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Abstract

Sensory representations are not only sparse, but often overcomplete: coding units significantly outnumber the input units.
For models of neural coding this overcompleteness poses a computational challenge for shaping the signal processing
channels as well as for using the large and sparse representations in an efficient way. We argue that higher level
overcompleteness becomes computationally tractable by imposing sparsity on synaptic activity and we also show that such
structural sparsity can be facilitated by statistics based decomposition of the stimuli into typical and atypical parts prior to
sparse coding. Typical parts represent large-scale correlations, thus they can be significantly compressed. Atypical parts, on
the other hand, represent local features and are the subjects of actual sparse coding. When applied on natural images, our
decomposition based sparse coding model can efficiently form overcomplete codes and both center-surround and oriented
filters are obtained similar to those observed in the retina and the primary visual cortex, respectively. Therefore we
hypothesize that the proposed computational architecture can be seen as a coherent functional model of the first stages of
sensory coding in early vision.
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Introduction

In the last decades a large body of research has been devoted to

explain the nature of neural representations. Since experimental

manipulation of the stimuli has the most direct impact on the

sensory responses, most of our knowledge comes from studies

about the early stages of sensory systems. Although we do not have

a complete story yet, experimental and theoretical research did

reveal important principles about the nature of neuronal

representations together with specific constraints imposed by

anatomy and physiology. Derived from the efficient coding theory

[1,2], different popular models – emphasizing redundancy

reduction (like [3,4]) or the sparsity constraint (Sparse Coding,

SC, e.g. [5,6]) – can account for many, but not all relevant features

of early sensory processing (e.g. [7,8]). In this article we argue that

a novel computational model of neural representation can be

obtained by focusing on one of those relevant features: over-

completeness. For codes with this property the number of potential

coding units is larger than that of the input units thus offering

increased memory capacity and enhanced robustness against noise

and structural perturbations. We will argue that the formation of

large and sparse representations of high level of overcompleteness

requires adaptive learning which can effectively control the

number of active synapses. This structural sparsification has a

significant impact on the overall metabolic cost of neural activity.

We then present a new sparse coding scheme which is motivated

by both theories mentioned above, but is built on a non-

conventional signal model assuming an additive decomposition of

stimuli into ‘‘typical’’ and ‘‘atypical’’ constituents. We also analyze

the model’s filtering properties when trained on natural images.

The main contribution of our study is that principled pre-filtering

based on this alternative signal model can indeed facilitate

overcomplete SC by supporting structural sparsity. The pre-

filtering process is motivated by recent results on efficient

compression, completion and decomposition of high dimensional

data; computational functions equally important for artificial and

natural systems. Based on the finding that our model can

simultaneously explain several features of early vision we then

suggest a biological implementation of the two stage algorithm.

The paper is organized as follows. In the Results section first we

review the computational problem of overcomplete sparse coding

and argue about the importance to control synaptic activity. Then

we introduce our two stage algorithm which can achieve structural

sparsity thus supporting overcomplete sparse coding. In support of

our model numerical experiments on natural images are also

presented. In the Discussion section we compare the computa-

tional properties and biological relevance of our model with

alternative approaches. In the Methods section the details of the

numerical experiments are provided together with brief descrip-

tions, pseudocodes and references to more elaborate presentations

of the algorithmic building blocks.

Results

In this section we present the problem of (overcomplete) sparse

coding (SC) with an emphasis on metabolic constraints (regarding

spike activity) and briefly discuss some alternative algorithmic

solutions. We then consider if further reduction in computational
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(metabolic) cost can be accomplished by targeting synaptic activity.

Motivated by the insight that the presence of noise hinders the

effective control of synaptic activity, we introduce a novel two

stage sparse coding algorithm which facilitates structural sparsity

(i.e. by keeping the number of active synapses low) and in turn

supports the formation of overcomplete sparse codes. The model is

then tested on natural images and the responses of the computing

units are compared to neural responses in early vision.

Preliminaries
Due to the high metabolic cost of spiking activity [9–11],

constraining average spiking rate (over time and population) seems

to be a general principle in neural systems (but see [12]). Therefore

we also consider sparsity central in our coding model. The

objective of the sparse coding (SC) scheme is to find the sparsest

representation of the data with low reconstruction error. It has

been argued that this scheme offers a computationally and

metabolically advantageous trade off between fully localized (like

‘‘grandmother’’-cells) and distributed codes [13]. Sparse codes

essentially try to approximate the underlying hidden structure (the

generating sources) of the observed stimulus. The great advantage

of SC over other coding schemes is that it directly controls energy

consumption by setting the number of active coding units; k out of

m coding units with kvm can be active at any given time.

Another important property of neural codes is overcompleteness,

when the number of coding units (m) is greater than the number of

input units (n, mwn). For example, in area 17 of cat the ratio of

the output fibers versus the input fibers from the LGN is estimated

about 25:1, while in macaque primary visual cortex, V1 the

estimate is between 12:1 and 160:1 [14] or even 500:1 [15]. In

principle, overcompleteness provides more flexibility in finding

even sparser representations. However, overcompleteness presents

a non-trivial challenge for computational models on neural

representations. In comparison with biological data, most

computational models of SC can find the optimal solution if

overcompleteness is 2 to 8-fold at most [16]. Importantly, higher

level of overcompleteness may increase the overall metabolic cost

of neural coding for two reasons. First, non-optimal solutions

require too many iterations thus generating excess spiking activity.

Second, overcompleteness induces an asymmetry in the use of the

encoder and decoder channels within one iteration: while the

excitation process requires the use of all n|m encoder channels,

selected subsets of k active decoding units require only k|n
decoder channels. That is methods that avoid the heavy use of

encoding are more favorable. The importance of controlling the

number of active coding channels (that is the number of synapses

which define the receptive field of a neuron) is highlighted by the

fact that according to the estimates of [10], more than 50% of the

metabolic cost of a single spike can be attributed to the excitatory

potentials at the postsynaptic sites (EPSPs). Our goal is thus to find

an algorithmic model that can explain overcomplete sparse coding

in the brain.

