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ABSTRACT
Human noroviruses are the most common viral cause of acute gastroenteritis worldwide. Currently, 
there are no approved vaccines or specific therapeutics to treat the disease. Some obstacles 
delaying the development of a norovirus vaccine are: (i) the extreme diversity presented by 
noroviruses; (ii) our incomplete understanding of immunity to noroviruses; and (iii) the lack of 
a robust cell culture system or animal model for human noroviruses. Recent advances in in vitro 
cultivation of norovirus, novel approaches applied to viral genomics and immunity, and completion 
of vaccine trials and birth cohort studies have provided new information toward a better under-
standing of norovirus immunity. Here, we will discuss the complex relationship between norovirus 
diversity and correlates of protection for human noroviruses, and how this information could be 
used to guide the development of cross-protective vaccines.
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Introduction

Noroviruses are small, icosahedral, non-enveloped, 
positive-sense, single-stranded RNA viruses that 
infect different mammal species. The human noro-
virus genome is ~7.5 kb in length and is divided into 
three open reading frames (ORF1-3). Upon entry 
into susceptible cells, the ORF1 is immediately trans-
lated as a polyprotein that is processed co- and post- 
translationally by the viral protease to yield six non-
structural (NS) proteins required for viral replica-
tion: NS1/2 (N-term), NS3 (helicase), NS4 (3A-like), 
NS5 (VPg), NS6 (protease), and NS7 (RNA- 
dependent RNA polymerase, RdRp). ORF2, which 
encodes the major capsid protein VP1, and ORF3, 
which encodes the minor capsid protein VP2, are 
translated from the subgenomic RNA. The viral 
capsid presents a T = 3 icosahedral structure consist-
ing of 90 VP1 dimers, and an undetermined quantity 
of VP2 (Figure 1, panel A).1,2 Heterologous expres-
sion of VP1 leads to the self-assembly of virus-like 
particles (VLPs), which are structurally- and antige-
nically similar to the native virion, although viruses 
and VLPs with different sizes and symmetries have 
also been described.3–5 In the absence of a robust cell 
culture system for viral cultivation, VLPs have been 
instrumental in vaccine research.

Upon infection, the VP1 protein is the major 
target of B-cell-mediated immune responses, and 
thus is the primary focus of vaccine development.6,7 

The VP1 protein is structurally divided into the 
Shell (S) domain and the Protruding (P) domain 
(Figure 1, panel B).2 Since the S domain is highly 
conserved across different genotypes, most anti-
genic sites mapping on this domain are cross- 
reactive.8,9 Unfortunately, most data indicate that 
protective antibodies map to the variable 
P domain.10–14 The P domain is further divided 
into the P1 and P2 subdomains. The P1 subdomain 
is partially conserved, while the P2 subdomain con-
tains the highest sequence variability, including 
highly variable motifs that are involved in cellular 
attachment and antibody recognition (Figure 1, 
panel B).2 Both cross-reactive and neutralizing 
antibodies have been mapped to the P1 sub-
domain,12,15 opening opportunities to induce 
cross-protective responses.

Based on the genetic diversity of VP1, noro-
viruses are divided into 10 genogroups and almost 
50 genotypes.16 Human noroviruses are classified 
into at least five genogroups that differ by around 
40–60% in their amino acid sequences. Genogroups 
are further subdivided into genotypes that vary 
between 20% and 40% within each genogroup.17 
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Figure 1. Structure and variable antigenic sites of the human norovirus major capsid protein, VP1. (a) The norovirus capsid is composed 
of 90 dimers of VP1 arranged in a T = 3 icosahedral symmetry. (b) The VP1 protein is divided into the conserved Shell (S) and the 
variable Protruding (P) domains. The P domain is further divided into the P1 and P2 subdomains. The surface-exposed P2 subdomain is 
thought to dictate binding to the cellular attachment factors, histo-blood group antigen (HGBA) carbohydrates (highlighted in green), 
while the S domain forms the core of the viral particle.2 (c) The known variable antigenic sites (A, C, D, E, and G) located on the surface 
of the P2 subdomain of GII.4 norovirus are highlighted. The structural models were rendered using UCSF Chimera (version 1.11.2) and 
the following Protein Data Bank (PDB) files: 1IHM and 2ZLE (Norwalk virus, GI.1) and 2OBS (VA387 virus, GII.4 Grimsby variant). (d) 
Residues mapping on the variable antigenic sites of GII.4 noroviruses. Changes on these sites correlate with the emergence of GII.4 
variants. (e) Amino acid variation in the P domain of the VP1 protein and its correlation with GII.4 variant distribution was quantified 
with Shannon entropy (left) and adjusted Rand index (right). Dataset includes sequences collected from 1995 to 2016, as described in 
Tohma et al., 2019.70 Entropy values were calculated using the Shannon Entropy-One tool, as implemented in Los Alamos National 
Laboratory (www.hiv.lanl.gov) for six major GII.4 variants. The boxplot shows mean and standard deviation from each antigenic and 
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Although humans can be infected by different nor-
oviruses (>30 genotypes, mainly from Genogroups 
I and II), viruses from the GII.4 genotype are the 
major cause of large epidemics worldwide.18,19

