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Abstract

New non-destructive tools are needed to reliably assess lymphocyte function for immune
profiling and adoptive cell therapy. Optical metabolic imaging (OMI) is a label-free method that
measures the autofluorescence intensity and lifetime of metabolic cofactors NAD(P)H and FAD
to quantify metabolism at a single-cell level. Here, we investigate whether OMI can resolve
metabolic changes between human quiescent versus IL4/CD40 activated B cells and
IL12/IL15/IL18 activated memory-like NK cells. We found that quiescent B and NK cells were
more oxidized compared to activated cells. Additionally, the NAD(P)H mean fluorescence
lifetime decreased and the fraction of unbound NAD(P)H increased in the activated B and NK
cells compared to quiescent cells. Machine learning classified B cells and NK cells according to
activation state (CD69+) based on OMI parameters with up to 93.4% and 92.6% accuracy,
respectively. Leveraging our previously published OMI data from activated and quiescent T
cells, we found that the NAD(P)H mean fluorescence lifetime increased in NK cells compared to
T cells, and further increased in B cells compared to NK cells. Random forest models based on
OMI classified lymphocytes according to subtype (B, NK, T cell) with 97.8% accuracy, and
according to activation state (quiescent or activated) and subtype (B, NK, T cell) with 90.0%
accuracy. Our results show that autofluorescence lifetime imaging can accurately assess
lymphocyte activation and subtype in a label-free, non-destructive manner.
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Label-free optical imaging can assess the metabolic state of lymphocytes on a single-cell level in
a touch-free system.

1 Introduction

Lymphocytes consist of natural killer (NK) cells, B cells, and T cells, and constitute
approximately 20-40% of circulating white blood cells (/). T cells cause antigen-specific
cytotoxicity and immune-modulating activities after activation, and have been used clinically to
treat cancer, viral infections, autoimmune disease, graft-versus-host-disease, and transplant
rejection (2). NK cells show antigen-independent cytotoxicity and immune-modulating activities
after activation, but rely on a balance of activating and inhibitory signals to initiate cytotoxicity
(3). Similar to T cells, NK cells are emerging in early phase trials as a viable adoptive cell
therapy for cancer (4), particularly with cytokine induced memory-like NK cells (5). B cells, like
T cells, are a part of the adaptive immune system, but their primary role is the production of
antibodies (6, 7). B cells are also antigen-presenting cells that can present peptides to T cells to
promote their effector functions (7, §). Subtypes of B cells also secrete cytokines that can either
attenuate or suppress the function of surrounding immune cells (§). The multiple functions of B
cells provide several avenues for leveraging B cells as a platform for cell-based therapies,
including antigen-presenting B cells as a cancer immunotherapy and protein production for rare
genetic diseases (6, 9). Immune profiling of activation of NK, B, and T cells to a stimulus (such
as an antigen from a virus or bacterium) can be used to identify the potency of a cell therapy and
potentially predict outcome (/0—12), but current methods are destructive of blood or tissue and
require labor-intensive techniques that take hours to days to complete and interpret. New label-
free and non-destructive tools are needed to assess lymphocyte activation and subtype in single
cells in a more rapid manner.

Single cell measurements capture lymphocyte heterogeneity within a patient, which significantly
impacts prognosis (/3—15). Non-destructive tools enable subsequent analysis and long-term
study of cells, while label-free tools enable subsequent expansion and use of cells in patients, for
example in adoptive cell therapy (2, 16). Current methods to assess lymphocytes include flow
cytometry, cytokine release, single-cell RNA sequencing, and cytometry by time of flight
(CyTOF). Flow cytometry provides single-cell resolution, but requires labelling with fluorescent
antibodies that can be time consuming, may be disruptive to cells, and complicates further use of
cells (/7). Bulk measurements of cytokine release are also popular but do not routinely provide
single-cell measurements, and ELISPOT, which provides single-cell cytokine release
information also requires cell labeling (/7). Additionally, cytokine-based techniques cannot
provide information about subsets of immune cells that do not secrete cytokines. Finally, single-
cell RNA sequencing and CyTOF provide extensive single-cell information, but destroy the
sample (11, 18).

Optical metabolic imaging (OMI) is an attractive label-free tool to assess the metabolic state of
single cells (/9—23). OMI measures the autofluorescence intensity and lifetime of metabolic
cofactors reduced nicotinamide adenine dinucleotide (phosphate) [NAD(P)H] and flavin adenine
dinucleotide (FAD) (24-26). The fluorescence of NADPH and NADH overlap, and are jointly
referred to as NAD(P)H (25). Since only the reduced form of NADPH and NADH and the
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80 oxidized form of FAD are fluorescent, the fluorescence intensity ratio of NAD(P)H to FAD is

81  defined as the “optical redox ratio”, which provides information about the overall redox state of
82  the cell (20, 27). NAD(P)H and FAD each have two distinct fluorescence lifetimes due to their
83  unbound and protein-bound states, so fluorescence lifetime imaging (FLIM) provides insight into
84  changes in unbound and protein-bound pools for each co-enzyme, along with changes in

85 lifetimes due to environmental factors and preferred binding partners (28—30). OMI relies on

86  endogenous fluorophores already present in cells, so it is minimally invasive and can provide

87  nondestructive monitoring of cellular metabolism (28). Cell segmentation algorithms developed
88  with OMI enable single-cell resolution, which provides insight into metabolic heterogeneity

89  within the population (317).

90 OMI is a promising technique to evaluate lymphocyte activation and subtype because known
91  metabolic shifts occur with activation and between NK, B, and T cells. Unstimulated NK, B, and
92 T cells have low metabolic demands and largely rely on low levels of glycolysis and oxidative
93  phosphorylation to generate ATP (32-35). Once activated, extra energy is needed to fuel the
94  effector functions of lymphocytes. In order to fuel rapid proliferation and produce cytokines and
95  other molecules, activated lymphocytes increase use of glucose through aerobic glycolysis and
96  oxidative phosphorylation (33, 34, 36). Overnight stimulation with activating cytokines
97  (including IL-2, IL-12, and IL-15) increases rates of glycolysis and oxidative phosphorylation in
98 NK cells (34, 37, 38). Similar increases in glycolytic metabolism and oxidative phosphorylation
99  occur with activation in B and T cells (33, 36). While these three cell types share a close lineage,
100  the metabolism of NK, B, and T cells are unique. In a study of splenic mouse T and B cells,
101 resting T cells were found to have higher glucose uptake and lactate generation compared to
102 resting B cells, with B cells showing higher mitochondrial mass than T cells (39). In T effector
103 cells, fatty acid synthesis is necessary for differentiation and proliferation, but inhibition of this
104  pathway in NK cells does not substantially impact their proliferation (40, 41).

105  Our previous work showed that OMI can classify primary human CD3" and CD3"CDS8" T cells
106  based on activation status. OMI has also been used to classify subsets of macrophages in

107  monoculture, tumor coculture, and in vivo in zebrafish, and to distinguish between categories of
108  blood cells (i.e. erythrocytes, monocytes, granulocytes, lymphocytes) (42—44). Prior work also
109  shown that NADH autofluorescence intensity increases in activated B cells compared to

110  unstimulated B cells (45). These results demonstrate that OMI is promising for lymphocyte
111 profiling, but to our knowledge, no studies to date have built classifiers based on OMI for NK
112 cell activation, B cell activation, or lymphocyte subtype. Given the relevance of NK cells, B
113 cells, and T cells for adoptive cell therapy, this study investigates whether OMI can classify
114  activation in NK cells and B cells, classify lymphocyte subtype (NK, B, T cells), and provide a
115  six-group classifier for activation and lymphocyte subtype. These studies indicate that machine
116  learning classifiers and label-free non-invasive OMI provide high accuracy for single cell

117  classification of activation and lymphocyte subtype from primary human peripheral blood

118  samples.

119

120 2 Results
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121 2.1 OMI resolves metabolic differences between quiescent and activated human B cells

122 A graphical overview of the experimental design is provided (Fig. 1A). Isolated human B cells
123 were activated using anti-CD40 antibody and IL-4 to mimic T cell mediated activation (46).

