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Abstract

There is an urgent and unmet need for accurate biomarkers in Amyotrophic Lateral Sclero-

sis. A pharmaco-metabolomics study was conducted using plasma samples from the

TRO19622 (olesoxime) trial to assess the link between early metabolomic profiles and clini-

cal outcomes. Patients included in this trial were randomized into either Group O receiving

olesoxime (n = 38) or Group P receiving placebo (n = 36). The metabolomic profile was

assessed at time-point one (V1) and 12 months (V12) after the initiation of the treatment.

High performance liquid chromatography coupled with tandem mass spectrometry was

used to quantify 188 metabolites (Biocrates® commercial kit). Multivariate analysis based

on machine learning approaches (i.e. Biosigner algorithm) was performed. Metabolomic

profiles at V1 and V12 and changes in metabolomic profiles between V1 and V12 accurately

discriminated between Groups O and P (p<5×10–6), and identified glycine, kynurenine and

citrulline/arginine as the best predictors of group membership. Changes in metabolomic pro-

files were closely linked to clinical progression, and correlated with glutamine levels in

Group P and amino acids, lipids and spermidine levels in Group O. Multivariate models

accurately predicted disease progression and highlighted the discriminant role of sphingo-

myelins (SM C22:3, SM C24:1, SM OH C22:2, SM C16:1). To predict SVC from SM C24:1

in group O and SVC from SM OH C22:2 and SM C16:1 in group P+O, we noted a median

sensitivity between 67% and 100%, a specificity between 66.7 and 71.4%, a positive predic-

tive value between 66 and 75% and a negative predictive value between 70% and 100% in

the test sets. This proof-of-concept study demonstrates that the metabolomics has a role in
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evaluating the biological effect of an investigational drug and may be a candidate biomarker

as a secondary outcome measure in clinical trials.

Introduction

Amyotrophic Lateral Sclerosis (ALS) is the most common motor neuron disorder and the

commonest neurodegenerative condition in young adults. Disease heterogeneity, lack of vali-

dated biomarkers and limited understanding of etiological factors hamper drug development

efforts. Current clinical trials of ALS overwhelmingly rely on functional scales and survival

and clinical trial design shortcomings may have contributed to limited progress in drug-devel-

opment. [1]. The urgency of developing and validating sensitive biomarkers has been repeat-

edly emphasized, and there is a particular need for panels of markers which can detect subtle

changes over relatively short periods of time. Among the plethora of wet and dry biomarkers

which have been proposed in ALS, metabolomics has emerged as one of the most promising

“omics” approach due to the evaluation of disease-specific metabolic signatures. Pharmaco-

metabolomics is the study of metabolomic profile (metabotype) alterations associated with

therapy and is a key conceptual approach in the era of precision medicine. Advances in meta-

bolomic profiling have led to successful clinical trial applications and are now used as second-

ary outcome measures in some clinical trials [2, 3]. Given the close association between the

metabolomic profile and disease stage, metabolomics is a strong candidate biomarker and

robust surrogate endpoint for clinical trials.

Olesoxime is a small molecular weight chemical compound with neuroprotective and

neurodegenerative properties [4, 5]. This cholesterol-like molecule is likely to affect mitochon-

drial permeability, and has shown promising results in cell cultures and rodent models of

neurodegenerative conditions [5]. Based on these preliminary findings, a Phase III clinical trial

was undertaken in Europe to evaluate the efficacy of olesoxime in ALS. Disappointingly, this

study did not deliver therapeutic benefit on standard clinical endpoints such as survival,

ALSFRS-r, manual muscle testing (MMT) or respiratory function [6]. A post-hoc analysis has

now been performed using a state-of-the-art pharmaco-metabolomics approach with three

specific goals: (1) to establish whether the combination of olesoxime and riluzole led to specific

metabolic changes compared to riluzole therapy alone (2) to evaluate the relationship between

metabolic patterns and clinical progression and (3) to evaluate if the prognostic value of early

blood metabolomic profiles.

