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Abstract: Greig cephalopolysyndactyly syndrome (GCPS) is a rare genetic disorder (about 200 cases
reported), characterized by macrocephaly, hypertelorism, and polysyndactyly. Most of the reported
GCPS cases are the results of heterozygous loss of function mutations affecting the GLI3 gene
(OMIM# 175700), while a small proportion of cases arise from large deletions on chromosome 7p14
encompassing the GLI3 gene. To our knowledge, only 6 patients have been reported to have a
deletion with an exact size (given by genomic coordinates) and a gene content larger than 1 Mb
involving the GLI3 gene. This report presents a patient with Greig cephalopolysyndactyly contiguous
gene syndrome (GCP-CGS) diagnosed with a large, 18 Mb deletion on chromosome 7p14.2-p11.2.
Similar cases are reviewed in the literature for a more accurate comparison between genotype
and phenotype.

Keywords: Greig cephalopolysyndactyly; Greig cephalopolysyndactyly contiguous gene syndrome;
array-CGH; structural chromosomal anomalies; deletion 7p

1. Introduction

Greig cephalopolysyndactyly syndrome (GCPS) is a rare genetic disorder (~200 cases
reported), characterized by macrocephaly, hypertelorism, polysyndactyly and most com-
monly normal intelligence [1-4].

Both small-scale (missense, nonsense, splicing variants, small deletions, small in-
sertions, and indels) and large-scale alterations (gross deletions, gross insertions, and
translocations) affecting the GLI3 gene (~300 kb), located on chromosome 7p14.1 can cause
GCPS (MIM# 175700) [5] in an autosomal dominant mode of inheritance [1,2,6-8].

Cases with a chromosomal microdeletion encompassing GLI3 (deletions larger than
1 Mb) are referred to as GPS-CGS, and they typically present with a more complex neu-
robehavioral phenotype including intellectual disability, severe motor retardation and
neurological symptoms [2,6].
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In this study, we describe a child of non-consanguineous parents with severe devel-
opmental disability diagnosed with a large interstitial deletion of chromosome 7p, using
array comparative genomic hybridization. The molecular karyotype revealed a deletion of
18 Mb on chromosome 7p14.2-p11.2, which is the largest chromosomal deletion described
in the related literature so far [1-19].

2. Materials and Methods
2.1. Patient

A 3-year-old boy was referred to our Genetics Department of Municipal Clinical
Hospital “Dr. Gavril Curteanu” Oradea, Romania, due to psychomotor developmental
delay and multiple congenital anomalies. He is the second child of healthy and unrelated
parents, whose first child is a healthy girl.

The patient was born from an uneventful pregnancy as the second child of the parents,
in the 34th week, via vaginal delivery. Macrosomia (the birth weight was 3030 g, 97th
percentile and length 48 cm, 90th percentile), macrocephaly (OFC was 36 cm, 1 cm > 97th
percentile), and congenital malformations of the face and limbs were noted at birth. Perina-
tal hypoxia was suspected based on the Apgar scores (5/1,7/5, and 8/10).

2.2. Neuroimaging

Cranial ultrasound at birth and magnetic resonance imaging (MRI) was performed at
1 year and at 3 years.

2.3. Classical and Molecular Cytogenetic Investigations

An informed consent was obtained from the patient’s parents as legal representatives,
to collect blood, take pictures, and access medical data.

Karyotyping was performed at the Clinical Genetics Center of the University of
Debrecen, Hungary, from peripheral blood using the G-banding technique, with 500 bands,
15 metaphases were analyzed. Image analysis was done using CytoVision Software.