124 After 72 hours of in vitro activation, media was collected for cytokine, glucose, and lactate

125  assays, then cells were stained with anti-CD69 to identify activated and quiescent cells in each
126  condition for subsequent OMI. To confirm that our protocol successfully activated B cells, the
127  concentration of IL-6 in the media was measured at 72 hours and found to be significantly

128  increased in the activated compared to the control condition (Fig. 1B). Similarly, analysis of
129  glucose and lactate levels at 72 hours show decreased glucose and increased lactate in the media
130  of activated compared to control B cells (Fig. 1C-D), confirming known metabolic changes with
131 B cell activation (35, 36). Representative images from OMI (Fig. 1E) include NAD(P)H mean
132 fluorescence lifetime (tm), FAD tm, optical redox ratio, and CD69 fluorescence images in

133 pseudocolor. Qualitatively, most B cells in the activated condition stain positive for CD69.

134  The optical redox ratio (NAD(P)H intensity divided by the sum of NAD(P)H and FAD intensity)
135  was elevated in CD69" B cells in the activated condition compared to CD69™ B cells in the

136  control condition (Fig. 1F). Additionally, NAD(P)H tm decreased and NAD(P)H au (the fraction
137  of free, unbound NAD(P)H) increased in CD69" activated B cells compared to the CD69" control
138 cells (Fig. 1G, 1H). FAD 1t also decreased in the CD69" activated cells compared to the CD69
139  control cells (Fig. 1I).

140  When comparing CD69" and CD69" cells within the unstimulated or activated conditions, the

141 CD69" and CD69 B cells in the unstimulated condition did not show any significant differences
142 in OMI parameters. However, in the activated condition, CD69" cells were significantly different
143 compared to CD69" cells for all OMI parameters besides the optical redox ratio (Supp. Fig. 1).

144 2.2 Single cell clustering and machine learning models based on OMI separate B cells by
145 activation state

146 Next, we investigated whether OMI could visualize single cell heterogeneity in B cells and

147  whether machine learning models based on OMI could classify B cell activation state.

148  Unsupervised clustering of 9 OMI parameters from single cells in the CD69" activated condition
149  and CD69 control condition revealed that the CD69" activated cells cluster separately from the
150 CD69 control cells across all three donors (Fig. 2A). Uniform manifold approximation and

151  projection (UMAP) was used to visualize the clustering of single B cells based on the same OMI
152  parameters, which similarly revealed distinct clusters of CD69" activated and CD69" control cells
153  (Fig. 2B). Additional UMAPs colored by donor, condition (control, stimulated), and CD69 status
154  are provided (Supp. Fig. 2A-B).

155  Next, a random forest classifier based on OMI parameters for each B cell was trained on 70% of
156  the cells and tested on the remaining 30% of cells to identify activated (CD69+ in activated

157  condition) or quiescent (CD69- in unstimulated condition) B cells. The OMI parameters with the
158  greatest weight in the classification of CD69" and CD69" B cells were NAD(P)H a1 (41.72%),
159  NAD(P)H tm (23.31%), unbound FAD fluorescence lifetime (12) (7.96%), and unbound

160 NAD(P)H fluorescence lifetime (1) (7.68%) (Fig. 2C). The resulting classifier has an accuracy

4
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161 0f93.4% (Supp. Fig. 2C, Supp. Table 1), with a receiver operating characteristic (ROC) area
162  under the curve (AUC) of 0.98 (Fig. 2D). Logistic regression and support vector machine (SVM)
163  classification performed similarly to the random forest classifier (Supp. Fig. 2C-F).

164  Classification based on the NAD(P)H and FAD phasors at both the laser repetition frequency

165 (80MHz) and its second harmonic (160MHz) predicted B cell activation with 93.9% accuracy
166  (Supp. Fig. 9A-B).

167 2.3 OMI resolves metabolic differences between quiescent and activated human NK cells

168 A graphical overview of the NK experiment is provided (Fig. 3A). Isolated primary human NK
169  cells were activated in vitro for 24 hours using IL-12, IL-15, and IL-18 as previously described
170  for inducing memory-like NK cells (5). After 24 hours of in vitro activation, media was collected
171 for cytokine, glucose, and lactate assays, then cells were stained with anti-CD69 to identify

172 activated and quiescent cells in each condition for subsequent OMI. To confirm NK cell

173 activation, the concentration of IFN-y in the media was measured at 24 hours and found to

174  significantly increase in activated compared to control NK cells (Fig. 3B). Similarly, analysis of
175  glucose and lactate levels at 24 hours show decreased glucose and increased lactate in the media
176  of activated compared to control NK cells (Fig. 3C-D), confirming known metabolic changes
177  with NK cell activation (34, 37, 38). Representative images of NAD(P)H tm, FAD tm, optical
178  redox ratio, and CD69 expression are presented in pseudocolor (Fig. 3E). Qualitatively, most
179  NK cells in the activated condition express CD69.

180  OMI of NK cells revealed several changes in CD69" NK cells under activating conditions

181  compared to CD69" cells under control conditions. The optical redox ratio significantly increased
182  in CD69" activated NK cells compared to CD69" control NK cells (Fig. 3F). NAD(P)H tm

183  decreased, and NAD(P)H a1 and FAD tm increased in activated NK cells compared to quiescent
184  control NK cells (Fig. 3G-I).

185  OMI parameters were compared across both CD69" and CD69” NK cells under activating and
186  control conditions. Most OMI parameters did not change with CD69 status within activating or
187  control conditions, except the optical redox ratio and NAD(P)H 1 (Supp. Fig. 3).

188 2.4 Single cell clustering and machine learning models based on OMI separate NK cells
189 by activation state

190  Next, we investigated whether OMI could visualize single cell heterogeneity in NK cells and

191  whether machine learning models based on OMI can classify NK cell activation state.

192  Unsupervised clustering of 9 OMI parameters from single cells in the CD69" activated condition
193  and CD69 control condition revealed that NK cells were somewhat heterogeneous, resulting in
194  the emergence of a dominant cluster with several smaller clusters of activated and quiescent cells
195  (Fig. 4A). A UMAP was used to visualize the clustering of single NK cells based on the same
196  OMI parameters, which demonstrated a cluster of CD69+ NK cells away from a cluster of a

197 mixed CD69- and CD69+ NK cell population (Fig. 4B). Further color-coding by donor reveals
198  that NK cells from all three donors overlap in these clusters (Supp. Fig. 4B).
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199 A random forest classifier based on single-cell OMI parameters was trained and tested on 70%
200 and 30%, respectively, of the NK cells to identify activated (CD69+ in activating conditions) or
201 quiescent (CD69- in unstimulated conditions) states. The highest weighted OMI parameters were
202 the control-normalized optical redox ratio (20.45%), NAD(P)H au (20.15%), protein-bound

203  NAD(P)H fluorescence lifetime (t2) (17.45%), and unbound NAD(P)H fluorescence lifetime (t1)
204 (13.35%) (Fig. 4C). The resulting classifier had an accuracy of 92.6% (Supp. Fig. 4C, Supp.
205  Table 1), and the AUC of the ROC curve was 0.96 (Fig. 4D). Logistic regression and SVM

206  classification had a slightly lower performance than random forest classification, with AUC of
207  the ROC curves of 0.95 and 0.94, respectively (Supp. Fig. 4C-F). Classification based on the
208  NAD(P)H and FAD phasors at both the laser repetition frequency (80MHz) and its second

209  harmonic (160MHz) predicted NK cell activation with 89.2% accuracy (Supp. Fig. 9C-D).

210 2.5 OMI quantifies lymphocyte heterogeneity and classifies lymphocyte subtype and
211 activation state

212 We then investigated whether OMI parameters could distinguish activation and/or lymphocyte
213 subtype across a dataset containing multiple subtypes of lymphocytes. We combined the NK cell
214  and B cell data with our previously published T cell data (quiescent and activated for 48 h with
215 CD2/3/28) (47) and plotted several key OMI parameters, including the control-normalized

216  optical redox ratio, NAD(P)H tm, and NAD(P)H ou (Fig. SA). Across all three lymphocyte

217  subtypes, these variables exhibited similar changes with activation: NAD(P)H tm decreased with
218  activation, while NAD(P)H a1 and the optical redox ratio increased with activation. These

219  changes with activation were statistically significant in all cases. In addition to activation-

220  associated shifts in OMI parameters, there were also statistically significant differences between
221 quiescent T, B, and NK cells (Fig. 5A).