Material and methods

Patients

The TRO19622 (olesoxime) trial was a randomised, double-blind, placebo-controlled, phase

III therapeutic trial which included 512 patients with ALS from 15 European centers between

April 2009 and September 2011. Clinical and biological data were collected every three months

for a total of 18 months. Data collection, data management and all study procedures were

approved by local ethics committees in each participating country and written informed con-

sent was obtained from all participant. A specific additional approval was obtained to perform

metabolomic analyses on samples collected during the (NCT00868166) clinical trial from the

local Ethical Committee (Comité de Protection des Personnes (CPP)-Ile de France VI- Groupe

Hospitalier Pitié-Salpêtrière). Patients were diagnosed according to the El Escorial criteria [7]

and those with a symptom duration of for more than six and less than 36 months were eligible.
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The demographic and clinical profile of study participants has been previously reported [6, 8].

Patients received 330 mg of olesoxime (treated group, Group O) or placebo (control group,

Group P) once a day, in addition to riluzole for 18 months. We randomly selected 38 patients

from Group O and 38 patients from Group P in order to determine their metabolomic profile

at 1 month (V1) and 12 months (V12). Following rigorous quality assessments, 2 patients

from the Group P have been excluded, and the final analysis included 38 patients from Group

O and 36 participants from Group P.

Clinical data

At V1 and V12, the following demographic and clinical data were documented: age at symp-

tom onset, site of onset, disease duration from symptom onset, gender, the revised ALS Func-

tional Rating Scale (ASLFRS-r) score, Slow Vital Capacity (SVC), Body Mass Index (BMI),

muscle strength measured by manual muscle testing (MMT). If the patient had passed away by

the V12 visit, this was also documented.

Metabolomics experiments

A targeted, quantitative approach was implemented for the analysis of patient plasma samples.

This method was based on the AbsolutIDQ™ p180 kit (Biocrates, Innsbruck, Austria) using a

Flow Injection Analysis (FIA), and High-Performance Liquid Chromatography (HPLC-) Mass

Spectrometry (MS/MS) assay. This assay kit enables the quantification of 188 metabolites. FIA

is used for the semi-quantitative measurement of 146 hydrophobic molecules such as acylcar-

nitines, sphingomyelins (SM: type of sphingolipid consisting of phosphorylcholine and cer-

amide.) and phospholipids (lyso-, diacyl- and acyl- alkyl phosphatidylcholines (PC)). Forty-

two polar metabolites (amino acids, hexoses and biogenic amines) were measured using

HPLC. Specific metabolite ratios reflect metabolite-associated enzyme activity. This technique

uses of isotope-labelled internal standards and provides quantitative results based on calibra-

tion curves and rigorous quality control analyses (QCs), as previously described [9]. Briefly,

plasma are loaded onto a filter paper and dried in a stream of nitrogen for derivatisation with a

solution of phenyl-isothiocyanate 5%. Subsequently, dried residues are extracted with metha-

nol containing 5 mM ammonium acetate. The analysis is performed on a QTRAP1 5500 Sys-

tem (AB Sciex, Framingham, USA) with an FIA method or coupled to HPLC using a 5 μm

Ascentis1 Express C18 (4.6 × 250 mm) column. The MetIDQ1 software (Biocrates) is used

to calculate the concentrations of individual metabolites. The experiments are extensively vali-

dated using calibration curves and quality control protocols.