Formally, SC can be stated as an alternating (two step)

optimization problem:

min
D, a[Rm

Xt

i~1

1

2
Exi{DaiE2

2zbEaiE0 ð1Þ

where xi[Rn (i~1, . . . ,t) is the ith signal, or input to be

reconstructed, t is the number of training inputs, a[Rm (m§n)

denotes the coefficient vector of the sparse decomposition also

called (internal) representation and D[Rn|m is the basis, or

dictionary of features. E:E0 denotes the ‘0-norm, which is the

number of nonzero components. The first term minimizes the

reconstruction error, while the second one penalizes solutions with

many non-zero components. Sparsity of representation a is defined

as k~k=m where k is the number of non-zero components. The

resulting code is overcomplete, if mwn and the difficulty of finding

a sparse code with minimal reconstruction error depends on the

level of overcompleteness (m=n) and k. Parameter b controls the

trade-off between the two terms. The reconstruction error or

residual may be due to different noise sources that hide the

structure of generating sources of the signal.

At one step the basis set is adjusted (learning process) to minimize

the reconstruction error while the activity of the coding units, a is

kept fixed. The straightforward solution would be to let evolve D
by stochastic gradient on the cost function derived from the

reconstruction error, e~x{x̂x where x̂x~D̂Dâa and ‘hat’ denotes the

actual estimation. Because of the role of the reconstruction error,

this rule is not directly local [17], yet it can be translated [18] into

a set of Hebbian (local) interactions realized by particular network

structures with feedback.

During the selection of non-zero units (formation of the sparse

code), features (D) are fixed. However, selection by exhaustive

search is a combinatorially hard problem [19]: the number of

iterations becomes computationally prohibitive as m (the dimen-

sion of the internal representation) increases. For this reason

several approximation method exist, but they either have slow

convergence or provide non-optimal solutions. To overcome these

limitations, we have chosen a heuristics that combines two

approaches. The so called Subspace Pursuit (SP) method [20–

23] has been chosen because of its superior speed. It is a

generalization of matching pursuit [24], which finds local optima

in a fast iterative fashion. Importantly, this method is able to

discover the global optimum provided that certain conditions are

met. Numerical experiments on natural visual stimuli indicate that

methods, which assume these conditions, work surprisingly well

[25], even though the conditions are unlikely to be met (but see

[26] on the inherent limitations of matching pursuit like methods).

In contrast to SP, the other algorithmic component – the so called

Author Summary

Neural systems favor overcomplete sparse codes in which
the number of potential output neurons may exceed the
number of input neurons, but only a small subset of
neurons become actually active. We argue that efficient
use of such large dimensional overcomplete sparse codes
requires structural sparsity by controlling the number of
active synapses. Motivated by recent results in signal
recovery, we introduce a particular signal decomposition
as a pre-filtering stage prior to the actual sparse coding,
which efficiently supports structural sparsity. In contrast to
most models of sensory processing, we hypothesize that
the observed transformations may actually realize parallel
encoding of the stimuli into representations that describe
typical and atypical parts. When trained on natural images,
the resulting system can handle large, overcomplete
representations and the learned transformations seem
compatible with the various receptive fields characteristic
to different stages of early vision. In particular, transfor-
mations realized by the prefiltering units can be approx-
imated as ‘Difference-of-Gaussians’ filters, similar to the
receptive fields of neurons in the retina and the LGN. In
addition, sparse coding units have localized and oriented
edge filters like the receptive fields of the simple cells in
the primary visual cortex, V1.

Efficient Sparse Coding in Sensory Processing
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Cross Entropy method (CEM) [27] – is an optimization method

designed to find the global optimum. Its main limitation is the slow

convergence rate. The combination, termed Subspace Cross-

Entropy (SCE) [16] method inherits the best of both worlds: it is

reasonably fast and still can yield the optimal solution even at a

higher level of overcompleteness. Since we are interested in the

formation of sparse codes at very high level of overcompleteness,

we used SCE in our numerical experiments. The appendix

contains the pseudocodes of SP, CEM and SCE for the sake of

reproducibility. Detailed analysis of these methods can be found in

[16,28,29].

Improving Overcomplete Sparse Coding
The learning process of Eq. (1) is prune to perturbations: excess

activation caused by noise may induce changes in all features thus

introducing global (long-range) and low spatial frequency

correlations among the features. Such unwanted increase in the

number of active synapses implies increased metabolic cost.

Observation noise (e.g. induced by intrinsic neural activity) can

significantly decrease the efficiency of OSC as it may easily

generate access activation at the output (representation) level,

which can only be mitigated by a number of further iterations in

order to reduce the reconstruction error. In turn it is essential to

counter this effect by actively controlling the number of non-zero

components of the filters. This constraint is referred to as structural

sparsity and implies that visual RFs with local, i.e., spatially

restricted responses (like the high frequency, concentric RFs of the

retinal ganglion cells, the relay neurons in the LGN, or the

elongated oriented Gabor patch like RFs of the simple cells in V1)

are metabolically more favorable over those that have large global

structure with many synapses involved [30]. Approaches like

weight thresholding or increasing overcompleteness (see Discus-

sion) fail to address this issue properly. Instead, we turn to an

alternative approach by directly separating global (involving many

synapses), i.e., low-frequency or long-range components of the stimuli

before the actual sparse coding. Considering the famous 1=f
frequency fall of the amplitude spectrum of natural images [31],

the low-frequency components carry most of the energy. Principal

Component Analysis (PCA, [32], often used decorrelation

method), for example, represents the signal in a way that the first

component would carry the largest amount of energy, while the

last one would carry the least amount. In turn, by applying PCA

and then projecting the data out of the subspace of the first principal

components would yield a representation without the unwanted

low-frequency content. Let us remark that this approach is in

contrast to conventional thinking which would keep exactly those

components with high energy and filter out the rest. While this

idea is appealing, PCA based separation of the subspaces strongly

depends on the signal statistics: components (‘‘outliers’’) with heavy

tailed amplitude distribution (characteristic to natural stimuli) can

easily break down PCA. In the next section we review a robust

alternative to PCA, which can efficiently separate these outliers

from the low frequency components. We then propose an

overcomplete SC model in which SCE (or any other efficient

SC solution) is complemented by this alternative prefiltering as it is

expected to support structural sparsity in the subsequent SC stage.