222 We next used the combined data set of T, B, and NK cells to visualize heterogeneity between
223 each group. Unsupervised clustering was performed across 9 OMI parameters using averages
224 from CD69" activated and CD69" control lymphocytes across activation state (CD69+, CD69-),
225  donor, and lymphocyte subtype (B, NK, T cell) (Fig. 5B). This revealed distinct clusters of
226 CD69- and CD69+ T cell and B cell groups. Within the NK cells, clustering was mixed across
227  CD69- and CD69+ status and donors. A UMAP was also used to further visualize clustering,
228  with T cells forming a distinct cluster from B cells and NK cells (Fig. 5C).

229 A UMAP reveals that CD69+ lymphocytes clustered somewhat separately from CD69-

230  lymphocytes (Supp. Fig. 5A). Therefore, we investigated whether machine learning models

231  could classify activation within the combined lymphocyte data. First, random forest

232 classification was used to identify whether cells were activated (CD69+) or quiescent (CD69-).
233 Using all 9 OMI parameters, an ROC AUC of 0.97 (Fig. 5D) and accuracy of 92.2% (Supp. Fig.
234 5B, Supp. Table 1) was achieved. The top feature weights were NAD(P)H o (27.10%),

235  NAD(P)H 11 (14.61%), control-normalized optical redox ratio (14.35%), and NAD(P)H 12

236 (12.60%) (Supp. Fig. 5C). Classification based on NAD(P)H lifetime variables (tm, T1, T2, 0t1)
237  alone also had a high ROC AUC of 0.96 (Fig. 5D) and performance (accuracy = 90.3%) (Supp.
238  Fig. 5B, Supp. Table 1). Logistic regression and support vector machine classification
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239  performance were somewhat diminished from the random forest classification performance, with
240  accuracies of 84.8% and 81.5% respectively (Supp. Fig. 5D-G).

241 Similarly, a UMAP reveals that T cells, B cells, and NK cells clustered separately (Supp. Fig.
242 6A). Therefore, three-class random forest classification of lymphocyte subtype was then

243  performed (one vs. one approach) using different combinations of OMI parameters. Feature
244  weights are provided (Supp. Fig. 6B). Classification with all nine OMI parameters performed
245  the best (accuracy = 97.8%) (Fig. SE, Supp. Fig. 6C, Supp. Table 1). However, other random
246  forest classifiers with fewer parameters also demonstrated strong performance. The top four
247  parameters (FAD 11, FAD tm, NAD(P)H tm, and FAD o) had an accuracy of 96.4%, while

248  NAD(P)H lifetime variables (tm, 1, T2, 1) had an accuracy of 89.9% (Fig. SE, Supp. Table 1).
249  Classification using both NAD(P)H and FAD 80MHz and 160 MHz phasors classified cells as
250 either B or NK cells with 99.9% accuracy (Supp. Fig. 9E-F), while the NAD(P)H 80MHz and
251  160MHz phasor classified cells as B, NK, or T cells with 96.2% accuracy (Supp. Fig. 10A-B).
252  Classification was also tested on a subset of the combined lymphocyte data that contained only
253  quiescent (CD69-) cells (UMAP, Supp. Fig. 7A), and had similarly high performance with all
254  nine OMI parameters (accuracy = 98.4%) (Supp. Fig. 7B-D, Supp. Table 1).

255  Finally, a UMAP shows that quiescent and activated T cells, B cells, and NK cells clustered

256  separately (Supp. Fig. 8A). Therefore, random forest classification was used to classify both

257  lymphocyte subtype and activation simultaneously. A six-class classification was performed (one
258  vs. one approach). Feature weights are provided (Supp. Fig. 8B). Again, the classifier with all 9
259  OMI parameters had the highest accuracy (accuracy = 90.0%) (Fig. 5F, Supp. Table 1), and

260  misclassification was highest between quiescent vs. activated cells within a lymphocyte subtype,
261  with lymphocyte subtype usually identified correctly (Supp. Fig. 8C). Other classifiers also

262  performed well, including the top four parameters (NAD(P)H o, FAD 11, NAD(P)H 11, FAD tm)
263  with an accuracy of 83.2%, and NAD(P)H lifetime variables (tm, 11, T2, 01) with an accuracy of
264 83.3% (Fig. SF, Supp. Table 1). Classification using NAD(P)H 80MHz and 160MHz phasor
265  classified both lymphocyte subtype and activation simultaneously with an accuracy of 88.5%

266  (Supp. Fig. 10C). A summary of the accuracies of all random forest classifiers is provided

267  (Supp. Table 1).

268 3 Discussion

269  Several areas of research and clinical care rely on lymphocyte assessments, but these efforts

270  would benefit from a non-destructive, single-cell, touch-free technology to assess lymphocyte
271  subtype and activation state, which would reduce the cost and time for analysis of heterogeneity
272 within a patient while enabling subsequent study and use of unperturbed cells. In this report, we
273 have demonstrated that OMI is sensitive to metabolic changes that occur with activation in

274  primary human B cells and NK cells. Additionally, machine learning models trained on single-
275  cell OMI parameters can reliably classify quiescent cells in both CD40/1L4 activated B cells and
276 IL12/IL15/IL18 activated memory-like NK cells, as well as distinguish lymphocyte subtypes
277  (NK, B, T cells) and activation within a combined dataset of NK, B, and T cells.
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278  Interestingly, both B cells and NK cells had similar changes in OMI parameters under activation
279  compared to quiescent cells. The optical redox ratio increased, NAD(P)H tm decreased, and

280 NAD(P)H au increased in the activated cells (Figs. 1, 3). These trends are consistent with our
281  prior work with primary human T cell activation (47). The similarity of changes between the B
282 cells, NK cells, and T cells is likely related to similar shifts in metabolism when all three

283  lymphocyte subtypes are activated. All three types of lymphocytes upregulate oxidative

284  phosphorylation and aerobic glycolysis when activated to fuel rapid growth and proliferation (34,
285 35, 48).

286  Previous studies have demonstrated that alterations to glycolysis significantly affect OMI

287  measurements (30, 47, 49, 50). Specifically, inhibition of glycolysis with 2DG selectively

288  reduced the optical redox ratio in activated T cells, indicating that glycolysis is a key regulator of
289  the optical redox ratio in these cells (47). Further, the optical redox ratio has a positive

290 correlation (Pearson’s R = 0.89) with the glycolytic index of breast cancer cells (49). In this

291  study, measurements of glucose and lactate levels in media from control and activated B and NK
292 cells revealed that the glucose concentration significantly decreased and the lactate concentration
293  significantly increased with activation (Figs. 1, 3). This observation is consistent with

294  upregulation of aerobic glycolysis noted in the literature, as well as our observed increase in the
295  optical redox ratio with activation (33-38, 40).

296  The single-cell resolution of OMI makes it a powerful tool for studying and characterizing

297  population heterogeneity. Here, we characterized heterogeneity within activated and quiescent B
298  cell and NK cell populations. Our results demonstrate that within a population of peripheral

299  human B cells or NK cells exposed to the same conditions, cell outcomes may vary. Examination
300 of CD69 expression revealed that there was a mixture of CD69+ and CD69- cells within each
301  group despite exposure to the same media conditions. We chose to focus the analysis on cells
302 that we could confirm to be quiescent (i.e., CD69- cells in the quiescent condition) and cells that
303  we could confirm to be activated (i.e., CD69+ cells in the activated condition) to better

304  characterize the ability of OMI to assess these cells without complications that could arise from
305  differing cell states. However, OMI did capture differences in NAD(P)H and FAD

306  autofluorescence between activated and quiescent cells within each condition (Supp. Figs. 1, 3).
307  Overall, this study demonstrates the sensitivity of OMI to metabolic differences within a

308  heterogenous cell population.