Molecular cytogenetic analyses were performed at the Regional Center of Medical
Genetics Dolj (Romania). Genomic DNA was extracted from peripheral venous blood
using Wizard® Genomic DNA Purification Kit (Promega, Madison, WI, USA), following
the manufacturer’s protocol. DNA concentration and quality were measured using a spec-
trophotometer (Eppendorf Biophotometer). A total of 0.5 ug of genomic DNA was used for
array comparative genomic hybridization (aCGH) analysis following the manufacturer’s
protocol. It was performed using a microarray slide with 120,000 oligonucleotide and
60,000 SNP probes (180K) covering the entire human genome with an average spatial reso-
lution of 25 kb DNA (G4890A, ID design: 029830_20100921, Genom hg38 build; Agilent).
The post-hybridization data were obtained using the Feature Extraction programme, and
their subsequent analysis was performed with the CytoGenomics programme, Agilent.

3. Results
3.1. Morphological Evaluation of the Patient

When he was one year old, macrocephaly (OFC: 48.5 cm, 95th percentile) was observed
(Figure 1a) and at the age of three, macro-acrocephaly (OFC: 53 cm, 1 cm > 95th percentile)
was seen (Figure 1b,c). Observations included prominent metopic suture and high anterior
hairline with right frontal upsweep; sparse eyebrows, hypertelorism, upslanted telecanthus,
and palpebral fissures; convergent strabism; depressed and wide nasal bridge, anteverted
nares, broad nasal base, and broad and high inserted columella; deep naso-labial creases;
long and broad philtrum, and thick upper lip; microdontia; pointed chin with a horizontal
deep crease; pigmented nevus on the right cheek (Figure 1la—c); low inserted ears with
out-sticking upper one-third, and a pit on the crus of the helix (Figure 1c,d).
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Figure 1. (a—d) shows cranio-facial features of the patient: macrocephaly at the age of 1 year (a), and macro-acrocephaly at
3 years (b,c); prominent high anterior hairline with right frontal upsweep; sparse eyebrows, hypertelorism, telecanthus, and
upslanted palpebral fissures; convergent strabism; depressed and wide nasal bridge, anteverted nares, and broad nasal
base with broad and high inserted columella; long and broad philtrum, and deep naso-labial fold; thick upper lip; pointed
chin with a horizontal deep crease; pigmented nevus on the right cheek (a—c); low inserted ears with out-sticking upper
one-third of the pinnae, and a pit on the crus of the helix (c,d). (e—j) Digital anomalies of the hands and feet: squared broad
thumbs (e,f); joint laxity with dorsiflexion of the distal phalanges (f,g); broad hallux with cutaneous complete syndactyly of
interdigital spaces I-II and II-III on both feet; bilateral ped planus (h,i) and deep horizontal cutaneous skin crease at the
base of the hallux (j).

Digital anomalies of the hands and feet (Figure 1e—j) included squared, broad thumbs
(e,f); joint laxity with dorsiflexion of the distal phalanges (f,g); post-operative scar after
surgical correction of preaxial polydactyly and broad hallux with cutaneous complete
syndactyly of interdigital spaces I-1I and II-1II on both feet; bilateral pes planus (h,i); and
deep horizontal skin cutaneous crease at the base of the hallux (j).

Additional anomalies were: congenital stridor (almost disappeared at the age of
3 years), small umbilical hernia, postoperative scar after surgical intervention for right
cryptorchidism (at age 16 month), and a retractile left testicle.

Severe cognitive and motor delays were observed: head control was achieved at
6-7 months, sitting at 2 years, independent walking has not yet been achieved, and speech
is limited to pronouncing a few syllables. The Mental Scale (Bayley II) score at 3 years of
age was equivalent to 8 months.

Growth was assessed based on the Fenton Growth chart for preterm infants [20] and
the Longitudinal Child Growth Standards of the Central Statistics Office of Hungary, by
Joubert, Darvay and Agfalvi, 2006 [21].

Morphological features are described according to the Human Malformation Termi-
nology [22-25].

3.2. Neuroimaging

The cranial ultrasound at birth was not informative and the cranial MRI at 1 year and
at 3 years showed hypoplasia of the corpus callosum, stenosis of the cerebral aqueduct,
and mild supratentorial ventriculomegaly.