Two-stage overcomplete SC with structural sparsity
Our concept is based on recent findings of signal processing

about recovering low-dimensional data from high dimensional

observations [33]. In signal processing, conventional analysis of

large dimensional data, such as sensory observations, is often based

on the assumption that data have low intrinsic dimensionality: they

lie on a low-dimensional subspace. In ‘2 norm (the ‘p-norm of

vector a~(a1, . . . ,am)T[Rm, where T stands for transposition, is

defined as EaEp ¼
D

(
Xm

i~1
EaiEp)1=p), PCA provides rank-k

estimate of the data by solving the following problem:

X ~LPCAzSPCA ð2Þ

minimize EX{LPCAE2 ð3Þ

subject to rank(LPCA)ƒk ð4Þ

where X~(x1, . . . ,xt)[Rn|t is the matrix of observations

(dimension of the observations: n, number of data points: t), rank

of matrix LPCA is k at most and SPCA models a small noisy

perturbation of each entry LPCA. If this perturbation is Gaussian

noise, then PCA provides the statistically optimal estimate of the

low-frequency, low dimensional subspace LPCA. However,

deviation from the Gaussian (e.g. gross perturbations or compo-

nents with heavy tailed distribution) can easily yield incorrect

estimates.

Because of the 1=f frequency dependence natural stimuli often

contain outliers and thus we need an alternative signal model. Let

matrix L comprise the low frequency components (so it has low-

rank as above), while S may have full rank, but it is a sparse matrix

with arbitrarily large entries at random locations: X~LzS. The

surprising result is that under certain conditions (on the rank of L
and on the sparsity of S) both matrices can be exactly recovered [33].

Furthermore, it has been proved that efficient recovery is feasible

by solving the following optimization problem (Robust Principal

Component Analysis, RPCA):

minimize ELE�zlESE1 ð5Þ

subject to X~LzS ð6Þ

where ELE� denotes the sum of the singular values of L, ESE1

denotes the ‘1 norm of matrix S, i.e., ESE1~
Pt

i~1

Pn
j~1 jSjij. l is

a trade-off parameter, which governs the dimension of matrix L.

On the other hand, matrix S may assume maximal rank,

independent of l.

In addition to robustness against perturbation, the proposed

decomposition allows an alternative interpretation of the signals.

Instead of treating sparse components as corrupting noise to be

filtered, we may consider these outliers as atypical signals that carry

further information about higher order correlations (like config-

urational information) not revealed by the low-rank estimate (L).

Note that conventional methods (like ICA) would analyze the low

rank part only.

The suggested solution (the pseudocode is given in Table 1)

iteratively improves the estimation of L and S and its

computational complexity is only slightly larger than that of the

traditional PCA [33]. Another surprising result is that under the

assumptions of the theorem, a whole range of l values can return

the correct solution, no matter what L and S are. A simple

reference value for l is l0~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
max(n,t)

p
[33] and so we will use a

normalized parameter: l�~l=l0.

Interestingly, as numerical experiments suggest [33], RPCA

delivers meaningful signal decomposition even if conditions (about

the sparseness of S) do not hold (like in the case of 1=f spectra). In

these cases, however, different RPCA decompositions can be

obtained by setting different l� values and S is not guaranteed to

be sparse anymore. For this reason matrix S could be the subject

of further sparsification. The corresponding sparse coding

optimization (see Eq. (1)) in matrix form is given as

Efficient Sparse Coding in Sensory Processing
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min
D, A[Rm

Xt

i~1

1

2
ES{DAE2

2zbEAE0, ð7Þ

where the matrix S~½s1, . . . ,st�[Rm|t and A~½a1, . . . ,at�[Rm|t,

denotes the matrix of the outliers and the matrix of their sparse

representations, respectively. The ‘2 norm based residual may

denote full rank observation noise, which implies the following

signal model: X~LzSzN. According to [34], it is still possible

to give stable estimates for L and S, if N is bounded: ENEF vd,

for some dw0 value, where E:EF denotes the Froebenius norm.

In the demonstrations we opted to use the simpler RPCA model

(as in Eq. (6)) without explicit assumptions about the additive noise

term.

Let us note that even though the formalism used above is

based on matrices, the RPCA procedure can be applied on a

single input (thus it may be realized in a neurally plausible form)

once an approximation of the low-rank part L is available.

Furthermore, – depending on the input statistics – L can be

approximated even from partial observation by ‘filling in’ missing

information [33,35].

Computer experiments
To test the impact of RPCA preprocessing on sparse coding,

normalized natural image patches were first decomposed by

RPCA at different l� values, then the resulting full rank

representations were further encoded by SCE (16-fold over-

completeness with n~16|16~256 dimensional inputs and

m~4096 dimensional representation; numerical details are in

the Methods Section). We have chosen this particular input set

since there already exist a number of computer vision studies on

their statistics and the corresponding neural representations under

different optimality criteria [14,31]. The actual overcomplete

sparse representations were formed by SCE and the corresponding

SC filters were tuned online via stochastic gradient learning. While

this level of overcompleteness is still below what has been

estimated in the neural sensory systems [15], we believe it is a

reasonable choice, as training time is still manageable, yet the

results are convincing enough to support the central message of

our proposal.

A few basis features (for sparse coding, 10 out of 4096 columns

of matrix D) are shown on Figure 1. For visualization purposes

each basis vector is scaled into the range ½0,1� and displayed as a

16|16 image. Features in the first row of Figure 1A were

obtained by conventional SC (applying SCE) without pre-filtering,

which corresponds to the case of l�~0.

As we earlier argued, plain SC tends to learn large, global filters,

thus preventing the reduction of synaptic cost. Figure 1B plots a

few selected SC features when applied on the residuals of

traditional PCA. Regarding locality we do not see much

improvement: features are still global and manifest large, wavy

structures. Figure 1E depicts example filters obtained by applying

RPCA prior to SC. Different rows correspond to different l�

values. The main result of these studies is that the learned basis

features get cleaner and more localized, that is, filters get structurally

sparser as the single global parameter increases. On Figure 1F we

re-plotted features for l�~0:8 together with the corresponding

filters approximated by reverse correlation. Not only the

estimation error is smaller compared to the error of the native

SC method (Figure 1A), but filters also show larger diversity in

their shapes, similar to what has been found experimentally [8].