309 Classifiers based on single-cell OMI accurately identified activation state with up to 93.4%
310 accuracy for B cells and up to 92.6% accuracy for NK cells (Supp. Table 1). In addition to
311  classifying activation within a lymphocyte subtype, OMI also classified activation with high
312 accuracy from a combined dataset of T cells, B cells, and NK cells (accuracy = 92.2%, 9 OMI
313  parameters) (Supp. Fig. 5B, SE, Supp. Table 1). We also found that all 9 OMI parameters
314  accurately classified lymphocyte subtype (accuracy of 97.8%, Fig. SE, Supp. Fig. 6C, Supp.
315  Table 1), which reflects the distinct fluorescence lifetimes of NAD(P)H and FAD for different
316  lymphocyte subtypes (Fig. SA). Indeed, a previous study has shown that NAD(P)H and FAD
317  autofluorescence differs between different types of murine white blood cells (including B cells
318  and T cell subtypes) (45). OMI parameters also distinguished between lymphocyte subtypes
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319  when only quiescent (CD69- control) cells were used (accuracy of 98.4%, Supp. Fig. 7B, Supp.
320 Table 1). Differences in NAD(P)H and FAD fluorescence lifetimes between quiescent

321  lymphocytes may be explained by differences in resting cell metabolism between T cells, B cells,
322 and NK cells, which has been observed in previous human and murine studies (39-41).

323 Surprisingly, even a six-group classifier of both activation state and lymphocyte subtype

324  achieved high accuracy (90.0%, Fig. SF, Supp. Fig. 8C, Supp. Table 1) which reflects subtle
325 changes in metabolic state for these six classes (33—41).

326  Although a complete set of NAD(P)H and FAD intensities and lifetimes were collected in this
327  study, all 9 OMI parameters may not be necessary for accurate classification. NAD(P)H lifetime
328  variables alone accurately classified activation within B cells (92.6% accuracy), activation within
329 NKcells (91.6%), activation within the combined dataset of B cells, NK cells, and T cells

330  (90.3% accuracy), lymphocyte subtype (89.9% accuracy), and a six-class classifier of both

331 activation and lymphocyte subtype (83.3% accuracy) (Supp. Table 1), while the NAD(P)H

332 phasor alone classified B cell activation and NK cell activation with accuracies of 93.9% and
333  88.1% respectively (Supp. Fig. 9A-D), lymphocyte subtype with 96.2% accuracy (Supp. Fig.
334  10A-B), and both activation and lymphocyte subtype with an accuracy of 88.5% (Supp. Fig.
335  10C). This indicates that simplified hardware with only NAD(P)H excitation and emission

336  capabilities would perform as accurately as a two-color NAD(P)H and FAD imaging system,
337  which is an important consideration in the design of simplified hardware for use in clinical labs.

338  Overall, these studies indicate that OMI can robustly classify lymphocyte activation status and
339  discriminate B cells, NK cells, and T cells. This label-free single-cell imaging and classification
340  approach could have significant implications in cell manufacturing, where in-line technologies
341  are needed to maintain high potency and safety, or in clinical labs where immune cell profiling is
342  needed to inform treatment decisions. The non-invasive nature of this approach also enables

343  time-course studies of lymphocyte function and in vivo studies of lymphocytes in a native

344 context.

345 4 Materials and Methods

346 4.1 Isolation of primary human lymphocytes

347  Primary human lymphocytes were isolated from peripheral blood obtained from healthy adult
348  donors under approval by the UW-Madison Institutional Review Board. After obtaining

349  informed consent from the donors, 10 to 50 mL whole blood was drawn using a sterile syringe
350  with heparin. B cells and NK cells were then isolated from donor whole blood using negative
351  isolation Kkits.

352  For NK cells, blood was mixed in a 1:1 ratio with 1X PBS. The peripheral blood:PBS mixture
353  was then overlayed dropwise onto 15 mL of Lymphoprep (STEMCELL Technologies) in 50 mL
354  conical tubes and centrifuged at 400 xg for 30 minutes at 20°C with slow acceleration and no
355  breaks. After centrifugation, the PBMC layer was moved to a fresh 50 mL conical tube using a
356 10 mL serological pipette, with 35 mL 1X PBS added to each tube. Cells were centrifuged at
357 400 xg for 10 min at 20°C with normal acceleration and breaks. After centrifugation supernatant
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358  was aspirated and cell pellets were resuspended in 5 mL of ACK lysing buffer (Quality

359  Biological) and let sit at room temperature for 5 minutes. ACK lysis reaction was then quenched
360  with 30 mL of 1X PBS per 50 mL tube. Cells were centrifuged at 400 xg for 10 min at 20°C

361  with normal acceleration and breaks. Supernatant was aspirated, with the pellets being combined
362 in 40 mL 1X PBS and passed through a 70 um filter. PBMCs were counted on the Z1 Particle
363  Counter (Beckman Coulter) by adding 10 pL of the PBMC solution to 10 mL of Isoton II diluent
364  (Beckman Coulter) in a 20 mL cuvette. PBMCs were then labelled with the human NK Cell

365 Isolation Kit (Miltenyi Biotec), with subsequent NK cell isolation using the “depletes” program
366  on an autoMACS Pro Separator and collecting the negative fraction. The isolated cells were then
367 transferred to a cell culture flask or well plate for culture.

368  For the B cell isolation (EasySep, STEMCELL Technologies), peripheral blood mononuclear
369  cells (PBMCs) were first isolated by diluting the blood with an equal volume of DPBS + 2%
370  FBS, then centrifuging at 1200 xg for 10 minutes in SepMate tubes containing a layer of

371 Lymphoprep. The isolated PBMCs were then washed with DPBS + 2% FBS and centrifuged at
372 100 xg for 10 minutes. The resulting sample was resuspended to a concentration of 50 million
373 cells/mL in EasySep Buffer (STEMCELL Technologies). 50 pL/mL isolation cocktail and 50
374  pL/mL cocktail enhancer were added to the sample, according to the EasySep protocol. 50

375  pL/mL RapidSpheres solution was then added, and the sample was transferred to a magnet for 3
376  minutes. The enriched B cells were poured into a new tube and the sample was again placed into
377  amagnet for 1 minute. The enriched B cell population was then washed with culture medium
378 and transferred to a cell culture flask or well plate for culture.

379 4.2 Lymphocyte activation and culture

380 NK cells were cultured in TheraPeak X-VIVO-10 medium (Lonza) supplemented with 10%

381  human serum AB (Sigma Aldrich) and Ing/mL IL-15 (Biolegend). B cells were cultured in

382  RPMI containing 5% fetal bovine serum and 1% penicillin-streptomycin. Following isolation,
383  each cell population was divided into two groups: a control population cultured in normal

384  medium, and an activated population cultured in control medium supplemented with additional
385  components. NK cell activating medium was supplemented with 10 ng/mL IL-12 (Invivogen), 50
386 ng/mL IL-15, and 50 ng/mL IL-18 (Biolegend) (57, 52). B cell activating medium was

387  supplemented with 5 ug/mL anti-CD40 antibody (R&D systems) and 20 ng/mL IL-4 (R&D

388  Systems) (6, 53).

389  The cells were cultured separately in activating or control medium for a number of hours

390 depending on the lymphocyte subtype; B cells were activated for 72 hours, and NK cells for 24
391  hours (34, 45, 53). Cells were seeded at a density of 1 million cells/mL medium. At the end of
392 the activation time, a sample of growth medium from each group was taken for cytokine

393  analysis. A summary of the isolation and activation conditions used is provided in Table 1.

394

395
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Lymphocyte Negative Isolation Kit Control Medium Activation Activation
subtype Medium time
B cell EasySep Human Naive B | RPMI + 5% FBS + 1% Control medium + | 72 hours
Cell Isolation Kit penicillin/streptomycin 5 ng/mL anti-
(StemCell Technologies) CDA40 antibody +
20 ng/mL IL-4
NK Cell MACS Human NK Cell TheraPeak X-VIVO-10 Control medium + | 24 hours
Isolation Kit (Miltenyi medium (Lonza) + 10 ng/mL IL-12 +
Biotec) 10% human serum AB+ 1 | 50 ng/mL IL-15 +
ng/mL IL-15 50 ng/mL 1L-18

396  Table 1. Isolation and activation conditions for each lymphocyte subtype.

397 4.3 Staining with PerCP conjugated anti-CD69 antibody

398 At the end of the activation period, cells were stained with anti-CD69 PerCP-conjugated

399 antibody to distinguish activated and quiescent cells within each population (38, 53). The cells
400  were centrifuged at 300 xg for 8 minutes, then resuspended to a concentration of 10 million
401  cells/mL medium. SpL/million cells PerCP-conjugated anti human CD69 antibody (Biolegend)
402  was added to the sample. The cells were then incubated for 30 minutes at room temperature.
403  Following incubation, the cells were washed twice with media and centrifuged at 300 xg for 8
404  minutes to remove excess antibody from the sample.