3.3. Conventional and Molecular Cytogenetic Investigations
The result of the karyotype and the aCGH analysis are described in Table 1.
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Table 1. Results of the cytogenetic- and the molecular cytogenetic investigations.

Size of the Deleted
Results Segment (Mb) OMIM Genes

Karyotype 46,XY, del (7)(p13-p15)
ANLN, NMES8, POU6F2, MPLKIP, GLI3, BLVRA,
CGH arr[hg38]7p14.2-p11.2 18.04 GCK, NPC1L1, OGDH, CCM2, ADCY1, IKZF1, DDC,
a (35830920-54201451)x1 ' PGAM2, CDK13, AEBP1, CAMK2B, SFRP4, PKD1L1,
VPS41, SUGCT, RALA
ANLN, NMES8, POU6F2, MPLKIP, GLI3, BLVRA,
LOH ) 1837 PGAM2, GCK, NPC1L1, OGDH, CCM2, ADCY]1,

IKZF1, DDC, CDK13, AEBP1, CAMK2B, SFRP4,
PKD1L1, VPS41, SUGCT, RALA, SEPTIN7

aCGH: comparative genomic hibridisation; a: array; arr: array; hg38: human genome version 38; LOH: loss of heterozygosity; Mb: megabase.

The clinical diagnosis of GCPS was made immediately after birth based on the charac-
teristic phenotype suggestive of the syndrome.

Therapeutic interventions were focusing on correcting the digital anomalies to im-
prove the patient’s grasping manipulation and walking skills, as well as to improve cogni-
tive functions by introducing continuous cognitive and kinetic stimulation.

The clinical course during the 6-year follow-up suggested a stationary condition
regarding somatic development, which at the age of 6 years converged to normal, with
weight being 22 kg (50-75th percentile), height 116 cm (50th percentile), and head cir-
cumference 53 cm (90-95th percentile). Regarding the psychomotor development, there
was a mild improvement: at the age of 6 years, he is more active, his ability to cooperate
gradually improves and his speech comprehension develops in terms of simple, often
repetitive stimulances; vocalization is more monosyllabic; he enjoys listening to rhymes
and music; the Mental Scale (Bayley II) score equal to that of a 15 month-old toddler; his
right hand is more skillful, he inserts a few geometric elements, shows some of his body
parts, climbs, kneels, clings, sometimes gets up, and steps with support by one hand.

4. Discussion

The diagnosis of GCPS was suggested immediately after birth based on the char-
acteristic clinical signs of the syndrome and was confirmed by classical and molecular
karyotyping.

The G-banded karyotype was 46,XY,del(7)(p13p15).

Molecular karyotype analysis (array-CGH) revealed an 18.37 Mb interstitial deletion
on the short arm of chromosome 7. Deletion breakpoints are located between p14.2 and
p11.2 bands (35830920-54201451). The OMIM genes located in the deleted region are
described in Table 1. The analysis of haploinsufficiency described a difference of 330 kb,
which is due to the different localization of the CNV and SNP probes.

Of the 205 genes included in the deleted segment, 22 were phenotype associated OMIM
genes. Nine genes: GLI3 (Gli-Kruppel Family Member 3; OMIM# 16540), ANLN (Actin-
Binding Protein Anillin; OMIM# 616027), POU6F2 (Pou Domain, Class 6, Transcription2;
OMIM# 609062), GCK (Glucokinase; OMIM#138079), CCM2 (Scaffold Protein, OMIM#
607929), IKZF1 (Ikaros Family Zinc Finger 1; OMIM# 603023), CDK13 (Cyclin-Dependent
Kinase 13; OMIM# 603309), CAMK2B (Calcium/Calmodulin-Dependent Protein Kinase
Ii-3; OMIM# 607707), and RALA (Ras-Like Protooncogene A; OMIM# 179550) are known
to be responsible for autosomal dominant mendelian disorders, of which GLI3 is the gene
causing GCPS. Loss of function mutations of GLI3 determine the classic phenotype with
craniofacial dysmorphism (macrocephaly, hypertelorism) and polysyndactyly; while gain
of function mutations determine the Pallister-Hall syndrome (MIM# 146510) [3,8,10,13].