We also plotted the corresponding filters or RFs of the low-rank

signal L in Figure 1C for l�~0:5, when the number of basis

vectors was 17. Figure 1D shows the spatial-dependence of RFs of

the sparsified signal S after RPCA for l�~0:5.

A surprising result is that the shape of all the obtained RFs for

sparsified matrix S can be described as ‘Difference of Gaussians’

which is the characteristic RF shape [36] of the retinal ganglion

cells and the neurons in LGN. The obtained concentric filters 1,

are homogeneous and 2, uniformly tile the whole space. Due to

their similarity, we show the cross-section of one unit only

(Figure 1D). Note that the peaky structure is due to the small

image size (discretized DoGs have similar shape at this scale) and

more typical DoG shapes could be obtained for larger image

patches. We found that for higher l� values the negative basin

around the peak gets deeper. This development may correspond to

the experimentally found developmental changes of the LGN filter

profiles in cat [37].

Let us emphasize again that RPCA is not a projection: through

an iterative process it extracts the large and sparse components

and separates the low-rank part. Interestingly, for natural images,

RPCA provides a basis visually almost indistinguishable from

those of the PCA filters, but the corresponding representations are

different. It implies that PCA may be a good first approximation

or initialization for the RPCA iteration method (higher l� values

allow more low-dimensional components).

Qualitative comparison between filters and RFs
Traditionally, a simple cell RF in V1 is often characterized as a

‘Gabor-patch’ [38]; Gaussian envelope around a cosine wave. To

help compare the obtained filters with RFs of real neurons, we also

approximated the filters as a Gabor-patch. As l� increases the

filters become more localized and cleaner, and the Gabor-patch

like appearance gets more pronounced. On the other hand, at too

large values the filters become small and stereotyped with

diminishing harmonic content (see Figure 1E).

The distribution of the shape parameters of the Gabor-patch

approximations (Eqs. (9)–(11)) is shown in Figure 2 for l�~0:8.

Filters localized at the edges of the 16|16 visual space were

discarded as their distortion prevents proper fitting. For small

filters fitting is imprecise. Filters yielding Gaussian envelope with

width less then 0.3 pixel were thus also discarded. It implies that

the true number of learned filters at around point nx~0,ny~0 is

larger than what is shown in Figure 2. Visual inspection reveals

that (i) filters become local and cleaner, (ii) the distribution deviates

significantly from the bisection line, and (ii) a considerable portion

Table 1. RPCA pseudo-code.

initialize:

S0~Y0~0, mw0

while not converged do :

compute :

Lkz1~Dm(X{Sk{
1
m Yk)

Skz1~Slm(X{Lkz1{
1
m Yk)

Ykz1~Ykz1zm(X{Lkz1{Skz1)

end while

output : L, S.

St : R?R denotes a shrinkage operator, St½x�~sgn(x) max (jxj{t,0) acting
on matrices componentwise. For matrix X , Dt denotes the singular value
threshold operator: Dt(X )~USt(S)V� , where X~USV� is the singular value
decomposition.
doi:10.1371/journal.pcbi.1002372.t001

Efficient Sparse Coding in Sensory Processing
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of the filters is concentrated near the origin nx~0,ny~0. For

comparison, we also plotted the distribution of the fitted shape

parameters of the experimentally measured RFs of simple cells

reproduced from [8]. Considering that we had to drop a number

of small filters, the match between numerical and experimental

data seems quite good (see, e.g., [39] for comparison), indicating

that the proposed model may have biological relevance. Let us

note that the observed shape distribution may depend on the level

of overcompleteness, but due to the relatively small input size we

suspect that further increase in the number of coding units would

not result in major changes.

Numerical analysis of the prefiltering and sparse coding
stages

Since the assumed signal model is only an approximation for

natural image patches, different trade-offs (defined by l� in Eq. (5))

between the contribution of the typical and atypical features to the

reconstruction influence the emerging representations after RPCA

prefiltering. Figure 3A depicts the influence of l and thus the

RPCA decomposition on the statistics of the SC filter shapes as

measured by the histogram of the Gabor-patch fitting error. It

shows how well the linear approximation of sparse coding filters

can be described with a set of oriented Gabor patches often used to

Figure 1. Different basis types of RPCA preprocessing and Sparse Coding. Sample receptive fields are scaled into range [0,1]. (A) no RPCA,
columns of dictionary D. (B) receptive fields learned after PCA pre-filtering: features show wavy, global structure. (C) Features (‘global filters’) of the
low dimensional signal for the case l�~0:5 (dimension = 17). (D) reverse correlation of the full rank sparsified signal S yields stereotypical DoG-like
filters with symmetric 2D structure. The figure shows the profile of the central section as a function of l� . At higher values the negative basin around
the peak gets deeper. (E) Randomly selected sparse coding filter sets (over-completeness is 16|, l�~0:3,0:5,0:8 and 1:2) With increasing l� the
filters get smaller and more localized (i.e. cleaner). (F) For comparison, a set of sparse coding filters (D) and the corresponding linear approximations
(normalized reverse correlation, (XXT){1XAT ) are shown at l�~0:8.
doi:10.1371/journal.pcbi.1002372.g001

Efficient Sparse Coding in Sensory Processing
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characterize experimentally measured receptive fields. If filters

have ‘dilated’ global structure then the histogram of the fitting

error is probably less peaked. And indeed this is the case:

increasing l� results in more homogeneous, smaller and point-like

filters. Let us remark that discretization has a strong contribution

to the observed fitting noise.

Figure 3B displays the dependence of the dimension of the low-

rank component L on l� and the relative contribution of L to the

reconstruction of the original observations. To calculate the

intrinsic dimension of L, all singular values were zeroed out with

amplitude less then 10{6 of the maximal amplitude. The

important parameter range is where the intrinsic dimension is

still low, yet L0s role in the reconstruction is significant. Within

that range, 0:5vl�ƒ0:8 provides the best fit to the experimental

data. At higher l� values most of the filters loose their edge-like

characteristics.