Metabolomic modelling

Log-transformed metabolomics data were analysed by a multivariate approach using Simca

P+ version 13.0 (Umetrics, Umeå, Sweden). First, Principal Component Analyses (PCA) were

conducted, which is a descriptive multivariate analysis approach that efficiently identifies

groups of samples based on their variable profiles (i.e. different metabolites). Grouping pat-

terns, trends and outliers were examined on scatter plots. Orthogonal partial least-squares

discriminant analyses (OPLS-DA or PLS-DA) were then performed. OPLS-DA identifies vari-

ations in peak areas between groups: variation in the measured data was partitioned into two

blocks by the program, one containing variations that correlates with the class identifier and

the other containing variations that are orthogonal to the first block and thus does not contrib-

ute to group discrimination. The OPLS-DA models were cross-validated by withholding one-

seventh of the samples in seven simulations (each sample being omitted once) to avoid over-

fitting. VIP values represent the importance of specific variables in OPLS -DA models, and the
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loadings characterize the relationship between the Y and X variables (lipids). We generated a

loading plot that summarizes the most important variables in the separation; p(corr)[1] < 0

indicate variables associated with one group and p(corr)[1] > 0 represent variables associated

with the second group. The overall quality of the models was appraised by the cumulative

modeled variation in the X matrix R2X(cum), the cumulative modeled variation in the Y

matrix R2Y(cum), and the cross validated predictive ability Q2(cum) values. Models were

rejected if there was complete overlap of Q2 distributions (Q2(cum) < 0) or low classification

rates (Q2(cum)< 0.05 and eigenvalues > 2). We considered a model robust if Q2> 40% and

R2>50%, but these cut off values need to be confirmed under biological conditions. CV-A-

NOVA, ANalysis Of VAriance testing of Cross-Validated predictive residuals, is another diag-

nostic tool for assessing the reliability of the models. The set of multiple models resulting from

the cross validation was used to calculate jack-knife uncertainty measures. We fixed the maxi-

mum number of iterations at 200 to ensure the convergence of the OPLS algorithm.

Based on these parameters, we optimized the models by excluding variables, so the most

efficient model could be obtained from a minimal number of variables. Thus, we identified the

most discriminant lipids based on the VIP and loading values scaled as correlation coefficients

(pcorr).

We also used the biosigner algorithm for R (R project for statistical computing) [10] to

identify the smallest pattern of variables from which a model can be generated with a signifi-

cant regression coefficient. This algorithm entails sampling (bootstrap), VIP ranking and com-

prehensive performance evaluation by within-test-set permutations and half interval searches.

The algorithm was independently wrapped around different machine-learning approaches,

namely PLS-DA, Random Forest, and Support Vector Machines (SVM). The final training of

the model is based on all samples from the dataset and the selected features. This stage involves

the following steps: first, the dataset is split into training and testing datasets (by bootstrapping,

controlling class proportion), then a model is built on the training set and prediction perfor-

mance is evaluated on the test set. The features are thus ranked based on their contribution to

the model. A feature is considered relevant if the random permutation of the intensities of

other features in the test subsets does not alter significantly the accuracy. Finally, the dataset is

restricted to the selected features and previous steps are repeated until the stability of selected

features. The algorithm returns the tier of each feature for the different classifiers: 1) Tier S cor-

responds to the lipids which are significant in all selection steps; 2) Tier A is significant in all

but the last selection, 3) Tier E regroups all previous rounds of selection. So, this analysis

includes the same principles as performed by SIMCA1 (PLS-DA) but overall, it is more

robust as it is more restrictive. We have adjusted the ‘biosigner’ algorithm to modulate the size

of the training and test sets, the number of bootstraps and to provide performance indicators

in the independent test set: mean sensitivity, specificity, positive predictive value (PPV), and

negative predictive value (NPV).

Analysis strategy

The methodology for data analysis is illustrated in Fig 1. First, the differences in metabolic pro-

files associated with treatment (group P vs. O) were described at 3 levels: V1, V12, and % of

variation from V1 to V12. Second, we built multivariate models to evaluate the relationship

between metabolomic variations between V1 and V12 and changes in clinical progression

markers (ALSFRS-r, SVC, MMT, BMI modification) over the same period, for each group

independently. Finally, we assessed the ability of the early metabolome profile at V1 to predict

clinical progression defined by ALSFRS-r, SVC, MMT, BMI modification, in both treatment

arms separately and together in order to identify metabolites indicative of disease progression.