Mutations of the ANLN gene have been linked to functional or structural renal anoma-
lies; those of the POU6F2 gene are associated with susceptibility to Wilms tumor (MIM#
601583); mutations of the GCK gene cause MODY II diabetes; pathogenic variants of the
CCM2 gene cause cavernous cerebral malformation; and those of the IKZF1 gene result in
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immunodefficiency, providing a reason for close follow-up and screening for comorbidities
in our patient.

Five years after the diagnosis, we have reevaluated our case; we updated the OMIM
genes involved in the deleted segment and we found three recently phenotype-associated,
autosomal dominant OMIM genes: CDK13, CAMK2B, and RALA. Only the RALA gene
has been mentioned in four cases before (Jennifer | Johnston et al.) [6,7], but at that time
(2003 and 2007) it had no known associated phenotype.

The CDK13 and CAMK?2B genes have been recently annotated OMIM genes, related to
syndromic neurodevelopmental disorders (congenital heart defects, dysmorphic facial fea-
tures, intellectual developmental disorder associated to MIM# 617360, mental retardation,
and autosomal dominant 54 associated to MIM# 617799) [26-33].

CDK13 codes for a member of the cyclin-dependent serine/threonine protein ki-
nase (STK) family, which phosphorylate targets, such as RNA polymerase II-involved
in extracellular and growth signaling [33]. The majority of mutations in CDK13 are mis-
sense mutations, occurring within the protein kinase domain leading to significant loss
of catalytic activity. Hamilton et al. (2018) postulated their dominant-negative effect [26].
Genotype-phenotype studies suggested a trend toward milder phenotypes in patients with
mutations predicted to cause haploinsufficiency of CDK13 [30].

The CAMK2B gene encodes a subunit of calcium/calmodulin-dependent protein
kinase II (CaM kinase II, CAMK2), a multifunctional serine/threonine kinase that has
critical roles in the induction of hippocampal long-term potentiation and, as such, in
synaptic plasticity, learning, and memory. Both loss-of-function and splice variants have
been extensively studied and functionally characterized by Kiiry et al. in 2017 [31].

The RALA gene encodes a low molecular mass ras-like GTP-binding protein that shares
about 50% similarity with other ras proteins. In neuronal culture systems, RALA has been
implicated in the development, plasticity, polarization, migration, branching, and spine
growth of neurons, as well as the renewal of synaptic vesicles and trafficking of NMDA,
AMPA, and dopamine receptors to the postsynaptic membrane. Loss of function for RALA
causes a severe neural tube defect; de novo missense variation disrupting the GTP/GDP-
binding functions of RALA lead to developmental delay, intellectual disability, and related
phenotypes (Hiatt-Neu-Cooper neurodevelopmental syndrome, MIM# 619311) [34].

The deletion of these genes could have influenced the phenotype of our patient,
especially the intellectual status, but their impact is indistinguishable from the GCPS-CGS
phenotype. The macrosomia, hypertelorism, prominent metopic suture without confirmed
craniosynostosis, anomaly of the corpus callosum, and polysyndactyly can be attributed
to Greig cephalopolysyndactyly syndrome and haploinsufficiency of GLI3. Intellectual
deficiency is rare in loss-of-function mutations of GLI3 associated with GCPS syndrome,
but is frequently described and correlates with the size of deletion of GCPS-CGS [31].

Since the identification of CDK13, CAMK2B and RALA as syndromic, intellectual
disability genes, we assume that the involvement of CDK13, CAMK2B and RALA genes
in the deletion of our patient explains the presence and the severity of the intellectual
disability. Callosal anomalies have also been reported in the CAMK2B-related intellectual
disability [31].

