut method. Subsequently, the identified modules were
related to the clinical data. Compared with other modules, two
modules were highly associated with survival (Figure 1C). The
blue module significantly influenced the survival time of patients
with STS (Pearson’s correlation between blue module and the
trait of survival time: 0.11, p = 0.08). A similar relationship was
observed in the brown module associated with the OS status
(Pearson’s correlation between brown module and the trait of
OS status: 0.14, p = 0.03). Furthermore, genes in the blue and
brownmodules exhibited high positive correlations with survival

(Pearson’s correlation between gene significance and module
membership: 0.41, p = 5.7e−39; Pearson’s correlation between
gene significance and module membership: 0.46, p = 1.7e−12,
respectively) (Figures 1D,E). Function annotation revealed that
929 and 212 genes in the blue module and brown module were
mainly involved in the immune process and cell cycle process,
respectively. These findings indicated that genes in these two
modules highly influenced survival in STS (p< 0.05) (Figure S1).

Identification and Validation of IGRPM
The 1,141 genes obtained from the WGCNA and the IRGs from
the ImmPort database shared 207 IRGs, which were involved in
immune activity via multiple pathways (p < 0.05) (Figure 2).
These 207 IRGs were subsequently analyzed to identify optimal
IRPGs. Firstly, 81 IRGs associated with survival from univariate
Cox regression analysis were obtained based on p < 0.05. LASSO
regression analysis displayed that nine IRGs (i.e., CD1C, C-X-
C motif chemokine ligand 2 [CXCL2], interferon induced with
helicase C domain 1 [IFIH1], cathepsin G [CTSG], stanniocalcin
2 [STC2], secreted and transmembrane 1 [SECTM1], baculoviral
IAP repeat containing 5 [BIRC5], endothelin 3 [EDN3], and
nuclear receptor subfamily 1 group H member 3 [NR1H3])
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FIGURE 5 | Inhibition of immunity in low-risk patients from TCGA dataset. (A) Differences in common immune checkpoint molecules between high- and low-risk

patients. (B) Differences in immune-inhibiting molecules between high- and low-risk patients. (C) Relationships of immune infiltration (immune scores) and

immune-inhibiting molecules. Immune infiltration was positively correlated with most immune-inhibiting molecules. ImmS represents the immune scores. ***p < 0.001;

ns (not significant), p > 0.05.

were associated with survival based on the 1000 cross-validations
approach (Figures 3A,B). Five optimal IRPGs (i.e., IFIH1, CTSG,
STC2, SECTM1, and BIRC5) were obtained from themultivariate
Cox regression analysis (Table 1). Subsequently, we used the
“predict” function to construct the prognostic model with an
area under the curve of 0.74 in 5-year survival rates (Figure 3C).
High- and low-risk patients, determined according to their risk
scores, had significant differences in survival rates in TCGA
(p = 9.457e−06) (Figure 3D) and GSE21050 (p = 1.31e−02)
datasets (Figure 3E). The prognostic model was further assessed
and validated (Figures 3F,G).

Relatively Higher Immune Activation Was
Observed in Low-Risk Patients
Estimated immune and stromal scores, immune cells, and
immune-related molecules were assessed for the level of immune
infiltration between high- and low-risk patients. Higher immune
scores and stromal scores were observed in low-risk patients in
TCGA (p = 2.3e−12; p = 8.9e−08, respectively) (Figures 4A,B)

and GSE21050 (p = 2.9e−16; p = 6.4e−15, respectively)
(Figures S2A,B) datasets. Strong negative correlations between
the immune scores and risk scores indicated that higher
immune filtration was a potential protective factor for survival
(Spearman’s correlation: −0.522, p < 2.2e−16; Figure 4C and
Spearman’s correlation: −0.540, p < 2.2e−16; Figure S2C). By
analyzing the proportion of immune cells in TCGA dataset,
a greater number of immune cells (i.e., CD8T cells, gamma
delta T cells, activated natural killer (NK) cells, monocytes, M1
macrophages, and resting mast cells) were found in low-risk
patients (p < 0.05, Figure 4D). Similarly, more CD8T cells,
follicular helper T cells, gamma delta T cells, activated NK cells,
M1 macrophages, and resting mast cells were observed in low-
risk patients in the GES21050 dataset (p < 0.05, Figure S2D).
In addition, immune-related molecules demonstrated that low-
risk patients had higher immune activation. High expression
of innate immune modules, especially TMEM173(STING1)
(Wilcoxon rank-sum test: p = 7.5e−09, Figure 4E and
p = 4.8e−09, Figure S2E), was noted in low-risk patients