Human noroviruses are the leading cause of viral 
gastroenteritis in the modern world, and are impli-
cated in upwards of 200,000 deaths worldwide, pri-
marily in children from developing countries.20,21 In 
healthy individuals, norovirus causes acute gastro-
enteritis (diarrhea and vomiting) that resolves within 
24–48 hours, with virus shedding typically lasting 
between 2 and 8 weeks in the stool.22 However, in 
vulnerable populations (like the elderly, malnour-
ished children, or immunocompromised indivi-
duals), the length and severity of disease is 
increased. Specifically, in immunocompromised 
individuals, gastroenteritis symptoms and viral shed-
ding can last months or years.23 In addition to the 
disease burden, norovirus presents a major impact 
on the global economy, with around 4.2 USD billion 
in direct health-care costs and an additional 60.3 
USD billion in indirect costs, i.e. loss of productivity 
due to absenteeism of work or morbidity.24

Based on the natural history of the disease, the 
general consensus is that a vaccine is the most 
effective option to mitigate the burden of norovirus 
disease. Although delayed by major obstacles (i.e. 
genetic diversity, lack of understanding of immu-
nity, and the absence of a robust cell culture system 
and animal models), steady progress has been made 
toward the development of a norovirus vaccine. In 
this review, we will examine the current knowledge 
on correlates of protection for human norovirus 
from the perspective of viral genetic and antigenic 
diversity, and how this information can be used to 
design potential cross-protective vaccines.

The correlates of protection for human 
noroviruses

A combination of both host genetic factors and 
immunological responses likely influences noro-
virus susceptibility, replication, and protection. 

One of the genetic factors contributing to norovirus 
susceptibility is the secretor status, which is asso-
ciated with the presence of histo-blood group anti-
gens (HBGAs) on the surface of epithelial cells. 
Although a definitive cellular receptor has not yet 
been identified for human noroviruses, HBGAs 
have been demonstrated to bind to the VP1 protein 
and facilitate attachment and/or entry into the cell 
(Figure 1, panel B).25–27

HBGAs are carbohydrates expressed on the sur-
face of most epithelial cells and are the determi-
nants of the ABO and Lewis blood group systems.28 

Biosynthesis of the different HBGAs is dependent 
upon multiple glycosyltransferase enzymes, which 
are responsible for the stepwise addition of mono-
saccharides onto a precursor carbohydrate mole-
cule. Two of these glycosyltransferases, the 
fucosyltransferase 1 and 2 (FUT1 and FUT2) 
enzymes catalyze the addition of a fucose moiety 
onto the disaccharide precursor via α1,2 linkage, 
producing the H antigen, which can be further 
modified.29 Mutations that inactivate the FUT2 
gene result in the secretor negative phenotype in 
humans, which has been shown to provide resis-
tance to infection by certain norovirus 
genotypes.26,30–33 Recently, stem-cell derived 
human intestinal enteroids (HIE) have been 
shown to be susceptible to some human norovirus 
strains.34 Using HIE, it has been shown that the 
expression of a functional FUT2 enzyme in the HIE 
was necessary for attachment and infection of GI.1 
and some GII genotypes,27 confirming the rele-
vance of genetic factors to norovirus susceptibility.