A pharmacometabolomics approach in a clinical trial of ALS
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For each successful model, the Biosigner method was used to assess model performance over

the entire cohort and to identity the most relevant metabolites. Subsequently, we have inde-

pendently confirmed these findings on 1000 random training and test sets built from the

cohorts (P or O or P+O), independently from the initial modelling (another algorithm on R

and another person to perform such analysis). We reported the median performances of dis-

ease progression on the test set to specify the robustness of the modelling. Additionally, we

built Venn diagrams based on the 15 most discriminating metabolites of the multivariate anal-

yses to highlight the most promising candidate markers.

Results

Patient characteristics

The clinical and demographic profile of ALS patients in the two treatment groups are pre-

sented in Table 1. As the samples were randomly selected from the entire clinical trial cohort,

no differences were observed between Group O and Group P, or between these groups and the

Fig 1. Global strategy of the analysis illustrating the times of sample collection, the parameters collected and the three main objectives of the study.

https://doi.org/10.1371/journal.pone.0198116.g001
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general patient population included in the trial (Table 1) [6]. The complete database is made

available as a supplementary file (S2 Table).

Time-dependent metabolic modifications associated with olesoxime and/or riluzole.

The OPLS-DA model derived from the metabolomic profile at V1 (p<5×10–6) allowed the

two groups of patients (O and P) to be discriminated on the basis of 24 metabolites (Fig 2A

and 2B, S1 Table). From the predictive variation between X (metabolites) and Y (blood sam-

ples) given by R2X(cum), the best models interpreted approximately 48% total variation in X.

The predictability of treatment group membership from the biological data was acceptable

(Q2Y(cum) = 0.35). Similarly, the OPLS-DA model effectively discriminated groups P and O

on the basis of the 18 metabolites in the metabolome at V12 (p< 2×10–6) with a performance

of R2X(cum) = 0.518 and Q2Y(cum) = 0.36.

A third multivariate model elucidated the change in metabolite concentrations between V1

and V12 (p<4×10–6) based on 26 metabolites, with an R2X(cum) = 0.505 and Q2Y(cum) =

0.358. The Venn diagram highlights the metabolites that discriminate between treatment

groups at V1, V12 and the change between V1 and V12 (Fig 3). The metabolites that best dis-

criminated between Groups P and O were amino acids (Gly, citrulline/arginine), kynurenine

and metabolites from lipid metabolism. Although these associations were significant for the

profile of metabolites identified in the multivariate models, no significant association with

treatment group was observed for the individual metabolites on their own based on univariate

analysis.

Association between metabolic changes and clinical progression

Multivariate models identified significant associations (not shown, p<0.01) between clinical

changes in ALSFRS-r, SVC, MMT and BMI in Group P over time (V1 to V12) and alterations

in metabolic profiles with satisfactory modelling quality. The Venn diagram (Fig 4) illustrates

discriminating metabolites common to and distinct for the four disease progression variables.

We observed that changes in glutamine were common to all variables. The most discriminat-

ing metabolites included creatine and metabolites related to lipid metabolism.

We applied the same strategy in Group O and obtained similarly acceptable PLS models

with R2Xcum values between 0.38 and 0.61, R2Y(cum) between 0.62 and 0.913 and Q2Y(cum)

from 0.33 to 0.712 (p<0.01). Numerous amino acids (arginine, proline, glycine, alanine, and

Table 1. Characteristics of patients at baseline (one month after the randomisation visit). Data from the entire cohort [6] are provided to confirm the representative-

ness of the population selected for the present study. Probability values correspond to the comparisons between Group O and Group P in this present study.