Frontiers in Oncology | www.frontiersin.org 7 July 2020 | Volume 10 | Article 1317

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Gu et al. Immune Characterization of STS

FIGURE 6 | Analysis of somatic variants in soft tissue sarcoma (STS). Top 20 gene mutations in all patients (A). Top 20 gene mutations in high- (B) and low-risk

patients (C). Top 20 gene mutations in patients with high (D) and low (E) immune scores. Comparison of high- with low-risk patients (F), as well as patients with high

and low immune scores (G). (H) Comparison of the log(TMB+1) in high- and low-risk patients. (I) Comparison of the log(TMB+1) in patients with high and low immune

scores. (J) Survival curve for patients with high and low TMB. TMB, tumor mutation burden. **0.001 < p < 0.01; *0.01 < p < 0.05; ns (not significant), p > 0.05.

(Figure 4F, Figure S2F). Moreover, low-risk patients exhibited
stronger antigen-presenting capacity, mainly measured through
the higher expression of major histocompatibility complex
(MHC) molecules (e.g., MHC I, MHC II, etc.) (Figure 4G,
Figure S2G). A similar tendency was observed in comparisons
of immune-stimulating molecules, cytokines, and corresponding
receptors between patients with different risks (Figures 4H,I,
Figures S2H,I). Finally, positive correlations between immune
scores and immune-stimulating molecules further supported and
explained the above findings (Figure 4J, Figure S2J).

Low-Risk Patients Showed
Immunosuppression
Characterized by higher immune activation, low-risk
patients from TCGA also showed immunosupression.
Immunosuppression in low-risk patients was verified through
immune-inhibiting molecules, especially common immune
checkpoints, such as PD-L1 (CD274), PD1 (programmed cell
death 1 [PDCD1]), cytotoxic T-lymphocyte associated protein 4
[CTLA4], and lymphocyte activating 3 [LAG3] (Figures 5A,B,

Figures S3A,B). There were no differences in the expression level
of these four immune checkpoints between the sexes (Figure S4).
In addition, higher levels of inhibiting cytokines (e.g., interleukin
10) were present in the tumor microenvironment of low-risk
patients (Figure 4I, Figure S2I). The strong correlations noted
between immune scores and most immune-inhibiting molecules
revealed that low-risk patients exhibited higher immune
infiltration and immunosuppression, which increased the risk of
immune escape of STS (Figure 5C, Figure S3C).

Analysis of Somatic Variants
Genemutations in STS were also studied. As shown in Figure 6A,
68.78% of the top 20 mutations occurred in all patients, with
missense mutation being the most common type. Of note,
different types of mutations were observed between high- and
low-risk patients. Tumor protein p53 (TP53), ATRX, titin (TTN),
mucin 16 (MUC16), and RB transcriptional corepressor 1 (RB1)
were the most commonly mutated genes (>10% mutation rate).
Obvious differences in the top 20 mutated genes between high-
and low-risk patients are illustrated in Figures 6B,C. Following
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FIGURE 7 | Gene set enrichment analysis for high- and low-risk patients. (A) Top 1–5 terms of the GSEA from TCGA dataset. (B) Top 6–10 terms of the GSEA from

TCGA dataset. (C) Top 1–5 terms of the GSEA from the GSE21050 dataset. (D) Top 6–10 terms of the GSEA from the GSE21050 dataset.

the assignment of patients based on the median of immune
scores, more top 20 mutated genes were observed in those
with high immune scores (Figures 6D,E). Figures 6F,G show
the comparison of high- and low-risk patients, as well as those
with high- and low-immune scores. ATRX, paternally expressed
3 (PEG3), WNK lysine deficient protein kinase 2 (WNK2),
neurexin 1 (NRXN1), laminin subunit alpha 2 (LAMA2), and
CUB and Sushi multiple domains 2 (CSMD2) demonstrated
significant gene mutation differences between high- and low-risk
patients (p < 0.05) (Figure 6F). Highly mutated genes, such as
PEG3, WNK2, NRXN1, and LAMA2 in low-risk patients were
also present in patients with high immune scores (Figure 6G).
Figure 6H displays that high-risk patients had more TMB
(p= 0.0025). However, TMB was not associated with OS in STS
(Figure 6J). In addition,more TMBwas observed in patients with
high immune scores; however, the difference was not significant
(p= 0.23) (Figure 6I).