We have also studied the algorithm’s reconstruction ability. Due

to the additive decomposition, reconstruction depends on both the

‘‘typical’’ part obtained by RPCA and the overcomplete sparse

representation of the ‘‘atypical part’’. As it is demonstrated on

Figure 3 the relative contribution of L as well as its dimension

(number of coding neurons) depends on l�. In turn, the fidelity of

reconstruction is a function of both the number of units that

encode typical features and the number of nonzero entries in the

sparse code. Figure 4 displays this dual dependence: reconstruction

quality as a function of the total number of nonzero entries, which

comprises the rank estimate of L at the given l� and the preserved

number of nonzero entries in the overcomplete sparse represen-

tation (k). For l�~0:0,0:3,0:5 the chosen values were:

k~16,32,64,80,96 and for l�~0:8, k~8,16,32,64,80. Recon-

struction quality is measured by mean SNR:

v10 log10
jxi j2

jxi{li{ŝsi j2
wi. Interestingly, while SNR does not im-

prove much when l� has changed from 0:3 to 0:5, the

corresponding filters have significantly changed. Let us note that

the overall low values of SNR are due to the fact that no high

frequency components have been filtered out prior to decompo-

sition (but see [40], where much higher SNR has been reported

after filtering out those high frequency components).

So far we have dealt with static images, but temporal sequences

are more realistic: sensory systems are believed to adapt to the

spatio-temporal structure of the stimuli. Since RPCA does not

rely on prior knowledge about the spatial or temporal arrange-

ment of the data, one expects to see similar decomposition results

for data with temporal correlation. For the sake of illustration,

temporal correlation was introduced by concatenating 16 image

patches of size 868 extracted from image sequences on natural

scenes. (This was the maximum size we could handle with

overcompleteness ratio 16.) Sample filters of the obtained low-rank

matrix L for l�~0:5 (the corresponding rank estimate is r~69)

are shown on the left of Figure 5. Filters are ordered by their

corresponding eigenvalues. Each filter is composed of 16 frames of

size 868 pixels. Similar to the filters shown on (Figure 1C), these

Figure 2. Distribution of the shape parameters for the model and for the experimental data. Receptive fields of simple cells in primary
visual cortex, linearly approximated by spike triggered averaging. Data [8] are available at http://web.mac.com/darioringach/lab/Data.html. Our
model filters show significant diversity in the fitted shapes similar to what has been found experimentally. While other models (e.g. [39,40]) are also
able to partially match the filters to the observed RFs, a significant difference is that our model uses highly overcomplete representations. For other
differences, see the main text.
doi:10.1371/journal.pcbi.1002372.g002
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Figure 3. The impact of l� on the signal decomposition and the overall quality of the sparse coding filters. (A) The empirical
distribution of the Gabor patch fitting error as a function of l�. Larger spread signifies deviation from ideal Gabor patch, often used as model shape
for experimentally recorded receptive fields. The shift of the mean toward 0 as l� increases is a consequence of the decrease of the average filter size.
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filters can also be characterized by low spatial and temporal

frequency.

The corresponding filters of the atypical parts (S, not shown) - as

in the static case- are homogeneous, localized in space and time

and uniformly tile the visual space. Furthermore, they show

Mexican hat like characteristics in the temporal dimension. The

regularity may be due to the particular concatenation method we

chose.

Sparse coding filters can also be derived from the overcomplete

sparse representation of the image sequences after RPCA

decomposition. As representations are temporally decorrelated,

we obtained filters strongly localized in space and time which

resemble to some extent to the receptive field dynamics of simple

cells of V1 [41]. A sample set of the obtained sparse coding filters

are shown on the right of Figure 5.

It is expected to get better match with experimentally found

filters if temporal correlations are introduced into the data model

by convolution [42,43] as opposed to simple concatenation and if

nonlinear response properties and nonlinear dynamic interactions

are included to handle time warping, for example. These studies

go beyond our present goals.

Discussion

While the resemblance to the biological system is appealing, the

original motivation behind applying RPCA was to find means to

facilitate the formation of overcomplete sparse representations, an

important feature of neural processing that significantly boosts

computational efficiency. As we previously argued, structural

sparsity is needed to control the underlying metabolic cost of the

formation of large, overcomplete sparse representations. In

principle this control could be realized in different ways. The

most straightforward solution would be weight thresholding by

zeroing out all filter components (synaptic weights) below an

arbitrary threshold value. However, this intuitive regularization

may cause more problems than it solves. First, it introduces error

for coordinates near zero, e.g. at zero crossing of the response

function of a simple cell. In addition, it does not support adaptivity

as it may eliminate gradual learning of less frequently represented

features. At last it strongly depends on the arbitrary threshold

parameter irrespective of the actual input.

Another approach would be to further increase overcomplete-

ness as it might implicitly reduce the number of required

Figure 4. Reconstruction quality as a function of the number of nonzero coding units and l�. Reconstruction quality is measured by
mean SNR: v10 log10

jxi j2
jei j2

wi , where i runs over the inputs. Since RPCA is an additive decomposition, the reconstruction error is given as
ei~xi{li{ŝsi . The total number of nonzero entries is given as the sum of the rank estimate of L and the preserved number of nonzero units (k) in the
sparse overcomplete representation of the atypical part (S) of the RPCA output. Since sparseness level is automatically set by SCE, the following
arbitrary values for k were chosen. For l�~0:0,0:3,0:5 k~16,32,64,80,96 and for l�~0:8, k~8,16,32,64,80.
doi:10.1371/journal.pcbi.1002372.g004

For each mean value a sample filter is shown demonstrating this shrinkage effect. (B) The dimension and the relative weight of L (the low dimensional
signal) in the reconstruction as a function of l� . Relevant range is where the dimensionality is low, yet L is able to capture most of the original signal.
For image size 16616 this range is about 0.3–0.8.
doi:10.1371/journal.pcbi.1002372.g003
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components (increased sparsity). However, this idea does not work

[44]: when tested on natural images, many filters still show global

structure.

We propose RPCA as a particular prefiltering stage prior to the

actual sparse coding which indeed facilitates structural sparsity and

preserves many useful properties of conventional PCA based

decorrelation without its noise sensitivity. Our model may thus

resolve the controversy between the hypothesis that PCA like

decorrelation should precede subsequent transformations and the

fact that the identified RFs cannot be generated by PCA.

Although the proposed RPCA based sparse coding mechanism

does not have a biologically feasible implementation yet, its

functional relevance may be supported by the following arguments.