To our knowledge, chromosomal deletion encompassing the genes CDK13, CAMK2B
or RALA as a mechanism for intellectual disability related neurodevelopment delay disor-
ders, have not been described so far.

Twelve further genes in the deleted segment: NME8 (NME/NM23 Family; OMIM#
607421), MPLKIP (M-Phase-Specific Plkl-Interacting Protein; OMIM# 609188), BLVRA
(Biliverdin Reductase A; OMIM# 109750), PGAM2 (Phosphoglycerate Mutase 2; OMIM#
612931), OGDH (Oxoglutarate Dehydrogenase; OMIM# 613022), ADCY1 (Adenylate Cy-
clase 1; OMIM# 103072), DDC (Dopa Decarboxylase; OMIM# 107930), AEBP1 (Ae-Binding
Protein 1; OMIM# 602981), SEFRP4 (Secreted Frizzled-Related Protein 4, OMIM# 606570),
PKD1L1 (Polycystin 1-Like; OMIM# 609721), VP541 (Subunit Of Hops Complex; OMIM#
605485), and SUGCT (Succinyl-Coa: Glutarate-Coa Transferase; OMIM# 609187) are re-
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lated to recessive conditions, and the deletion of a single allele will not manifest as a
disease unless the second allele has a mutation. The clinical signs of our patient cannot
be correlated with the effects of these genes. Regarding the DDC gene, this would require
further investigation (sequencing) given the risk of acute lymphoblastic leukemia (MIM#
613067) [14,35].

The NPC1L1 (NPC-Like Intracellular Cholesterol Transporter 1, OMIM# 608010) gene
is responsible for the intestinal absorption of cholesterol, it is the molecular target for the
drug ezetimibe, and variants in this gene affect response to this drug. The inheritance of
the trait is not known, but monitoring cholesterol profile is relatively easy.

We only assume that the patient’s deletion is de novo because, although the parents do
not show clinical signs of the disease, it would have been necessary to perform q-PCR or
microarray for them to exclude the inheritance of the deleted segment and high-resolution
karyotype or FISH test to detect balanced chromosomal rearrangements. Genetic testing
was declined by both parents, they are not willing to have further children.

A review of the literature of the patients with Greig cephalopolysyndactyly contiguous
gene syndrome caused by a structural chromosomal anomaly (deletion) with a size greater
than 1 Mb is summarized in Table 2 [3,4,6,7,11,13,16-19].

Table 2. Review of literature of the patients with GCP-CGS due to a chromosomal deletion encompassing GLI3 (>1 Mb).

References Cﬁ‘;&ﬁ}g:g‘;ﬁl Size of the ]?l\jllli:ed Segment Array Coordinates
Present case 7p14.2-p11.2 18.37 arr[hg38](35830920_54201451)del
Niida Y. et al [3] (2015) 7p14.1-p12.3 6.2 arr[hg19](41076615_47282889)del
7 arr[hg19](38521704_45810267)del
Demurger F. et al. [13] (2015) 7p13-p15 0 arr[hg19](35674000_37280000)
_(46116000_46598000)del
6.0 arr[hg18](39013006_39213707)del
7p13-pl4.1
6.8 arr[hg18](39130081_45492392)del
Jane A Hurst et al [11] (2011)
~ arr[hg18](40845981_40855164)
7p123-p141 8.3 _(49136714_49160830)del
Solveig Schulz et al. [4] (2008) 7p13-7pl4 14 NA
7p14.3
Debeer Philippe et al. [16] (2007) NA NA
7p14.3
7p14.1 18
7p14.1-7p13 32
7pl4.1 41
7p14.1-7p13 5.2
Jennifer J Johnston et al. [6,7]
(2003, 2007) 7p14.1-7p13 59 NA
7p14.2-7p14.1 6.3
7p14.1-7p12.3 8.4
7p14.2-7p13 9.8
7p14.2-7p13 10.3
7p13
Kroisel PM et al [12] 7p12.3-p13
Schwarbraun T. et al. [18] 7p12.3-p13 _
(2001, resp. 2005) 4515 NA
7p12.3-p14.2
7p11.2-p13
Williams PG et al. [17] (1997) 7p13-p15.1 NA NA
45 XY,der(22;7)
Zneimer SM et al. [19] (2000) (p13;p22.3)del NA NA