Potential Mechanisms Associated With
Prognosis
GSEA revealed that different pathways were altered in high-
and low-risk patients, and demonstrated potential mechanisms
associated with the biological phenotype (Figure 7). According
to the ranking of normalized enrichment scores, KEGG pathways
(e.g., cell cycle, mismatch repair, basal transcription factors,

spliceosome, aminoacyl tran biosynthesis, and DNA replication)
were activated in high-risk patients with shorter OS (Figure 7).
However, the activation of immune-related pathways (e.g.,
the toll-like receptor signaling pathway, Janus kinase/STAT
signaling pathway, cytokine-cytokine receptor interaction, B cell
receptor signaling pathway, and natural killer cell-mediated
cytotoxicity) led to better prognosis in low-risk patients
(Figure 7).

High Relative Methylation Was Observed in
Low-Risk Patients
After removing the low-quality probes, differential methylation
probes were obtained based on the adjusted p < 0.05.
Subsequently, we extracted the differential probes in the
promoter, body, 3′UTR, and IGR. Figure 8A shows that high
relative methylation of these four genomic regions was detected
in low-risk patients. Notably, high methylation was associated
with better OS (Figure 8B). The differential probes were mainly
involved in neuroactive ligand-receptor interaction, RAP1
signaling pathway, ECM-receptor interaction, immune-related
pathway (e.g., T cell receptor signaling pathway and cytokine-
cytokine receptor interaction) and pathways in cancer (e.g.,
Ras signaling pathway, breast cancer, and basal cell carcinoma)
(Table 2).
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FIGURE 8 | DNA methylation analysis for STS. (A) Differences in the mean methylation value in the promoter, body, 3′untranslated regions (3′UTR), and intergenic

regions (IGR) (from left to right) between high- and low-risk patients. (B) Survival curves for patients with high and low methylation in the promoter, body, 3′UTR, and

IGR (from left to right).

Age, Mitotic Count, and Risk Scores May
Be IPF in STS
Figure S5A shows that age (p = 0.004), margin status (p =

0.009), diagnosis of metastasis (p < 0.001), mitotic count (p <

0.01), immune scores (p = 0.021), and risk scores (p < 0.001)
were prognostic factors identified in the univariate analysis. The
level of immune infiltration measured using the immune scores
affected survival in STS. The age, mitotic count and risk scores
were considered IPF for STS (Figures S5A,B). Figure S6 shows
that risk scores (area under the curve:0.74) had better prognostic
ability than immune scores (area under the curve:0.388).

DISCUSSION

The application of immunotherapy to multiple cancers
significantly improved the survival of patients (41). Based on
the accumulating evidence and concept of immunotherapy,
this approach is effective in the treatment of advanced or
metastatic cancers. Immunotherapy has been utilized for the
treatment of STS. Previous studies demonstrated that partial
patients with STS could benefit from inhibition of PD-1
(42, 43). Immune-related signatures such as tumor inflammation
signature (44), immunological constant of rejection (45), and
immunophenoscore (46) have been demonstrated as predictors
for prognosis and response to immunotherapy in tumors.
However, A pan-cancer study revealed that the score of tumor
inflammation signature was not associated with prognosis
of sarcoma based on univariate Cox regression analysis (44).
Therefore, the discovery of new predictive biomarkers of

patient response and comprehensive studies of tumor immune
microenvironment in STS are crucial for the optimization of
immunotherapy in STS (42).

Multi-omic data were utilized to identify potential IRPGs,
as well as construct and validate the IGRPM based on
WGCNA, univariate, LASSO, and multivariate regression
analyses. Finally, five optimal IRPGs and one IGRPM were
determined and validated through two datasets involving 573
patients. The IGRPM based on the five IRPGs demonstrated
satisfactory performance in predicting the survival rates and risk
stratification in patients with STS. IFIH1 (also termed melanoma
differentiation-associated gene 5) exhibits an antitumor effect
(47) and was a protective gene in STS. CTSG, which possesses
the ability to enhance the cytotoxicity of human natural killer
cells (48) was overexpressed in low-risk patients with better OS
compared with high-risk patients. STC2 and BIRC5 promote
metastasis and progression in different types of cancer [e.g.,
head and neck squamous cell carcinoma (49), hepatocellular
carcinoma (50), lung cancer (51), and ovarian tumor (52)]
and were overexpressed in high-risk patients. SECTM1, the
stimulator of T cells (53), was also identified as a protective
gene. Overall, the different prognoses between high- and low-
risk patients was consistent with the expression of the five IRPGs,
validating the accuracy of the IRGs and IGRPM obtained in this
study. To our knowledge, these five IRPGs were firstly combined
to construct the IGRPM for STS.