Metabolomics study Full study cohort

Group O(N = 38) Group P(N = 36) p Olesoxime(N = 259) Placebo(N = 253)

Gender (% men) 68.4% 69.4% 0.1 64.5% 64.8%

Age of onset 53.6 ± 11.5 50.2 ± 11.7 0.3 57.3 ± 11.2 55.7 ± 11.2

Site of onset 0.5

Bulbar 13 19 51 50

Spinal 86 21 208 203

ALSFRS-r 39.5 ± 5.2 38.5 ± 6.1 0.5 39.1 ± 4.8 38.2 ± 5.3

BMI (kg/m2) 25.8 ± 3.2 24.3 ± 4.0 0.08 24.7 ± 3.4 24.8 ± 3.9

MMT 130.4 ± 15.9 126.5 ± 22.4 0.8 128/ ± 18 126 ± 18.8

SVC (%) 93.6 ± 13.9 94.4 ± 14.6 1.0 93.1 ± 14.6 93.1 ± 15.4

Diagnosis delay 9.3 ± 7.1 11.2 ± 4.8 0.9

ALSFRS-r: Revised ALS Functional Rating Scale; BMI: Body Mass Index; MMT: Manual Muscle Testing; SVC: Slow Vital Capacity

https://doi.org/10.1371/journal.pone.0198116.t001
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glutamic acid), spermidine and some lipid metabolites demonstrated significant associations

with progression markers in this patient group (Fig 5, S1 Table).

Prediction of the clinical progression based on early metabolomic profiles

Similarly to the entire trial cohort, we did not observe any difference in change in ALSFRS-r

(19.9 +-13.7 vs 22.3 +-17.0, p = 0.8), BMI (2.7+-6.7 vs 1.7 +-6.7 kg/m2, p = 0.4), MMT (20.8 +

-18.0 vs 22.0 +-17.9, p = 0.6), SVFC (19.7 +-24.7 vs 21.1 +-26.6%, p = 0.7) between Groups O

and P, reflecting the homogeneity in clinical progression. In Group P SIMCA1 analysis

revealed that, with the exception of MMT, it was possible to predict the variation of ALSFRS-r,

BMI, and SVC from the metabolome at V1 with R2X(cum) between 0.28 and 0.56; R2Y(cum)

between 0.31 and 0.46 and Q2(cum) between 0.23 and 0.3 (p-value <0.027). Metabolites that

were associated with the evolution of clinical variables included taurine (ALSFRS-r, SVC),

kynurenine/tryptophan (SVC, ALSFRS-r, MMT), C5:1, C4, putrescine/ornithine (ALSFRS-r,

MMT) and SM C22:3 (ALSFRS-r, SVC). The independent modelling (RF) on 1000 training

sets provided the following median performances in the test datasets: 100% sensitivity, 66.7%

specificity, 66.7% positive predictive value, 100% negative predictive value. However, none of

the models tested using this script was significant.

In Group O, SIMCA1 analysis yielded satisfactory models to predict clinical progression

with an R2X(cum) of 0.40 to 0.61; R2Y(cum) between 0.29 and 0.67 and Q2Y(cum) of 0.17 to

Fig 2. Multivariate model from blood metabolome of ALS patients at V1, A) Score scatter plot from OPLS-DA

model discriminating patients in Group P (black) from patients in Group O (red), B) Loading scatter plot from

OPLS-DA model showing the best discriminating metabolites. The position of the metabolites in the loading plot

characterises the subjects represented in the score plot; variables near each other are positively correlated; variables

opposite to each other are negatively correlated. Amino acids are represented in blue, complex lipids in orange, fatty

acids in yellow and other molecules in green.

https://doi.org/10.1371/journal.pone.0198116.g002
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0.53 (p<0.04), except for BMI (p = 0.1). Most metabolites common to the different models

were derived from lipids (SMC, SMOH, not shown) including PC aa C38:3 which is the most

relevant findings as it was common to models explaining the variation of BMI, SVC, MMT.