405 4.4 Fluorescence lifetime imaging of lymphocytes

406  For imaging, B cells and NK cells were plated 1 hour before imaging on poly-D-lysine coated
407  glass-bottomed dishes (MatTek) at a seeding density of 200,000 cells in 50 uL media. The cells
408  were imaged with a custom-built multiphoton fluorescence microscope (Ultima, Bruker) using a
409  100x (NA = 1.45) oil immersion objective and time-correlated single photon counting electronics
410  (SPC-150, Becker & Hickl GbH, Berlin, Germany). The laser (Insight DS+, Spectra-Physics

411  Inc., Santa Clara, CA, USA) was tuned to 750 nm for NAD(P)H excitation, 890 nm for FAD

412  excitation, and 980 nm or 1040 nm excitation for PerCP. Fluorescence emission was detected
413 using a H7422PA-40 GaAsP photomultiplier tube (Hamamatsu Corporation, Bridgewater, NK,
414  USA) and isolated using a 440/80 bandpass filter for NAD(P)H, 550/50 (NK cells) or 550/100 (B
415  cells) bandpass filter for FAD, and 690/50 bandpass filter for PerCP. In the B cell experiments,
416  the laser power at the sample was 1.5 mW — 2.0 mW for NAD(P)H, 3.0 mW — 4.0 mW for FAD,
417  and 3.0 mW for PerCP. In the NK-cell experiments, the laser power at the sample was 2.0 mW
418  for NAD(P)H, 5.0 mW for FAD, and 3.5 mW for PerCP. The laser power was maintained at a
419  consistent value within each experiment.

420 300 um x 300 um fluorescence lifetime images (256x256 pixels) were collected consecutively
421 for NAD(P)H and FAD in the same field of view, with a pixel dwell time of 4.8 us and an

422  integration time of 60s. An instrument response function was collected during imaging from the
423  second harmonic generation of a urea crystal, and photon count rates were maintained around
424  1x10° photons. An intensity image of PerCP fluorescence was collected for the same field of
425  view. Images were collected from three to six fields of view for each sample.
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426 4.5 Image analysis

427  Fluorescence lifetimes were extracted through analysis of the fluorescence decay at each pixel in
428  SPCImage (Becker & Hickl). To provide more robust calculations of the fluorescence lifetimes,
429  athreshold was used to exclude background pixels with a low intensity, and images were binned
430  up to a bin factor of 3 to reach a peak of at least 100 photons in the decay. Both NAD(P)H and
431 FAD can exist in a quenched and an unquenched configuration with distinct lifetimes. To extract
432  these lifetimes, fluorescence decays were fit to a two-component exponential decay that was re-
433 convolved with the instrument response function:

t t
434 (D) I(t) = aje =1+ aze 2+ C,

435  where I(t) = is the light intensity at time t following the laser pulse, 1 and 12 are the short

436  (quenched) and long (unquenched) lifetimes of the fluorophore, and a1 and a2 are the fractional
437  component of each lifetime. C is included to account for background light. For NAD(P)H, the

438  short lifetime (1) corresponds to unbound NAD(P)H and the long lifetime (12) corresponds to

439  protein-bound NAD(P)H (29). The opposite is true of FAD: the short and long lifetime

440  correspond to bound FAD and unbound FAD, respectively (24). A mean lifetime at each pixel
441  was also computed as the weighted average of the short and long lifetime:

442 2) m=a1 1 to2 12

443  Following extraction of the fluorescence lifetimes, images were segmented to create single-cell
444  masks using NAD(P)H intensity images. Segmentation was carried out in CellProfiler, resulting
445  in masks of cells, cell nuclei, and cell cytoplasm. PerCP-conjugated CD69 fluorescence images
446  were manually segmented by a trained observer. The observer was blinded to whether PerCP-
447  CD69 images came from the activated or unstimulated condition. The resulting masks were used
448  to identify activated and quiescent cells in each condition based on overlap between PerCP-

449  CD69 masks and cell masks.

450  Fluorescent lifetime components for each cell were calculated in R. The values of NAD(P)H tm,
451  NAD(P)H 11, NAD(P)H 12, NAD(P)H a1, FAD tm, FAD 11, FAD 12, and FAD o1 were calculated
452  for each cell by averaging across all pixels in the cell cytoplasm. Cells with low photon counts
453 (<5000 photons), small masks that are unlikely cells (< 350 pixels or 75 pm? whole cell area),
454  and pixels with poor goodness-of-fit (x> > 1.3) were not included in this analysis. o2 was not

455  computed, as the sum of a1 and a2 is equal to 1 (100%). An additional parameter, the optical

456  redox ratio, was computed for each cell, defined here as the NAD(P)H intensity divided by the
457  sum of the NAD(P)H and FAD intensities. This definition of the redox ratio is bound between 0
458  and 1. To account for variations in intensity from day-to-day equipment and setting changes, the
459  redox ratio of each cell was normalized to the mean redox ratio of the control group within each
460  experiment.

461 4.6 Measurement of cytokines and glucose/lactate levels in primary cell media

462  To validate the activation of lymphocytes in each condition, cytokine levels were measured in
463  media samples collected from both the unstimulated and activated conditions during plating (24

12
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464  hours post activation for NK cells, and 72 hours post activation for B cells). IFN-y levels were
465 measured in NK cell media samples using the human IFN-y DuoSet ELISA kit (R&D Systems).
466  IL-6 levels were measured in B cell media samples using the human IL-6 DuoSet ELISA kit
467  (R&D Systems) (53, 54). The ELISA assay was carried out according to the provided protocol.
468  Plates were incubated overnight with 2 pg/mL IFN-y or IL-6 capture antibody. The plates were
469  then washed and blocked with a 1% bovine serum albumin solution for 1 hour. Following

470  washing, media samples and standards were incubated on the plates for 2 hours at room

471  temperature, followed by a 2 hour incubation with 200 ng/mL IFN-y or 50 ng/mL IL-6 detection
472  antibody. Finally, the plates were incubated with streptavidin-conjugated horseradish peroxidase
473 B, then an H2Oz-tetramethylbenzidine substrate solution. The color reaction was stopped at 20
474  minutes with a 4M H2SOs4 solution, and the plates were transferred to a plate reader, where they
475  were read at 450 nm with wavelength correction at 570 nm. Standard curves were calculated
476  from a serial dilution of the standards using a sigmoidal four parameter logistic model. The R? of
477  the standard curves for the I[L-6 and IFN-y ELISA experiments were 0.9993 and 0.9997,

478  respectively.

479  To validate that the cells were upregulating aerobic glycolysis in the activated cell populations,
480  commercial kits were used to measure glucose and lactate levels in media samples collected from
481  both the unstimulated and activated conditions during plating (24 hours post activation for NK
482  cells, and 72 hours post activation for B cells). A sample of the growth media used for the B cells
483  and NK cells described in section 4.2 was also evaluated as a control. The glucose and lactate
484  assays were carried out according to the respective protocols for the Glucose

485  Colorimetric/Fluormetric Assay Kit (BioVision) or the Lactate Colorimetric/Fluormetric Assay
486  Kit (BioVision). 0.5 puL of each sample was added to a 96-well plate were an additional 49.5 pL.
487  of assay buffer was added, yielding a 100x dilution of the original samples. 50 puL of reaction
488  mix (2 puL probe, 2 pL enzyme mix, and 46 pL assay buffer) was then added to each well to yield
489  atotal volume of 100 pL per well. The 96-well trays were left to incubate for 30 minutes in a

490  dark box at room temperature (glucose assay) or 37°C (lactate assay). The plates were then

491 transferred to a plate reader where glucose or lactate levels were quantified by absorbance at OD
492  570. Standard curves were calculated from a serial dilution of the standards using an ordinary
493  least squares regression model. The R? of the standard curves for the glucose and lactate assays
494  were 0.9973 and 0.9979, respectively.