Characterization of tumor immune microenvironment was
performed based on two algorithms of ESTIMATE and
CIBERSORT. We demonstrated that longer OS in low-risk
patients was associated with higher immune activation (including
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TABLE 2 | The KEGG pathways for the differential probes of methylation.

Pathway FDR

Neuroactive ligand-receptor interaction 3.40E-05

Rap1 signaling pathway 7.58E-05

ECM-receptor interaction 0.000226155

Calcium signaling pathway 0.000324435

Olfactory transduction 0.000668637

Bile secretion 0.001056711

Pathways in cancer 0.001266947

Cytokine-cytokine receptor interaction 0.001669184

Adrenergic signaling in cardiomyocytes 0.001669184

Phospholipase D signaling pathway 0.002095849

cAMP signaling pathway 0.003042019

Glutamatergic synapse 0.003538057

PI3K-Akt signaling pathway 0.005381894

Inflammatory mediator regulation of TRP channels 0.006788386

Melanogenesis 0.006788386

Ras signaling pathway 0.008512401

Axon guidance 0.008790691

C-type lectin receptor signaling pathway 0.008790691

Dopaminergic synapse 0.008790691

Estrogen signaling pathway 0.008790691

Vascular smooth muscle contraction 0.009496407

Hypertrophic cardiomyopathy (HCM) 0.009632625

Proteoglycans in cancer 0.00988492

Basal cell carcinoma 0.010425995

Arachidonic acid metabolism 0.011721194

Oxytocin signaling pathway 0.011721194

Dilated cardiomyopathy (DCM) 0.011721194

MAPK signaling pathway 0.01188034

Circadian entrainment 0.01188034

Gastric cancer 0.012601185

Focal adhesion 0.016998021

Renin secretion 0.017058953

Linoleic acid metabolism 0.018485501

Insulin resistance 0.018728758

Human papillomavirus infection 0.018728758

Tight junction 0.019045102

Glycerophospholipid metabolism 0.019618676

Wnt signaling pathway 0.019855177

Hippo signaling pathway 0.019855177

cGMP-PKG signaling pathway 0.022978288

Platelet activation 0.022978288

AGE-RAGE signaling pathway in diabetic complications 0.022978288

Breast cancer 0.025542783

Ether lipid metabolism 0.025994303

Relaxin signaling pathway 0.025994303

Regulation of actin cytoskeleton 0.027185869

Amyotrophic lateral sclerosis (ALS) 0.027202385

Gastric acid secretion 0.028582194

Insulin secretion 0.029401081

Apelin signaling pathway 0.034688902

(Continued)

TABLE 2 | Continued

Pathway FDR

Phototransduction 0.038659036

Sphingolipid signaling pathway 0.039963306

Pertussis 0.040982726

Parathyroid hormone synthesis, secretion and action 0.042635342

Aldosterone synthesis and secretion 0.045523293

T cell receptor signaling pathway 0.04895089

Fc epsilon RI signaling pathway 0.04895089

Adipocytokine signaling pathway 0.04895089

KEGG, kyoto encyclopedia of genes and genomes; FDR, false discovery rate.

innate and adaptive immunity). Higher immune scores and
more activated immune cell infiltrations (e.g., CD8T cells
and activated NK cells) (54, 55) supported this notion and a
similar phenomenon was also present in other types of cancer
(15, 56). Specifically, low-risk patients had a greater number
of innate immune cells owing to the higher expression of
TMEM173, triggering innate immunity and innate immunity-
related molecules (57). These findings were consistent with
those obtained from the algorithm of CIBERSORT. The higher
immune activation was also induced by the high expression of
immune-stimulating modules [e.g., inducible T cell costimulator
[ICOS] (58) and CD80 (59)] and cytokines (e.g., C-C motif
chemokine ligand 4 [CCL4], CXCL9, and CXCL10) (60). In
addition, the MHC molecules promoted antigen presentation in
low-risk patients. Therefore, the lack of immune cells, immune-
stimulating molecules, cytokines, and weak antigen-presenting
ability led to poor prognosis in high-risk patients.