(?)-(p11.2-p15.1)

NA: not available.
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The genotype-phenotype correlation regarding the neurodevelopment in Greig cepha-
lopolysyndactyly contiguous gene syndrome in our case and a further six cases (with
available genomic coordinates) from the literature is presented in Table 3.

Table 3. Genotype—phenotype correlation.

References

Size of the Deleted Phenotype Associated

Segment (Mb) OMIM Genes Neurodevelopment

Patients’s Age

Present case *

ANLN, NMES8, POU6F2, MPLKIP,
GLI3, BLVRA, GCK, NPC1L1, OGDH,
CCM2, ADCY1,IKZF1, DDC, Severe intellectual disability, speech
PGAM2, CDK13, AEBP1, CAMK2B, and developmental delay
SFRP4, PKD1L1, VPS41,
SUGCT, RALA

3 years

followed to age 6 18.37

Niida Y. et al. * [3]
(2015)

GLI3, GCK, CCM2, AEBP1, CAMK2B,
2 years 6.2 PGAM2, BLVRA, ADCY1, Developmental delay
NPC1L1, OGDH

Demurger F. et al.* [13] (2015)

GLI3, AEBP1, MPLKIP, GCK, CCM2,
CDK13, CAMK2B, VPS41, BLVRA,
PGAM2, ADCY1, SUGCT, POU6F2,
NPC1L1, RALA, OGDH

NA 7 Developmental delay

GLI3, GCK, CDK13, MPLKIP AEBP1,
CCM2, CAMK2B, SFRP4, VPS541,
NA 9 PGAM2, BLVRA, NMES, SUGCT, Developmental delay
ADCY1, NPC1L1, POU6F2, ANLN,
RALA, OGDH

Jane A Hurst et al.* [11]
(2011)

GLI3, GCK, CCM2, CDK13, MPLKIP,
AEBP1, CAMK2B, BLVRA, PGAM2,
SUGCT, RALA, POU6F2,
NPC1L1, OGDH

2 years 6.0 Developmental delay

GLI3, GCK, CCM2, CDK13, MPLKIP,
5 years 6.8 AEBP1, CAMK2B, BLVRA, PGAM2, Severe intellectual disability,
’ SUGCT, RALA, NPC1L1, speech and developmental delay
POU6F2, OGDH

GLI3, GCK, CCM2, AEBP1, CAMK2B,
15 years 8.3 PKD1L1, BLVRA, PGAM2, SUGCT,
ADCY1, NPC1L1, OGDH

Severe intellectual disability, speech
and delayed development

*: updated cases based on the available array coordinates; Neurodevelopment disorders related genes: CDK13, CAMK2B, RALA.

The haploinsufficiency of the CDK13, CAMK2B and RALA genes could influence the
patients’ neurodevelopment in five cases and the CAMK2B gene in two cases.

5. Conclusions

The case presented here, with an 18 Mb deleted chromosomal segment, is the largest
deletion described in the related literature so far.

By describing the multitude of symptoms in our patient related to this large spanning
deletion, encompassing several other genes than GLI3 responsible for intellectual disability,
and by comparing our patient’s features with literature data, we aimed to broaden the phe-
notypic and genotypic spectrum of GPS-CGS and find out about the possible comorbidities
and prognosis. Sequence analysis would be useful to determine whether the variants on
the other allele could contribute to the phenotype, therefore a whole exome sequencing has
yet to be performed.
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