495 4.7 Previous CD3" T cell data

496  Previously published T cell data from Walsh. et. al. (2021) was used for the purposes of

497  classifying lymphocyte subtypes in Fig. 5, Supp. Figs. 5-8, 10, and Supp. Table 1 (47). T cells
498  were isolated from human blood and either left quiescent or stimulated with CD2/3/28 for 48
499  hours for activation. Activation was confirmed with a CD69-PerCP label across three donors.
500  This prior data was collected in the same manner on the same two-photon fluorescence lifetime
501 imaging system as the current NK cell and B cell data.

502 4.8 Heatmap, UMAP, and Classification
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503  Z-score heatmaps were constructed in R using the Complex Heatmap package (55). Clustering of
504  groups or single cells was performed based on the OMI parameters and calculated using Ward’s
505 method. Labels for activation, lymphocyte subtype, and donor were added afterwards and were
506 not included in cluster analysis.

507  Uniform Manifold Approximation and Projection (UMAP) is a non-linear dimension reduction
508 technique that can be used to visualize high-dimensional data. UMAP projections were made in
509  Python using scikit-learn, UMAP, and Holoviews. Unless otherwise noted, each UMAP is a two-
510 dimensional visualization of 9 variables (normalized optical redox ratio; NAD(P)H tm, 11, T2, 01;
511  FAD tm, 11, T2, a1). The UMAP projection was computed using Euclidean distance. The nearest
512  neighbors parameter was set to 15 and the minimum distance was set to 0.4 unless otherwise

513  noted.

514  Random forest classification methods were trained in Python using scikit-learn to classify

515 activation and/or lymphocyte subtype in the NK cell OMI parameters, the B cell OMI

516  parameters, or combined OMI parameters from NK cells, B cells, and previously published T
517  cell data (47). The classifier was trained on a random selection of 70% of the input data and
518 tested on the remaining 30% for B cell or NK cell classifiers alone (i.e., Figs. 2, 4, and Supp.
519  Figs. 2, 4). For the classifiers using a combined lymphocyte dataset of B, NK, and T cells (i.e.,
520  Fig. 5 and Supp. Figs. 5-8), the classifier was trained on a random selection of 50% of the input
521  data and tested on the remaining 50%. Multiple metrics were used to evaluate the robustness of
522  the classifier, including the receiver operating characteristic (ROC) curve, accuracy, precision,
523  and recall. Classifiers were trained and tested on different random sets of the data to check for
524  consistency in these metrics. Equal cost was given to a misclassified cell regardless of category
525  (i.e., misclassification was not weighted by sample size).

526  Phasor-based classification was performed using the NAD(P)H and FAD phasor coordinates

527  (G,S) at the laser repetition frequency (80 MHz) and its second harmonic (160 MHz) as features.
528  The phasor coordinates were averaged pixel-wise over each cell mask using pixel intensities as
529  weights to calculate cell-level phasor coordinates. Logistic regression classifiers with a logit link
530 function and random forest classifiers with 100 decision trees were used, and the classifiers were
531 trained on a random selection of 50% of the input data and tested on the remaining 50%. Again,
532  equal cost was given to a misclassified cell regardless of category (i.e., misclassification was not
533  weighted by sample size). Both the phasor and the fit analysis pipelines use the same raw FLIM
534  data and cell masks to calculate cell-level phasor coordinates and fit parameters, respectively.
535  However, the exclusion criteria for the two pipelines are not the same, which results in different
536  final number of cells included in the phasor-based and fit-based classifiers. For example, the

537  phasor pipeline removes low-count (with fewer than 5000 photons) or small (with fewer than 50
538 pixels) cells, while the fit analysis also removes cells based on the goodness of the bi-exponential
539 fit (x> > 1.3).