Immune escape also affects survival (61) and response to
immunotherapy in patients with cancer. In this study, tumor
cells tended to escape the immune system due to inhibition of
immunity in low-risk patients. This effect was demonstrated by
high expression of immune inhibiting molecules (e.g., common
immune checkpoints and inhibiting cytokines). The expression
of immune checkpoints in tumor cells negatively regulates T
cells and evades immune killing (62). The high expression
of immune checkpoint molecules further suggested that the
five identified IRPGs are predictive biomarkers of response
to immunotherapy. A recent study reported sex-dependent
differences in patient response to immunotherapy in melanoma
and non-small-cell lung cancer (41, 63). However, comparison of
common checkpoints PD–L1 (CD274), PD1 (PDCD1), CTLA4,
and LAG3 between male and female patients reveled that sex is
not the main factor for the prediction of response to immune
checkpoint inhibitors in STS. This finding was similar to the
results reported in a recent study (64). Inhibition of cytokines
(e.g., IL10) (45) also inhibited immunity in low-risk patients.

TMB is an emerging biomarker for predicting the effect of
immunotherapy in multiple types of cancer (65). The different
top 20 gene mutations observed in patients grouped according
to risk scores and immune scores led to the hypothesis that
low-risk patients may carry more gene mutations. However,
this hypothesis was not validated by the value of the TMB.
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We revealed that high-risk patients (low immune infiltration)
had high TMB. This was not consistent with the theory that
high mutations (TMB) tend to generate neoantigen epitopes.
We hypothesized that high TMB and low antigen-presenting
capacity caused low immune infiltration in high risk patients.
Of note, both high- and low-risk patients had relative low TMB,
which was consistent with a previous study (66). This indicated
that the TMB was not suitable for the prediction of response
to immunotherapy in STS. Furthermore, the TMB was not
associated with survival in STS.

The GSEA revealed that pathways related to cell cycle,
DNA replication, and cancer were activated in high-risk
patients, leading to poor prognosis. However, the activation of
immune-related pathways improved survival. These results also
validated the IRPGs and the IGRPM. Furthermore, differences
in DNA methylation were investigated between high- and low-
risk patients. Relative low methylation in high-risk patients
contributed to poor prognosis. The KEGG analysis further
revealed the underlying mechanism involved in the effect
of DNA methylation on prognosis. In addition, age, mitotic
count and risk score were IPF in STS, further validating the
prognostic model.

This study had the following clinical implications and
strengths. Firstly, although the use of immunotherapy benefited
the treatment of cancers, the low response linked to this
therapeutic approach limited its use. The identification of “hot
tumors” and transformation of “cold tumors” to “hot tumors”
could overcome the current predicament (60). Five IRPGs with
satisfactory performance in the discrimination of high risk
(“cold tumors”) and low risk (“hot tumors”) were identified as
potential predictive biomarkers of response to immunotherapy.
Low-risk patients not only showed high immune activation but
also had inhibition of immunity, especially high expression of
checkpoint molecules. Secondly, an increasing number of studies
reported that expression of the MHC could predict response to
immune checkpoint blockade (67). The significant differences
in MHC expression between high- and low-risk patients also
suggested the potential use of the five aforementioned IRPGs
for the prediction of response to immunotherapy. Thirdly, the
differences between high- and low-risk patients revealed by the
multi-omic analysis may provide a reference for subsequent
studies on the transformation of “cold tumors” to “hot tumors”
or improvement of treatment of STS. Fourthly, the combination
of different bioinformatics methods increased the reliability of
the results.

However, this study was also characterized by some
limitations. Firstly, the small sample sizes of the different
histological subtypes limited the integrated analysis for each

type. Secondly, the stage of STS, which was not available in
TCGA dataset, also had a significant impact on prognosis.
Subsequent studies focusing on different histological subtypes
and the stage of STS are warranted to validate the results of
the present study. Thirdly, the ability of five IRPGs to predict
prognosis and response to immunotherapy could not be assessed
by current methods such as using PD-L1 immunohistochemistry,
or Nanostring tumor inflammation signature for lack of data in
STS (68). Therefore, five IRPGs also need to be tested in basic
experiment and clinical trials.

CONCLUSION

In this study, one IGRPM with independent prognostic ability
based on five optimal IRPGs (i.e., IFIH1, CTSG, STC2, SECTM1,
and BIRC5) were identified and validated in STS. Through the
comprehensive study of the tumor immune microenvironment,
we demonstrated that these five IRPGs contributed to risk
stratification and the identification of patients who are responsive
to immunotherapy. Furthermore, the multi-omic analysis
revealed the potential mechanisms affecting prognosis, providing
additional references for the treatment of STS. More studies
focusing on histological subtype were needed to provide more
precise treatment.
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