Biosigner algorithm resulted in no significant model but highlighted interesting metabolites:

SM C24:1 (category S) was identified in the Random Forest model for SVC using the biosigner

algorithm, and also in the PLS-DA model explaining changes in SVC, ALSFRS-r and MMT in

the SIMCA1 model. The independent modelling (RF) on 1000 training sets provided the fol-

lowing median performances on the test sets: 66.7% sensitivity, 66.7% specificity, 75% positive

predictive value, 75% negative predictive value. When Groups O and P were pooled, the bio-

signer algorithm based on the 3 machine learning methods generated a significant model to

explain the variation of SVC, with SM OH C22:2 (category S) as the most relevant marker,

independently of the drug treatment. In this model, the sensitivity was 64.7%, the specificity

64.1%, the positive predictive value 31.1% and the negative predictive value 67.6%. In addition,

SM C16:1(category A) was also discriminant for one out of 3 learning methods (i.e Random

Forest). The independent modelling (RF) on 1000 training sets provided the following median

performances on the test sets: 71.4% sensitivity, 71.4% specificity, 71.4% positive predictive

value, 70.0% negative predictive value.

Discussion

Our findings provide compelling proof of concept that pharmacometabolomic approaches

add important insights in drug trials of ALS. We used standard statistical methods based on

multivariate analyses (PLS, OPLS-DA), but also a novel algorithm to appraise models of

Fig 3. Venn diagram representing the 15 best discriminating metabolites between patients in Group P and

patients in Group O at V1, V12 and over one year (V12-V1) in OPLS-DA models built from blood metabolomic

profiles.

https://doi.org/10.1371/journal.pone.0198116.g003
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prediction. The biosigner algorithm has been developed to provide a robust strategy for pre-

diction, based primarily on bootstrapping and different learning methods, such as Random

Forest, and Support Vector Machines [10]. Even if multivariate analysis based on SIMCA1 is

able to identify metabolites associated with clinical progression, its predictive power is weaker

than that of the biosigner algorithm [10]. Beyond the context of therapeutic trials, the combi-

nation of rigorous phenotyping and advanced metabolomic approaches opens new perspec-

tives to decipher molecular signatures underlying the clinical heterogeneity of ALS.

Metabolic changes under treatment

The metabolic effect of riluzole has not been fully characterised in previous studies, which

have overwhelmingly focused on glutamate effects [11], and the effect of olesoxime on TSPO

(translocator protein) and VDAC (Voltage-Dependent Anion Channels) [4] has only been

explored from a cholesterol metabolism perspective [8]. In this present study, glycine and the

citrulline/arginine ratio were discriminating to a lesser extent in Group O than in Group P.

Changes in glycine levels are consistent with the involvement of this amino acid in pathophysi-

ology, including its role as a co-agonist of the N-methyl-D-aspartate receptor (NMDA-R) [12–

Fig 4. Venn diagram representing the 15 most discriminating metabolites in PLS-DA models which are associated with disease evolution (variation of ALSFRS-r,

BMI, MMT, SVC over 1 year) in patients in Group P.

https://doi.org/10.1371/journal.pone.0198116.g004
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14]. The modification of citrulline/arginine ratio may signal the involvement of mitochondrial

alteration in ALS pathophysiology [15], including the inhibitory effect of NO on the respiratory

chain [16], as well as its effect on oxidative stress [9, 17, 18]. The higher levels of kynurenine

observed in Group O compared to Group P may be related to serotoninergic mechanisms and

inflammation in ALS [19–21]. The kynurenine metabolic pathway includes neuroactive inter-

mediates such as the NMDA-R agonist quinolinic acid and the NMDA-R antagonist picolinic

acid [21]. As one of the neuroprotective actions of riluzole may include the inhibition of gluta-

mate release and non-competitive post-synaptic inhibition of NMDA and AMPA receptors [22,

23], the increased kynurenine levels observed in Group O may be related to an attenuation of

the effect of riluzole on these pathways due to a negative interaction with olesoxime treatment.