540 4.9 Statistical analysis
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Statistical analysis was performed using the statannotations package v0.5.0 in Python.
Differences between groups were tested using Kruskal-Wallis with post-hoc comparisons test for
multiple group comparisons, or a two-tailed unpaired T-test for comparisons of pairs of data.
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Figure 1. Optical metabolic imaging of primary human B cells activated with IL-4 and anti-CD40. (A) B cells were isolated from human
peripheral blood of three different donors and activated for 72 hours with 5 pg/mL anti-CD40 and 20 ng/mL IL-4, or cultured
unstimulated. (B) IL-6 concentration was measured in media collected from B cells isolated from two different donors and cultured
with or without anti-CD40/IL-4 for 72 hours. The increase in IL-6 concentration in the activated B cell condition is consistent with T-
cell dependent B cell activation. **** P < 0.0001, parametric T-test. (C) Samples of media from activated and quiescent B cells were
taken before imaging and measured using commercial kits. Glucose in the media of activated B cells was significantly decreased
compared to the quiescent cell media. (D) Lactate levels in activated B cell media were significantly higher than lactate levels in the
quiescent cell media. (E) Representative images of NAD(P)H t.,, FAD trm, redox ratio (NAD(P)H intensity divided by the sum of NAD(P)H
and FAD intensity), and anti-CD69 staining in the unstimulated and activated conditions. (F) Redox ratio normalized to the mean of
the control group significantly increased in the CD69+ B cells in the IL-4 + anti-CD40 condition compared to CD69- B cells in the
unstimulated condition. (G) — (H) NAD(P)H tr, significantly decreased and NAD(P)H a; significantly increased in the CD69+ B cells in the
IL-4 + anti-CD40 condition compared to CD69- B cells in the unstimulated condition. (I) A significant decrease in FAD t,, was seen in
the CD69+ B cells in the IL-4 + anti-CD40 condition compared to CD69- B cells in the unstimulated condition. In (C) — (D), media samples
were diluted 100-fold and 0.5uL was assayed. Assays were performed according to the respective BioVision kit protocols. * P < 0.05,
**%* P <0.0001, parametric T-test. In (F) — (1), data are displayed as box-and-whisker plots, representing the median and interquartile
range (IQR), with whiskers at 1.5*IQR. Plots are overlaid with data points; each point represents one cell. n = 1210 cells (461 cells in
the activated CD69+ condition, 749 cells in the control CD69- condition). **** P < 0.0001, two-tailed unpaired T-test.
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Figure 2. Heterogeneity and classification of activated and quiescent B cells using OMI parameters. (A) Heatmap of single-cell data
across all B cell experiments. Hierarchical cell clustering was calculated based on the z-scores (the difference between cell mean and
population mean divided by the population standard deviation) of nine OMI variables (NAD(P)H tr, T1, T2, 1; FAD T, T1, T2, 0l1; and
control-normalized optical redox ratio). The single-cell clustering demonstrates that using all OMI variables, activated B cells tend to
group separately from quiescent B cells regardless of donor. (B) UMAP of nine OMI parameters visualizes separation between clusters
of activated (CD69+ in activated condition) and quiescent (CD69- in unstimulated condition) B cells. (C) Pie chart showing the relative
weight of the nine OMI variables included in the “all variables” random forest classifier. (D) Receiver operating characteristic (ROC)
curve of random forest classifiers trained for classification of quiescent and activated B cells on different combinations of OMI
variables, with operating points indicated. “Top variables” classifiers refer to the largest weighted variables in the “all variable”
classifier, found in (C). An area under the curve (AUC) of 0.98 is indicative of high performance of the “all variable” classifier and the
NAD(P)H variables (NAD(P)H trm, T1, T2, 0u1) classifier. n = 1210 cells (461 cells in the activated CD69+ condition, 749 cells in the control
CD69- condition) with a 70/30 split for training and test sets.
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Figure 3. Optical metabolic imaging of primary human NK cells activated with IL-12, IL-15, and IL-18. (A) NK cells were isolated from
human peripheral blood of three different donors and activated with 10 ng/mLIL-12, 50 ng/mL IL-15, and 50 ng/mL IL-18 for 24 hours.
(B) IFN-y concentration in media collected from NK-cells isolated from two different donors and cultured with or without activating
cytokines for 24 hours. The increase of IFN-y in the activated condition is consistent with NK cell activation. **** P <0.0001, parametric
T-test. (C) Samples of media from activated and quiescent NK cells from two different donors were taken before imaging and measured
using commercial kits. Glucose in the media of activated NK cells was significantly decreased compared to the quiescent cell media.
(D) Lactate levels in activated NK cell media were significantly higher than lactate levels in the quiescent cell media. (E) Representative
images of NAD(P)H 1, FAD 1, redox ratio, and anti-CD69 staining in the control and activated conditions. (F) Redox ratio significantly
increased in the CD69+ NK cells in the cytokine-activated condition compared to CD69- NK cells in the unstimulated condition. (G) —
(1) NAD(P)H T, significantly decreased, and FAD t,, and NAD(P)H a; significantly increased, in the CD69+ NK cells in the cytokine-
activated condition compared to CD69- NK cells in the unstimulated condition. In (C) — (D), media samples were diluted 100-fold and
0.5uL was assayed. Assays were performed according to the respective BioVision kit protocols. *** P < 0.001, **** P < 0.0001,
parametric T-test. In (F) — (1), data are displayed as box-and-whisker plots, representing the median and interquartile range (IQR), with
whiskers at 1.5*IQR. Plots are overlaid with data points; each point represents one cell. n = 1221 cells (554 cells in the activated CD69+
condition, 667 cells in the control CD69- condition). **** P < 0.0001, two-tailed unpaired T-test.
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Figure 4. Heterogeneity and classification of activated and quiescent NK cells using OMI parameters. (A) Heatmap of single-cell data
across all NK cell experiments reveals heterogeneity within the dataset. Hierarchical cell clustering was calculated on the z-scores (the
difference between cell mean and population mean divided by the population standard deviation) of nine OMI variables (NAD(P)H tr,
T1, T2, 01; FAD Tm, T1, T2, 01; and control-normalized optical redox ratio). (B) UMAP of nine OMI parameters displays clustering of
activated (CD69+ in activated condition) and quiescent (CD69- in unstimulated condition) NK cells. (C) Pie chart showing the relative
weight of each of the nine OMI parameters in the “all variable” random forest classifier. (D) ROC curve of random forest classifiers
trained for classification of quiescent and activated NK cells based on different combinations of OMI parameters, with operating points
indicated. “Top variables” classifiers refer to the largest weighted OMI parameters in the classifier using all variables, displayed in (C).
The classifier using the top four OMI parameters performed the best (AUC 0.97), followed by the classifier that used all 9 OMI
parameters (AUC 0.96) and the classifier that used only NAD(P)H lifetime variables (NAD(P)H T, T1, T2, ®1) (AUC 0.96). n = 1221 cells
(554 cells in the activated CD69+ condition, 667 cells in the control CD69- condition) with a 70/30 split for training and test sets.
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Figure 5. Classification of lymphocyte activation status based on OMI parameters collected on B cells, NK cells, and T cells. Data
from activated and quiescent T cells, B cells, and NK cells was used to evaluate OMI measurements across lymphocytes. T cell data
from our prior work (47) where T cells were activated with CD2/3/28 for 48h and imaged with OMI. (A) Box-and-whisker plots of key
OMI variables (control-normalized optical redox ratio, NAD(P)H t.,, and NAD(P)H a;) display consistent changes with activation across
T cells, B cells, and NK cells. Additional changes were noted between quiescent (CD69- control) cells in each of the three lymphocyte
subtypes (comparisons between quiescent groups were interpreted as not meaningful for the optical redox ratio, due to
normalization). (B) Heatmap displaying hierarchical clustering of groups of activated or quiescent cells by lymphocyte subtype, donor,
and activation status, calculated from the z-scores (the difference between experimental group mean and the mean of all cells divided
by the standard deviation of all cells) of nine OMI variables. (C) UMAP of single-cell OMI data displays distinct clusters of lymphocytes
based on lymphocyte subtype and activation status. (D) ROC curves of random forest classifiers trained to identify activated cells
across all three lymphocyte subtypes, with operating points indicated. The highest weighted OMI parameters were used in the “top
variables” classifiers; these weights are in Supp. Fig. 5C. (E) Accuracy of different random forest classifiers trained to identify
lymphocyte subtype (one vs one approach). Variable weights for "top variables” are in Supp. Fig. 6B. (F) Accuracy of random forest
classifiers trained to identify lymphocyte subtype and activation across all three lymphocyte subtypes (one vs. one approach) using
different OMI parameters. Variable weights are in Supp. Fig. 8B. n = 3127 cells (749 CD69- control B cells, 461 CD69+ activated B cells,
667 CD69- control NK cells, 554 CD69+ activated NK cells, 331 CD69- control T cells, 365 CD69+ activated T cells) with a 50/50 split for
training and test sets. **** P < 0.0001, Kruskal-Wallis with post-hoc comparisons. ns = not significant.
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bound FAD lifetime 13, (1) unbound FAD lifetime t,. Plots display single cell values (dots) overlaid on box-and whisker plots displaying
the median, interquartile range (IQR), and minimum/maximum value. n = 1352 (461 cells in the activated CD69+ condition, 130 cells
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Supplemental Figure 2. Additional UMAPs and classifier performance for single B cell OMI. (A) UMAP of B cells with labels for both
CD69+ and CD69- cells in the control and activated (anti-CD40+1L4) groups. (B) UMAP of B-cells color-coded by donor (A, B, C) and
activation status (CD69+, CD69-). (C) Confusion matrix of the 9 OMI parameter random forest classifier shows performance for
classification of CD69+ activated and CD69- control B cells. (D) Confusion matrix of a logistic regression classifier trained on 9 OMI
parameters to classify B cells as CD69+ activated or CD69- control. (E) Confusion matrix of a support vector machine (SVM) classifier
trained on 9 OMI parameters to classify B cells as CD69+ activated or CD69- control. (F) ROC curves for random forest, logistic
regression, and SVM classifiers trained on 9 OMI parameters, with operating points indicated. In (A), n = 1352 (461 cells in the activated
CD69+ condition, 130 cells in the activated CD69- condition, 12 cells in the control CD69+ condition, 749 cells in the control CD69-
condition). In (B) — (F), n =1210 cells (461 cells in the activated CD69+ condition, 749 cells in the control CD69- condition) with a 70/30
split for training and test sets.
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Supplemental Figure 3. OMI of CD69+ and CD69- NK cells in both unstimulated and IL-12 + IL-15 + IL-18 activated culture conditions.
Both CD69+ and CD69- NK cells in both conditions (control and IL-12 + IL-15 + IL-18 activated) for each OMI parameter: (A) optical
redox ratio, (B) NAD(P)H mean lifetime t,, (C) FAD mean lifetime 1, (D) unbound NAD(P)H fraction a, (E) unbound NAD(P)H lifetime
71, (F) protein-bound NAD(P)H lifetime t,, (G) protein-bound FAD fraction a, (H) protein-bound FAD lifetime 13, (I) unbound FAD
lifetime 7. Plots display single cell values (dots) overlaid on box-and whisker plots displaying the median, interquartile range (IQR),
and minimum/maximum value. n = 1642 cells (554 activated CD69+ cells, 372 activated CD69- cells, 49 control CD69+ cells, 667 control
CD69- cells). ** p <0.01, *** p <0.001, **** p < 0.0001, Kruskal-Wallis with post-hoc comparisons. ns = not significant
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Supplemental Figure 4. Additional UMAPs and classifier performance for single NK cell OMI. (A) UMAP of NK cells with labels for
both CD69+ and CD69- cells in the control and activated (IL-12 + IL-15 + IL-18) groups. (B) UMAP of NK cells color-coded by donor (D,
E, F) and activation status (CD69+, CD69-). (C) Confusion matrix of the 9 OMI parameter random forest classifier trained to classify NK
cells as CD69+ activated or CD69- control cells. (D) Confusion matrix of a logistic regression classifier trained on 9 OMI parameters to
classify NK cells as CD69+ activated or CD69- control. (E) Confusion matrix of SVM classifier trained on 9 OMI parameters to classify
NK cells as CD69+ activated or CD69- control. (F) ROC curves for the random forest, logistic regression, and SVM classifiers trained on
9 OMI parameters, with operating points indicated. In (A), n = 1642 cells (554 activated CD69+ cells, 372 activated CD69- cells, 49
control CD69+ cells, 667 control CD69- cells). In (B) — (F), n = 1221 cells (554 cells in the activated CD69+ condition, 667 cells in the
control CD69- condition) with a 70/30 split for training and test sets.
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Supplemental Figure 5. Additional UMAPs and classifier performance for activation of lymphocytes (T cells, B cells and NK cells). (A)
UMARP of single-cell OMI data from Fig. 5C containing all T, B, and NK cells color-coded by activation status. (B) Bar graph of % accuracy
for a random forest classifier trained to distinguish CD69+ from CD69- cells across the combined dataset of all lymphocyte subtypes.
(C) Pie chart displaying the weights of OMI variables included in the random forest classifier using all 9 OMI features in Fig. 5D. (D)
ROC curves of random forest, logistic regression, and support vector matrix (SVM) classifiers using all 9 OMI variables to distinguish
CD69+ from CD69- cells across all lymphocyte subtypes, with operating points indicated. (E) Confusion matrix for random forest
classifier using all 9 OMI variables to classify cells as activated (CD69+) or quiescent (CD69-) in Fig. 5D. (F) Confusion matrix for logistic
regression classifier. (G) Confusion matrix for SVM classifier. n = 3127 cells (1747 CD69- cells, 1380 CD69+ cells) with a 50/50 split for
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training and test sets. T cell data taken from previously published dataset (47).
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Supplemental Figure 6. Additional UMAPs and classifier performance for lymphocyte subtype (T cells, B cells and NK cells). (A)
UMAP of lymphocytes from Fig. 5C color-coded by lymphocyte subtype. (B) Variable weights of 9 OMI parameters used for one-vs.-
one random forest classification by lymphocyte subtype in Fig. 5E. (C) Confusion matrix for 9 OMI parameter random forest classifier
in Fig. 5E. n = 3127 cells (1210 B cells, 1221 NK cells, 696 T cells) with a 50/50 split for training and test sets. T cell data taken from