Due to the inherent ability of certain noro-
virus genotypes to bind to HBGA carbohydrates, 
a carbohydrate blockade assay has been devel-
oped in lieu of a cell culture-based neutralization 
assay. The carbohydrate blockade assay measures 
the ability of antibodies to block the binding of 
norovirus VLPs to the HBGA carbohydrates. 
Several studies have shown that high blockade 
antibody titers are correlated with disease 

non-antigenic site of major variants and all-in sequences that included a maximum of 50 randomly subsampled strain/variant to 
reduce sampling bias (n = 474). The dotted line indicates the mean of entropy values from non-antigenic sites in the subsampled all-in 
dataset. Adjusted Rand index, in which higher index values indicate a higher degree of correlation between variant distribution and the 
amino acid variation, was calculated with the subsampled all-in dataset using R and presented in a dot plot. Each circle represents the 
index from each antigenic and non-antigenic site.
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protection.35,36 Importantly, it has been recently 
shown that carbohydrate blockade assays and 
neutralization in HIE present similar patterns 
in antibody reactivity.11,37 As the HIE culture 
system exhibits evident disadvantages, such as 
limited scalability to high-throughput and/or 
the inability of certain noroviruses to replicate 
in the cells, the blockade assays are a good alter-
native to determining the antigenic relationships 
between strains and to study antibody-mediated 
protection.11,12,37,38

While some animal models have been devel-
oped for human noroviruses,14,39–41 they either 
do not recapitulate disease or replication has 
been shown for only a limited number of strains. 
Thus, human challenge studies have facilitated 
the study of norovirus immunity. Early studies 
have shown short-term protection (4–14 weeks 
post initial challenge) against the homologous 
virus,42,43 and the lack of cross-protection 
between heterologous viruses, today identified as 
GI and GII viruses.44 Protection from disease was 
associated with high levels of norovirus-specific 
antibodies before infection.42,43,45,46 A caveat of 
the early studies is that the viruses used for 
challenge were not titered,43 so an overwhelming 
infectious dose, which does not represent natural 
conditions, could have masked the effect of 
immunity mounted by previous infections.47

Challenge studies and analyses of natural infec-
tions have revealed that both serum and mucosal 
antibodies are involved in the immune response. 
An increase in norovirus-specific IgG and IgA has 
been reported after infection,48 with higher titers of 
preexisting salivary IgA being correlated with 
protection.33,45 Interestingly, when compared to 
norovirus-specific IgG antibodies, a higher propor-
tion of IgA antibodies blocked the binding of nor-
ovirus to carbohydrates and exhibited a more 
potent blockade titer.49 IgAs were also shown to 
be superior to IgG in terms of murine norovirus 
(MNV) neutralization in vitro and protective func-
tion in vivo.50 Simlarly, a higher percentage of 
serum IgA antibodies bound to the P domain, 
which contains neutralizing epitopes, compared to 
serum IgG, which equally recognized the P domain 
and the conserved S domain.50 Additional studies 
are warranted to determine the role of IgA in virus 

neutralization. In addition to serum and salivary 
IgA antibodies, fecal IgA also are induced after 
infection.33,45,51 Although preexisting levels of nor-
ovirus-specific fecal IgA were not correlated with 
protection, in individuals who developed gastroen-
teritis, fecal IgA levels were inversely correlated 
with peak viral load in the stool,45 suggesting 
a role in the control of viral replication. These 
studies underline both serum and mucosal immu-
nity as major players in the immune response 
against norovirus.

The impact of norovirus diversity on immunity

Although the genetic diversity of human noroviruses 
is well established, the antigenic diversity and its role 
in immunity, especially between genotypes, is less 
understood. A study that analyzed the cross- 
reactivity of hyperimmune sera produced from 26 
norovirus VLPs, representing around 18 genotypes, 
showed a variable range of cross-reactivity between 
the different genotypes via ELISA.52 However, the 
observed cross-reactivity is likely influenced by non- 
neutralizing antibodies targeting conserved regions of 
the VLPs, and thus may not truly represent the func-
tional antigenic relationships between the different 
genotypes. Preliminary neutralization experiments in 
HIE and analyses of natural reinfection cases over 
time suggest that some norovirus genotypes are anti-
genically distinct from each other.11,17,42,53–55 Despite 
all these studies, extensive analyses of the functional 
(blockade/neutralizing) antibodies between all human 
norovirus genotypes have not been performed.