Several lipids (sphingolipids, glycerophospholipids) were identified by the models discriminat-

ing the patients of two treatment groups. Despite previous reports that olesoxime does not affect

cholesterol metabolism, its overall impact on lipid metabolism has never been explored [8].

Similarly, the effect of riluzole treatment on lipid metabolism has not been characterised, but it

is conceivable that these alterations can be linked to changes in energy metabolism [17]. These

findings merit further research, specifically focusing on the lipid alterations highlighted by this

study.

Fig 5. Venn diagram showing the 15 most discriminating metabolites in PLS-DA models which are associated with disease evolution (variation of ALSFRS-r,

BMI, MMT, SVC over 1 year) in patients in Group O.

https://doi.org/10.1371/journal.pone.0198116.g005
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Relationship between metabolomic changes and clinical markers

In patients treated with riluzole alone, we identified creatinine as a key metabolite associated

with clinical variables. The potential prognostic role of creatinine has been previously pro-

posed in ALS [24, 25]. Glutamine, which is key blood amino acid and is closely linked with glu-

tamate metabolism, was the most discriminating metabolite identified by each model of our

analyses. Numerous studies underline the role of glutamate metabolism as central to ALS

pathophysiology [11, 12] and our findings confirm the importance of this pathway. Glycine

and Glutamate were identified by models exploring disease progression in Group O patients

and these findings are consistent with previous reports showing that these alterations are time-

dependent [9]. In addition, polyamines, which play biological roles in oxidative stress, NMDA

receptor activation and autophagy, have been shown to be altered in patients with ALS and

other neurodegenerative diseases [9].

Disease prediction based on the early metabolomic profiles

In Group P, we found SM C22:3 (i.e sphingomyeline with 22 carbons and 3 unsaturations on

fatty acids) as discriminating with respect to the prediction of several clinical indicators by

overlapping statistical analyses, as was SM C34:1 in group O. Previous studies have implicated

the role for sphingolipids in the pathogenesis in ALS; suggesting modulation of receptor-medi-

ated signalling pathways, activity as lipid second messengers, perturbation of muscle function,

and ceramide accumulation [26–28]. Nonetheless, further research is required to characterise

the role of these metabolites in greater detail. As similar clinical progression was observed in

Groups O and P, we investigated whether the early metabolomic profile can predict clinical

progression irrespective of treatment group. Accordingly, we validated a model generated by

the biosigner algorithm which predicted disease progression from the V1 metabolomics in

patients from both groups. For all the models tested, two were relevant to predict SVC from

SM C24:1 in group O and the other to predict SVC from SM OH C22:2 and SM C16:1 in

group P+O. The performances of prediction obtained revealed correct models from one or

two metabolites. We identified a sensitivity between 67% and 100%, a specificity between 66.7

and 71.4%, a positive predictive value between 66 and 75% and a negative predictive value

between 70% and 100% in the test sets, which is noteworthy in a highly heterogeneous disease.

A signal was again observed for a sphingolipid. In a follow-up study, we will specifically inves-

tigate these pathways in more detail by a dedicated lipidomics approach [29].

A limitation of the study is the lack of external validation, however our strategy was

designed to include robust internal validation with bootstraps.

In conclusion, we have demonstrated an innovative strategy for detailed post-hoc analysis

of metabolomic profiles in a clinical trial of ALS. We showed that treatment with olesoxime

and riluzole modifies different metabolic pathways. The metabolic insights provided by these

analyses regarding the specific mechanism of action of these drugs have implications for the

development of other drugs in ALS and other neurodegenerative diseases. The prediction of

disease progression from early metabolomic profiles is a particularly promising avenue. Cur-

rent clinical trials typically include systematic sampling of biomarkers therefore pharmaco-

metabolomics is an exciting novel approach to capitalise from this material. Further studies

are required to develop these approaches to meaningful and efficient drug development

strategies.
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