The robustness of RPCA has been demonstrated [33] by

showing that RPCA yields meaningful representations for different

data sets even if the composite signal model cannot be validated

(e.g. separation of background (typical) and moving objects

(atypical, outstanding features) or separation of face and shadows

caused by anisotropic illumination). In particular, for natural

stimuli with characteristic ‘scale-free’ statistics (cf. ‘1/frequency’

relation) the conditions of the RPCA theorem are definitely not

met as the distinction between low-rank and sparse parts cannot be

clearly defined. It may imply that a step-wise incremental

separation would be better suited for the input statistics instead

of the single layer iterative arrangement of RPCA.

Another important finding is that the RPCA theorem of [33]

can be related to recent results on the problem of Exact Matrix

Completion [35], which claims that typical regularities of a composite

signal (represented by columns of L) can be completed even from a

small set of randomly sampled (or partially observed) coordinates of

the input. This ‘‘sampling advantage’’ would also improve energy

efficiency.

Figure 5. RPCA on concatenated image sequences. Left: The first 10 spatio-temporal filters of the low rank signal,L (rank r~69) are shown. Each
filter is shown as a sequence of 16 frames of size 868 pixels. It can be seen that there are spatio-temporally separable as well as non-separable filters.
All filters correspond to low frequency temporal or spatial changes Right: 10 selected spatio-temporal filters of the corresponding overcomplete
sparse codes that display different spatio-temporal localization and dynamics. While many filters are similar to the presented ones, more training
would be needed to achieve similar locality for the majority of filters at this input dimensionality (868616) and level of overcompleteness (166).
doi:10.1371/journal.pcbi.1002372.g005
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While our model is implicitly supported by the emerging filters,

alternative models are also claimed to explain early vision by

learning similar features. For this reason we briefly compare a few

competing sparse coding models with our proposal.

Receptive field properties of sparse coding models
The biological relevance of neural coding models is often judged

by the similarity between their filtering properties and the

receptive fields of the corresponding neurons. In the case of visual

stimuli, one of the criticisms against theory driven (functional)

models (e.g. Independent Component Analysis [4] or Sparse

Coding [5]) is the lack of diversity in the filter shapes [8]. This

failure might be due to the missing prefiltering stages as seen in the

visual pathway. However, nave use of different, biologically

motivated prefiltering methods does not seem to offer any

improvement, either. For example, applying DoG as high-pass

filtering is expected to enhance edge-like features thus yielding a

shift of the Gabor-patch shape parameters toward higher values,

but the structure of the shape distribution barely changes. Another

example is the use of PCA to filter out global features before SC

(or ICA), which yields wavy SC basis (Figure 1B). Furthermore,

not all filters in V1 have elongated bar shape and most models fail

to yield close to concentric shapes found experimentally (for a

discussion, see e.g. [39]). As the filter shape distribution on Figure 2

shows, when applied on natural images, RPCA preprocessing

together with SC delivers the required diversity including the close to

concentric shapes. It is worth noting there are other improved

coding models (in particular, [40] and [39]) that also claim

similarities between the observed and predicted shape distributions

of the fitted filters. Our model is similar in spirit to the functional

model of [40], whereas the other approach [39] describes a self-

organizing system governed by complex dynamics and feedfor-

ward inhibition. While the latter one is a promising approach, its

dynamics is quite involved and its parameter sensitivity is not

known. The other model of [40] is also a sparse coding model and

it uses greedy, iterative solutions as mentioned previously. It also

uses prefiltering similar to that one used in [5]. They claim the

obtained similarity is due to the particular sparsity constraint. For

the similar motivations let us remark some differences between the

model of [40] and the one proposed here. First, we believe their

approach may not be suited to handle large overcompleteness for

reasons discussed previously about greedy solutions. Second, the

reported difference between the signal to noise ratio of their

method and our model is likely due to two factors: we did not

employ prefiltering and the overcompleteness in our case is larger.

Less sparse codes can encode signals more faithfully then. A fair

comparison would be to see the quality of the reconstruction of the

high frequency components from sparse codes (A?S), but such

comparison would depend on both sparsity and overcompleteness.

In turn, an intriguing issue is the optimality of reconstruction

quality with respect to the energy consumption. Interestingly, as

Figure 6 demonstrates, the linear approximation of the filtering

properties of RPCA (seen as the amplitude spectrum of the

‘‘atypical’’ signal part of the RPCA output) looks quite similar to

what an ideal whitening filter would yield. This similarity may

have the following consequences. First, their result may be

attributed both to the particular form of the filter and to the

chosen form of sparse coding. Furthermore, it might be the case

that such prefiltering behaves as a fast approximation to RPCA.

Another difference to mention is that our two-stage model not only

provides oriented band pass filters, but it also yields DoG-like

filters at the RPCA pre-filtering stage thus providing a simulta-

neous explanation of two processing stages of early vision.

Interestingly, as Figure 6 demonstrates, linear approximation of

the filtering properties of RPCA (seen as the amplitude spectrum

of the ‘‘atypical’’ signal part of the RPCA output) looks quite

similar to what an ideal whitening filter would yield. This

similarity may have the following consequences. First, results of

[40] may be attributed both to the particular form of the filter and

to the chosen form of sparse coding. Furthermore, it might be the

case that such prefiltering behaves as a fast approximation to

RPCA.

Biological implementation of RPCA based sparse coding
The qualitative agreement between the filtering properties

of the early stages of vision and our two-stage algorithm may

allow us to attempt to map the algorithm onto the neural substrate

by linking the different computational functions to anatomical

areas.

An important property of our model is that prefiltering requires

a dual representation of the stimuli, which assumption is not in line

with the current thinking of hierarchical sensory processing (e.g.

[45,46]), which often comprises alternating filter and pooling

operations. So how can we reconcile the assumption on dual

representation with single stream models?

Since RPCA implies dynamic interaction between the two

emerging representations of the typical (global) and atypical (local)

features, decomposition requires either a recurrent network with

distinct sub-populations of neurons or two layers with feedforward

and feedback connections. As retina does not receive feedback

modulations from downstream layers, DoG like filtering of the

retinal ganglion cells is not a consequence of RPCA, but it may be

explained as a facilitating approximation – as we argued about

whitening above – before decomposition. LGN, on the other

hand, receives massive amount of feedback from V1. Having

learned the filters during early development, it can be assumed

that LGN neurons can represent a proxy to the atypical features of

single stimuli. This representation still contains information

about the typical features (since clear decomposition of natural

signals is unlikely, due to scale-free statistics). In turn, V1 has a

two-fold role in processing. It holds the approximation of the

global features extracted from the LGN output and it recodes or

re-represents the atypical features in an overcomplete sparse form.