Another confounding factor is that contrasting 
evidence on the duration of immunity has been 
documented. While challenge studies suggest 
a short duration of protection,42,43 mathematical 
modeling based on norovirus community transmis-
sion suggests that immunity may last up to 9 
years.56 Moreover, studies have shown that indivi-
duals can be infected with multiple genotypes over 
the course of their lifetimes.42,51,53–55,57,58 Whether 
these reinfection patterns are associated with short 
duration of immunity, genotype antigenic differ-
ences, biological properties of emerging viruses, or 
all of the above have not yet been fully determined.

Based on reinfection patterns recorded in long-
itudinal and birth cohort studies, and anecdotical 
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reports, human noroviruses were recently clustered 
into genetically similar groups called “immuno-
types,” where infection with a genotype precluded 
disease with genotypes within the same 
immunotype.17 This symptomatic reinfection pat-
tern suggests that multiple exposures over a lifetime 
could provide cross-protective immunity. Indeed, 
there are data supporting that the history of infection 
also influences the magnitude and breadth of the 
immune response. A rapid anamnestic response spe-
cific to the initial infecting genotype has been 
recorded in children and adults.42,51 Moreover, 
serum IgG and IgA collected from adults infected 
with norovirus were able to block the binding of 
VLPs from multiple genotypes to carbohydrates59,60 

and immunization with norovirus VLP-based vac-
cine candidates induces antibodies against heterolo-
gous strains,61,62 probably by recalling antibodies 
specific to prior infections.61 Whether cross- 
protective antibodies would develop in naïve indivi-
duals upon vaccination remains to be determined. 
Thus, there appears to be a multifaceted relationship 
between previous infections and cross-protective 
immune responses, and further studies are war-
ranted to determine whether these genetically related 
viruses share similar antigenic properties that could 
result in enhanced cross-protection.

One exception to this pattern of reinfection was 
repeated infections with GII.4 viruses, the genotype 
responsible for the majority of cases in humans.18,19 

GII.4 reinfections are likely due to the ever- 
changing nature of this genotype, which results in 
antigenically distinct variants emerging to cause 
outbreaks around the world every 2–8 years.18,19 

In contrast, non-GII.4 noroviruses appear to be 
“static” in nature, such that strains that are detected 
decades apart remain similar at the amino acid 
level.17 Although certain non-GII.4 noroviruses 
(GI.3, GII.1, GII.2, GII.6, GII.17, among others) 
can be subdivided into variants, individual viruses 
within each variant show limited diversification at 
the amino acid level.63 Thus, the evolving nature of 
GII.4 noroviruses needs to be especially considered 
in vaccine design.

The VP1 antigenic topology of GII.4 norovirus 
has been extensively characterized. Bioinformatics 
and experimental analyses (i.e. comparing blockade 
responses of human sera collected from GII.4 out-
breaks or hyperimmune sera produced in 

experimental animals against VLPs of representa-
tive GII.4 variants64,65) conducted over the past 
decade have identified five variable antigenic sites 
that are involved in the chronological emergence of 
new variants. The precise residues on VP1 involved 
in each of those variable antigenic sites have been 
mapped using human and animal monoclonal anti-
bodies (mAbs) (Figure 1, panel C). Thus, antigenic 
site A consists of residues 294–298, 368, 372, 373; 
antigenic site C of 339–341, 375–378; antigenic site 
D of 393–397; antigenic site E of 407, 411–414; and 
antigenic site G of 352, 355–357, 359, 364 (Figure 1, 
panel D).66–70 Most of these sites are on the loops 
and/or outer surface of the P2 subdomain where 
they can interact with neutralizing antibodies and 
attachment factors. Notably, although the overall 
structure of the capsid is mostly conserved between 
the different variants of GII.4, the length varies 
among genotypes. Thus, careful interpretation of 
these data should be considered when extrapolating 
GII.4 antigenic sites to other genotypes.