previously published dataset (47).
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Supplemental Figure 7. UMAP and classifier performance for lymphocyte subtype classifier based on quiescent cells only (T cells, B
cells and NK cells). (A) UMAP of lymphocytes from quiescent (CD69- control) NK, B, and T cells color-coded by lymphocyte subtype.
(B) Bar graph displaying accuracy of random forest classifiers trained to separate lymphocytes based on lymphocyte subtype (one vs.
one approach, quiescent cells only). (C) Feature weights of 9 OMI parameters used for one-vs.-one random forest classification by
lymphocyte subtype in (B). (D) Confusion matrix for 9 OMI parameter random forest classifier in (B). n = 1747 cells (749 B cells, 667
NK cells, 331 T cells) with a 50/50 split for training and test sets. T cell data taken from previously published dataset (47).
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Supplemental Figure 8. Additional UMAPs and classifier performance for both lymphocyte subtype (T cells, B cells and NK cells) and
activation. (A) UMAP of lymphocytes from Fig. 5C color-coded by lymphocyte subtype, activation status, and donor. (B) Feature
weights of 9 OMI parameters used for one-vs.-one random forest classification by lymphocyte subtype and activation status in Fig. 5F
(C) Confusion matrix for 9 OMI parameter random forest classifier in Fig. 5F. n = 3127 cells (749 CD69- control B cells, 461 CD69+
activated B cells, 667 CD69- control NK cells, 554 CD69+ activated NK cells, 331 CD69- control T cells, 365 CD69+ activated T cells) with
a 50/50 split for training and test sets. T cell data taken from previously published dataset (47).
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Supplemental Figure 9. Phasor-based classification of NK cell and B cell activation and lymphocyte subtype. (A) NAD(P)H phasor plot
of B cells from Fig. 1 (Red = activated CD69+ B cells, blue = quiescent CD69- B cells). Shaded areas show decision boundaries for logistic
regression classification of B cell activation based on NAD(P)H phasor. (B) ROC curves and confusion matrix for random forest
classification of B cell activation. The NAD(P)H and FAD phasors at both the laser repetition frequency (80MHz) and its second harmonic
(160MHz) predicted B cell activation with a classification accuracy of 93.9%, n = 1323 B cells (451 cells in the activated CD69+ condition,
872 cells in the control CD69- condition) with a 50/50 split for training and test sets. (C) NAD(P)H phasor plot of NK cells from Fig. 3
(Red = activated CD69+ NK cells, blue = quiescent CD69- NK cells). Shaded areas show decision boundaries for logistic regression
classification of NK cell activation based on NAD(P)H phasor. (D) ROC curves and confusion matrix for random forest classification of
NK cell activation. The NAD(P)H and FAD phasors at both the laser repetition frequency (80MHz) and its second harmonic (160MHz)
predicted NK cell activation with a classification accuracy of 89.2%, n = 1742 cells (781 cells in the activated CD69+ condition, 961 cells
in the control CD69- condition) with a 50/50 split for training and test sets. (E) Phasor plots of NAD(P)H (top) and FAD (bottom) of B
cells and NK cells at both the laser repetition rate (80 MHz) and its second harmonic (160 MHz). (F) ROC curve and confusion matrix
for logistic regression classification of B vs NK. Using both the NAD(P)H and FAD phasors at 80MHz and 160MHz, the logistic regression
model could classify a cell as B or NK with a classification accuracy of 99.9%, n = 3065 cells (1323 B cells, 1742 NK cells) with a 50/50
split for training and test sets. Due to separate processing pipelines, the total number of cells in phasor analysis differs from that in
the fit analysis. Both analysis pipelines use the same raw data.
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Supplemental Figure 10. Phasor-based classification of NK cell, B cell, T cell lymphocyte subtype and activation. (A) NAD(P)H phasor
plot of B cells, NK cells, and T cells. (B) Confusion matrix for random forest classification of lymphocyte subtype. The classifier was
trained on NAD(P)H phasors (at the laser repetition frequency 80MHz and its second harmonic 160 MHz) and achieves a classification
accuracy of 96.2%. (C) Confusion matrix for random forest classification of lymphocyte subtype and activation trained on NAD(P)H
phasors achieves a classification accuracy of 88.5%. The classifier predicted lymphocyte subtype and activation with a total n=3653
lymphocytes including n = 1323 B cells (451 B cells in the activated CD69+ condition, 872 B cells in the control CD69- condition); n =
1742 NK cells (781 cells in the activated CD69+ condition, 961 cells in the control CD69- condition); n =588 T cells (263 cells in the
activated condition, 325 cells in the control condition); a 50/50 data split for training and test sets was used. Due to separate processing
pipelines and exclusion criteria, the total number of cells in phasor analysis differs from that in the fit analysis. Both analysis pipelines
use the same raw data. T cell data taken from previously published dataset (47).
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Variables

Figure Cell Type Classification

All Top 1 Top 2 Top 3 Top 4 NAD(P)H RR NAD(P)H a,
Main 2D B activation 93.39% 88.98% 92.01% 93.11% 93.39% 92.56% 63.36%
Main 4D NK activation 92.64% 61.58% 81.20% 89.37% 92.37% 91.55% top variable
Main 5E ALL lymphocyte subtype 97.76% 85.74% 90.66% 92.84% 96.42% 89.90% 56.33% 64.00%
Main 5F ALL lymphocyte subtype and activation 90.03% 50.45% 74.36% 81.27% 83.18% 83.31% 37.02%
Supp. 5B ALL activation 92.20% 68.73% 83.76% 87.85% 91.43% 90.35% 62.02%
Supp. 7B ALL-qui. lymphocyte subtype 98.40% 87.31% 91.31% 94.40% 94.63% 91.54% 54.29%

Supplemental Table 1: Accuracies for random forest classifiers given in main and supplemental figures. Accuracies are given out of
a maximum of 100%, where accuracy = total number of correct classifications / total number of all classifications * 100. “Top” 1, 2, 3,
and 4 variables classifiers refer to the largest weighted variables in the “all variable” classifier, found in the corresponding figure (or
Supp. Fig. 6B and 8B for Main Fig. 5E and 5F, respectively). In Main Fig. 4D, the top variable is the optical redox ratio (RR). NAD(P)H
column refers to classifiers that used all NAD(P)H lifetime variables (NAD(P)H tr, T3, T2, a1) as inputs. ALL, all lymphocytes including T,
B, NK cells; ALL-qui, quiescent only lymphocytes including T, B, NK cells. T cell data taken from previously published dataset (47).
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