A candidate for the first task could be a class of V1 interneurons

characterized by large, global receptive fields with weak or no

orientation selectivity (e.g. [47,48]). While it is possible to learn the

low-frequency typical parts of new stimulus sets, RFs do not need

to be continuously updated as they comprise the most typical

correlations of natural images (short term adaptation to quick

changes is still required). The second task of overcomplete

recoding is then realized by simple cells. This setting thus allows

for the alternating substraction of RPCA (Table 1) by the

interaction between inhibitory neurons and simple cells in V1

and the neurons in LGN.

In summary, this paper presents a novel two-stage algorithm for

efficient overcomplete sparse coding. The proposed robust

extraction of low-frequency or typical correlations as a prefiltering

step has a few remarkable properties that make the algorithm

plausible as an important model of neural information processing.

First, it supports the formation of overcomplete sparse codes by

effectively controlling the transformation matrices (the synaptic

weights) and reducing the number of active synapses. Second, the

inclusion of RPCA could significantly facilitate perception as it

allows the completion of the typical components even if a part of

the stimuli is missing (undersampling, occlusion, cf. exact matrix

completion). Since these properties may be beneficial for the

nervous system, it would be interesting to see if our algorithm

could be realized by biologically plausible neural computations.
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Methods

In this section we briefly present the algorithmic constituents of

the subspace cross entropy method used to make overcomplete

sparse codes. We also give a short algorithmic description of the

RPCA implementation used in the simulations. Finally, details of

the training data and the fitting methods are presented.

OSC Part I: Subspace Pursuit method, (SP)
Subspace Pursuit algorithms have been independently proposed

in [23] and [49]. These methods assume that at most k
components are sufficient to represent the input. The methods

enlarge the subset of candidate features (‘‘candidate subspace’’) by

k [23] (or 2k [49]) features and then decrease their number back

to k at every iteration. The method of [23] is as follows (the

pseudocode is given in Table 2).

First, a candidate representation is generated using all basis,

then a subset of basis is selected that corresponds to the k largest

components of the representation. This initial selection is then

iteratively refined: the residual (that is the difference between the

input and its current approximation) is calculated and mapped

onto the representation space using the entire basis set again. Then

– similar to the initial step – another k basis are selected based on

amplitude of the corresponding components of the mapped

residual. The original input is then projected again to the

representation space using a 2k element basis set formed by

fusing the two basis subsets. Finally k basis vectors are selected

again that correspond to the k largest components of the

projection (basis shrinkage). The iteration stops when the norm

of the residual is sufficiently small. SP has superior speed, scaling

and reconstruction accuracy over other iterative methods by

directly refining the subset of reconstructing (active) components at

each iteration. Its native shortcomings, though, are the heavy use of

the costly encoding transformation of the residuals at each

iteration and the preset number of active coding units.

OSC Part II: Cross-Entropy method, CEM
CEM is a global optimization technique [27] that finds the

solution in the following form:

y� : ~arg min
y

f (y):

where f is a general objective function.

While most optimization algorithms maintain a single candidate

solution y(t) at each time step, CEM maintains a distribution over

possible solutions. From this distribution, solution candidates are

drawn at random. By continuous modification of the sampling

distribution, random guess becomes a very efficient optimization

method.

One may start by drawing many samples from a fixed

distribution g and then selects the best samples as an estimation

Figure 6. A comparison of the amplitude spectra of the ‘‘atypical’’ output part of RPCA, the whitened input and the whitened ideal
input. This plot demonstrates that the particular whitening filter as used in [5,40] can be seen as a linear approximation of the filtering properties of
RPCA when only the atypical output is considered. The thick (red) line is the amplitude spectrum of the RPCA output. The dashed (blue) line with
square markers is the amplitude spectrum of the training images filtered with the whitening filter. The thin (green) line serves as a reference: this is
the amplitude spectrum of whitened ideal input which has an amplitude spectrum proportional to 1/frequency. Due to the limited input size, there is
a natural cutoff at higher frequencies. (Since the size of the images is 16616, the largest frequency is

ffiffiffi
2
p

:16=2.) The whitening filter: H(f )~fe{(f =f0)4

,
where the cutoff frequency is f0~8. The variances of the plots are due the artifacts caused by the rectangular sampling lattice. For comparison
purposes the plots are rescaled onto ½0,1�.
doi:10.1371/journal.pcbi.1002372.g006
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of the optimum. The efficiency of this random guess depends on

the distribution g from which the samples are drawn. After

drawing a number of samples from distribution g, we may not be

able to give an acceptable approximation of y�, but we may still

obtain a better sampling distribution. The basic idea of CEM is that it

selects the best few samples, and modifies g so that it becomes

more similar to the empirical distribution of the selected samples.

CEM resembles the estimation-of-distribution evolutionary meth-

ods (see e.g. [50]) and as a global optimization method, it provably

converges to the optimal solution [27,50].

For many parameterized distribution families, the parameters of

the minimum cross-entropy distribution can be computed easily

from simple statistics of the elite samples. For sparse representa-

tions the Bernoulli distribution is of particular interest [51]. This

particular choice may bring about bias towards solutions where

sparse components are drawn independently. Derivations as well

as a list of other discrete and continuous distributions with simple

update rules can be found in [52]. Let us note that we have also

translated CEM into an online variant in which parameter tuning

is realized by neurally plausible local learning [29]. This

translation then allowed us to propose a neurally plausible SC

method [28] in which spikes signal the presence of active

components, while rate codes encode the corresponding uncer-

tainty of the given component. Since CEM randomly generates

candidate sparse solutions hand, it uses a significantly less number

of costly encoding transformations. However it updates the

probability of all active components similarly, regardless their

individual contributions to the actual reconstruction error.