While the antigenic sites present low levels of 
intra-variant diversification, most amino acid 
changes occur at the inter-variant level, suggesting 
that changes on these residues are important in 
differentiating the GII.4 variants (Figure 1, panel 
E, left). Changes on these antigenic sites, particu-
larly antigenic sites A, C, and G, also correlate with 
the circulation patterns of GII.4 variants (Figure 1, 
panel E, right).70 Notably, while mutations in single 
antigenic sites can abolish mAbs binding,69,70 large- 
scale antigenic studies suggest that multiple sites 
are required for antigenic diversification of 
GII.4.38 Indeed, structural analyses identified 
mAbs with footprint spanning multiple antigenic 
sites, suggesting that the virus may need to change 
multiple sites to evade the host immune 
response.13,68,71

The identification and manipulation of immuno-
dominant epitopes are important factors in design-
ing a vaccine that is able to induce functional, 
protective antibodies against a foreign antigen.72 It 
was demonstrated that the emergence of the GII.4 
New Orleans/2009 variant was associated with 
changes in the immunodominant antigenic site A, 
whereby ~40% of blockade antibodies from human 
outbreak sera were directed against this site.69 

Similarly, using polyclonal guinea pig sera, our 
group showed that antigenic sites A and G from 

GUT MICROBES e1900994-5



the GII.4 Sydney/2012 variant were both important 
immunodominant blockade sites.70 Whether these 
immunodominant sites can induce cross-protective 
antibodies against multiple strains or if these anti-
bodies are variant-specific remains to be determined. 
For example, as antigenic site G is more conserved 
compared to the other major antigenic sites/motifs, 
antibodies targeting site G could potentially provide 
protection against multiple GII.4 variants. These 
immunodominant sites may potentially mask pro-
tective epitopes from the immune response as seen 
in other viruses (e.g. influenza and HIV).73–75

Some studies have predicted additional epitopes 
that are dependent upon capsid conformation and 
assembly. Noroviruses, among other viruses, are 
thought to be dynamic in their structure, i.e. the 
capsid exists in multiple states. This phenomenon is 
termed “viral breathing” and is thought to regulate 
antibody access to epitopes,76 such as the conserved 
antigenic site F (residues 327 and 404).77,78 In addi-
tion, although initial structural studies have deter-
mined that the norovirus capsid arranges with 
a T = 3 icosahedral symmetry, GII.4 norovirus 
can also assemble into larger particles with T = 4 
icosahedral symmetry. These T = 4 particles are 
made up of 240 copies of VP1 that adopt different 
conformations that may present unique epitopes.4,5 

Interestingly, the formation of T = 4 particles seems 
restricted to VLPs produced with the baculovirus 
expression system, as images of native GII.4 virions 

reveal the presence of particles of the expected size 
(~30 nm), as well as smaller particles (~18 nm) that 
are likely T = 1.34 Thus, the role of VLPs with T = 4 
icosahedral symmetry for vaccine design should be 
further explored.

In contrast to GII.4, the evolution and antigeni-
city of non-GII.4 noroviruses are less understood. 
Our group recently showed that hyperimmune gui-
nea pig sera produced against various norovirus 
genotypes exhibited specific blockade and neutra-
lizing titers against homologous genotypes but not 
against heterologous genotypes,11 suggesting that 
a cross-protective vaccine would likely need multi-
ple components. Vaccine design may also be com-
plicated by the fact that, similar to GII.4, certain 
non-GII.4 genotypes (GII.17, GII.6, etc.) can be 
subdivided into variants.17 Furthermore, although 
GII.4 is responsible for the majority of outbreaks, 
non-GII.4 noroviruses can also emerge and predo-
minant in the population. In the winter season of 
2014–2015, GII.17 unexpectedly overtook GII.4 to 
become the predominant genotype in several parts 
of East Asia.79,80 The epidemic GII.17 noroviruses 
were shown to be antigenically distinct from pre-
vious strains via carbohydrate blockade assays 
using human and hyperimmune mouse sera.81 

Similarly, GII.2 emerged and predominated in sev-
eral countries in the winter of 2016–2017.82–84 

Thus, an ideal vaccine would need to protect 
against multiple genotypes.

Table 1. Current and prospective human norovirus vaccines.

Vaccine Candidate
Affiliation/ 

Investigators
Current 
Stage Antigen Adjuvant (if any)

Route of 
Administration Citation

VLP-based, bivalent Takeda 
Pharmaceuticals

Phase 2b GI.1, GII.4c* Monophosphoryl 
Lipid A (MPL) + 
Alum

intramuscular [62], [87]

Recombinant adenovirus vector 
expressing VP1, bivalent

Vaxart, Inc. Phase 1b GI.1, GII.4 dsRNA hairpin 
(TLR3 agonist)

oral [88], [89]

Norovirus VLP and recombinant 
rotavirus combination, trivalent

Tamminen et al. preclinical GI.3, GII.4, recombinant 
rotavirus VP6

rVP6** intramuscular [80], [91]