OSC Part III Subspace Cross-Entropy method, SCE
Subspace Cross-Entropy method (SCE) is an efficient combi-

nation of CEM and SP for overcomplete sparse coding. A detailed

description can be found in [16] and the pseudocode is given in

Table 3. SCE inherits the flexibility and synaptic efficiency of

CEM as well as the superior speed and scaling properties of SP

without their shortcomings. SCE can be realized by inserting an

intermediate control step in CEM to individually update the

component probabilities based on their contribution to the

reconstruction error. Hence the explicit refinement of the feature

set via SP is replaced by an implicit modification through

component probabilities.

Since the resulting algorithm is not a greedy method, the

algorithm is called as Subspace Cross Entropy (SCE) method

without the term ‘Pursuit’.

Table 2. The pseudocode of the Subspace Pursuit method.

input:

k~k=m, x[Rn % sparsity and signal

tSP % max iteration number

D[Rn|m % m column dictionary

initialization:

K~MaxIndk(DT x) % index set of maximal amplitude
elements with set size k

D~D½K� % sub-matrix belonging to index set K

r/x{DD{x % compute residual

optimization:

for t from 1 to tSP % iteration main loop

compute MaxIndk(DT r) % index set for expansion

K/K|MaxIndk(DT r) % increase set size to 2k)

e/D½K�{x % compute projections

K/MaxIndk(e) % new index set of size k

D/D½K� % inserting sub-matrix of index set K

rt/x{DD{x % compute residual

if rt~0 then quit % finish is residual is zero

ifErtE2§Ert{1E2then % check for improvement

t~tSP % no new iteration

KtSP ~Kt{1 % use previous index set

quit

end loop

output:

KtSP % indices of optimal representation

The goal is to represent the input with minimal reconstruction error using k

basis only [23]. SP differs from other iterative greedy methods in the
incremental refinement of the selected basis subset. First, a representation is
generated with the help of the full basis set (using pseudoinverse
computations). During iteration k basis are selected based on the amplitude of
the corresponding coordinates of the representation. The resulting residual
(difference between the original input and the approximation obtained by
projecting the representation onto the input space) is then again projected
back to the representation space and another set of k basis are chosen. The two
selected subsets are then fused (expansion) and the resulting expanded set is
used again to project the original input onto the representation space. Finally a
new set of k basis are selected by the amplitude of the corresponding
coordinates of the projection (shrinkage). Iteration stops when the norm of the
residual does not decrease anymore. Notation: D½K� denotes a sub-matrix of D

where index set K contains the indices of the selected columns. The index set
of the first k sorted components of a vector a[Rm is denoted by MaxIndk(a).
doi:10.1371/journal.pcbi.1002372.t002

Table 3. Pseudo-code of the subspace cross-entropy (SCE)
method for Bernoulli distributions.

required:

p~(p1, . . . ,pm) % initial distribution parameters

k % approximate number of non-zero
components

initialize : SP and CE

for �t from 1 to tSP % Main loop of Subspace Pursuit
iteration

for t from 0 to tCE{1, % Main loop of CE iteration

execute CE iteration

output : K % CE optimized index set

r/x{D½K�D½K�{x % compute next residual

ifErtE2§Ert{1E2 then quit % check for improvement

else :

stochastic update for CE using the residual

e/DT r % BU step of Subspace Pursuit

(i1, . . . ,ij . . . ,im)/MaxIndm½e� % ordered index set of e

p’ij /exp {j=kð Þ % auxiliary Bernoulli distribution

with &k number of 1 s on average

p0/pzErE2p0 % weigh by residual’s norm

to improve distribution

p/kp0=Ep0E1 % normalize for k to draw

k number of 1 s on average

end loop

For more details, see technical reports [29] and [16].
doi:10.1371/journal.pcbi.1002372.t003
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Robust Principal Component Analysis
An efficient implementation of RPCA algorithm rephrases the

optimization problem of (5) by means of the augmented

Lagrangian with the following objective function [33]

J(L,S,Y)~ELE�zlESE1zSY,X{L{STz
m

2
EX{L{SE2

F , ð8Þ

where Y denotes the current residual after subtracting L and S.

The efficiency stems from the fact that both minL J(L,S,Y) and

minS J(L,S,Y) subproblems have simple solutions. Let St : R?R

denote St½x�~sgn(x) max (jxj{t,0), which can be applied

componentwise on matrices. For matrices M, let Dt(M) denote

the singular value thresholding operator Dt(M)~USt(
P

)V�,
where M~U

P
V� is any singular value decomposition. The

corresponding pseudocode is given in Table 1.

Training data and fitting
The algorithms were trained on 16616, normalized (zero mean

and 1 std) patches extracted from a public database (http://www.

cis.hut.fi/projects/ica/data/images/). For the temporal studies,

inputs were generated by concatenating 16 normalized patches of

size 868 extracted from randomly selected parts of publicly

available videos (‘football(b)’, ‘garden’, ‘ice’, ‘tempete’, ‘crow-

d_run’, ‘sunflower’, ‘tractor’; http://media.xiph.org/video/derf/).

To speed up calculations, batch learning (50000 samples for static

stimuli and 25000 samples for the sequences) was applied to learn

the low dimensional subspace of RPCA in the preprocessing stage.

On the other hand, to learn the over-complete sparse basis (16-fold

over-completeness), 2:107 samples have been used. RPCA was run

in MATLAB. All other transformations were performed on a

cluster of 17 Sony PlayStation 3 consoles in Linux environment

using in-house C++ implementation of published algorithms of

SVD [53] and CE [27]. The obtained filters were matched with

Gabor filters [36,38] in order to characterize the spatial structures.

The Gabor filter parameters are as follows:

x’~(x{x0)cos(h)z(y{y0)sin(h) ð9Þ

y’~(x{x0)sin(h)z(y{y0)cos(h) ð10Þ

g(x,y)~exp({
x’2

nx

{
y’2

ny

)cos(2pf zw) ð11Þ

where x0 and y0 denote the center of the patch, h is the orientation

of the normal to the parallel stripes of the Gabor function, f is the

frequency and w is the phase of the cosine factor, nx and ny specify

the ellipticity of the Gaussian envelope. Fitting was done in

MATLAB using the nonlinear least squares optimization function

(nsqnonlin(.)) designed for large scale problems. For each

parameter value the optimization algorithm was run 20 times

with random initialization and the best solution was kept.
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