VLP-based, monovalent Santi et al. preclinical GI.1 produced in Tobacco 
Mosaic virus expression 
system

Cholera toxin (CT) oral [93]

Recombinant adenovirus vector 
expressing VP1, monovalent

Guo et al. preclinical GII.4 n/a intranasal [94]

Recombinant vesicular stomatitis 
virus vector expressing VP1, 
monovalent

Ma et al. preclinical GII.4 n/a intranasal and 
oral

[95]

P-particles, monovalent or as a carrier 
linked to rotavirus VP8

Su et al.; Tan et al. preclinical GII.4 P-particle expressed in E. 
coli or yeast, alone or with 
rotavirus VP8

Freund’s adjuvant subcutaneous [96], [97]

*GII.4c = GII.4 consensus VLP derived from three variants 
** rVP6 = recombinant rotavirus VP6 protein 
n/a = not applicable
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Unlike GII.4 noroviruses, the antigenic sites of 
non-GII.4 genotypes have not been well defined. 
Exchanging the amino acid residues 393–396 from 
the GII.17/2015 outbreak strain to an archival 
GII.17/1978 strain altered the blockade activity of 
monoclonal and polyclonal antibodies, suggesting 
that these residues may be involved in defining the 
antigenicity of these GII.17 strains.85 In contrast, 
the antigenicity of GII.2 variants across decades 
(1976–2010) appears to be similar, as sera collected 
from humans challenged with GII.2 SMV/1976 
were able to block contemporary GII.2 VLPs, 
although to a lesser extent compared to the homo-
typic VLP.86 Interestingly, mAbs produced against 
GII.2 SMV/1976 exhibited blockade titers against 
a panel of GII.2 strains spanning decades.86 Thus, 
certain genotypes (e.g. GII.2) appear to be more 
stable in their antigenic evolution over time.

Current and prospective vaccines

As previously discussed, the extreme diversity of human 
noroviruses is one of the major hurdles in the develop-
ment of cross-protective vaccines. Based on data gathered 
from challenge studies,14,44 current norovirus vaccine can-
didates are bivalent in formulation, consisting of a GI and 
a GII component. Two candidates are currently in clinical 
trials: (i) a VLP-based vaccine administered via the intra-
muscular route (developed by Takeda Pharmaceuticals) 
and (ii) an oral vaccine adenovirus vector expressing the 
VP1 gene (developed by Vaxart, Inc.). Takeda’s VLP- 
based vaccine candidate was well tolerated in healthy 
volunteers and induced humoral and mucosal immunity 
against both antigens, a GI.1 VLP and a consensus GII.4 
VLP derived from three different GII.4 variants.62,87 

Vaxart recently announced the results of a Phase 1b 
clinical trial to test the safety and immunogenicity of the 
vector-based, bivalent (GI.1 + GII.4) vaccine 
formulation.88 The bivalent vaccine was well tolerated 
and induced robust IgA responses in the majority of 
vaccinees with no observed interference. Vaccination 
with monovalent vectors expressing GI.1 or GII.4 VP1 
were also well tolerated and resulted in an increase in 
antibody titers against the antigens.88,89

In addition to the vaccine candidates in clinical 
trials, several investigational vaccines are currently 
being tested in preclinical studies. Many of these 
clinical and pre-clinical vaccine candidates have 

been reviewed (see ref.47) and are summarized in 
Table 1. Briefly, a trivalent combination vaccine con-
sisting of a GI.3 VLP, a GII.4 VLP, and 
a recombinant VP6 protein from rotavirus induced 
moderate levels of serum IgG and blockade antibo-
dies in immunized mice against homologous and 
heterologous norovirus and rotavirus strains.90,91 

The foundation of this particular vaccine is the 
recombinant VP6 rotavirus protein, which forms 
a tubular-like capsule and acts as an adjuvant to the 
norovirus VLPs.91 Although norovirus VLPs are 
often produced using the baculovirus expression 
system,62,92 expression of the VP1 protein in a plant- 
based tobacco mosaic virus system also results in 
production of immunogenic VLPs.93 A second ade-
novirus-vectored vaccine candidate expressing the 
VP1 of a single GII.4 strain induced mucosal immu-
nity and a balanced cellular Th1/Th2 response in 
experimental animals.94 In addition to adenovirus, 
Vesicular Stomatitis virus (VSV) is also used as 
a vector for expression of norovirus VP1. 
Immunization of mice with a single dose of recom-
binant (r) VSV-VP1 resulted in strong serum and 
mucosal responses, as well as the induction of nor-
ovirus-specific T-cells in some animals.95 Finally, 
another vaccination strategy relies on the singular 
expression of the P domain of VP1; this results in the 
formation of highly immunogenic P-particles that 
are antigenically similar to whole VLPs and that 
can be used as an alternative to VLP vaccination.96 

A study on GII.4 P particles showed that hyperim-
mune sera in immunized animals was able to block 
the binding of the GII.4 VLP to carbohydrates, sug-
gesting that the antibodies have potentially neutra-
lizing activity.97 Thus, many potential vaccine 
candidates utilizing a variety of approaches for 
human norovirus are being explored. However, it 
remains to be seen whether the vaccines induce 
broad protection against the other genotypes, some 
of which recently have emerged to cause large out-
breaks in different countries (i.e. GII.17, GII.2) or in 
vulnerable populations (i.e. children, the elderly).

Overcoming diversity to develop 
cross-protective vaccines

One of the goals in vaccine development is the induc-
tion of cross-protective antibodies. Studies of the 
human antibody repertoire following vaccination 
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with the bivalent VLP vaccine candidate revealed 
three classes of antibodies: (i) antibodies that bound 
a wide array of genotypes but did not exhibit blockade 
activity, (ii) antibodies that exhibited binding and 
blockade activity specifically against the GII.4  con-
sensus VLP and historical GII.4 strains, and (iii) 
a single mAb – A1431 – that recognized and 
blocked/neutralized all tested GII.4 strains, including 
forthcoming variants.12 A1431 was mapped to the 
cleft between the P1 and P2 subdomains of VP1, 
which consists of amino acids that are highly con-
served within the multiple GII.4 variants. As this site 
did not overlap with the HBGA binding sites, the 
mechanism of blockade/neutralization is likely due 
to steric hindrance.12 Likewise, mouse mAb 5B18 
was mapped to a conserved region of the P1 subdo-
main located near the P1/Shell interface.15,98 

Interestingly, the antibody-binding site was buried 
within the P1 domain and was only transiently 
exposed to the surface, perhaps due to the “viral 
breathing” phenomenon or VLP disassembly. 
Antibodies against such hidden sites may be involved 
in cross-protective immunity, and further research is 
warranted to understand how to elicit responses 
against such hidden epitopes.

Although blockade/neutralizing antibodies are 
thought to play a major role in protection, the poten-
tial role of non-neutralizing, cross-protective antibo-
dies in immunity should not be disregarded. Non- 
neutralizing IgA antibodies against influenza A virus 
were recently shown to inhibit the release of multiple 
influenza A strains from infected cells.99 Similarly, 
administration of cross-reactive, non-neutralizing 
antibodies protected mice from lethal influenza 
B virus challenge.100 In contrast, IgG1 antibodies 
against influenza virus were shown to inhibit the 
cross-protective effect of IgG2 antibodies after vacci-
nation in mice, suggesting that antibody isotypes play 
a major role in pathogen control.101 Other mechan-
isms by which non-neutralizing antibodies enhance or 
antagonize the immune response have been 
reviewed.102 Vaccine design should focus on targeting 
conserved, protective epitopes and inducing the 
proper Ig subtype, perhaps by manipulating the pre-
sentation of the antigen and/or by selecting adjuvants 
that will enhance the antibody repertoire as shown for 
influenza and human papilloma virus.103,104

In conclusion, the large diversity of human noro-
viruses presents a problem that must be overcome to 

develop a cross-protective vaccine. Historically, the 
lack of a robust cell culture system and suitable 
small animal model contributed to the difficulties in 
the study of human norovirus antigenicity and corre-
lates of immune protection. Recently, several 
advances have been made, including the advent of 
a cell culture system that is susceptible to certain 
norovirus strains34 and the conclusion of early-phase 
vaccine trials,87,89 helping us to better understand the 
role of norovirus diversification in immunity. Future 
research that focuses on the synergy of duration of 
immunity, genotype antigenic differences, B- and 
T-cell immunodominance, and acquisition of biolo-
gical properties that enhance replication and trans-
mission will facilitate the development of effective 
control strategies against noroviruses.
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