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ABSTRACT: Active control of light−matter interactions using
nanophotonic structures is critical for new modalities for solar
energy production, cavity quantum electrodynamics (QED), and
sensing, particularly at the single-particle level, where it underpins
the creation of tunable nanophotonic networks. Coupled
plasmonic−photonic systems show great promise toward these
goals because of their subwavelength spatial confinement and
ultrahigh-quality factors inherited from their respective compo-
nents. Here, we present a microfluidic approach using microbubble
whispering-gallery mode cavities to actively control plasmonic−
photonic interactions at the single-particle level. By changing the
solvent in the interior of the microbubble, control can be exerted
on the interior dielectric constant and, thus, on the spatial overlap
between the photonic and plasmonic modes. Qualitative agreement between experiment and simulation reveals the competing roles
mode overlap and mode volume play in altering coupling strengths.

■ INTRODUCTION
Tailoring light−matter interactions in resonant nanophotonic
structures is central to applications in energy,1 photonics-
altered chemistry,2−5 quantum information science (QIS),6−9

and sensing and imaging.10−17 Multiple ways exist to achieve
this control, including altering how the photonic structure
localizes light in time or energy (as reflected in the quality
factor, Q), altering how the photonic structure localizes light in
space (as reflected in the mode volume, V), or altering the
spatial overlap between the light and matter systems, thus
altering the magnitude of the light−matter coupling (typically
denoted g). For example, operating at low temperatures may
substantially reduce the matter’s damping rate by reducing
dephasing until it is lower than the coupling strength, resulting
in an effective increase in coherent interactions per lifetime and
increased interactions.18 An ultrasmall mode volume in a
plasmonic dimer nanocavity can lead to extremely strong
light−matter interactions,19 and inhomogeneous field distri-
bution in this nanocavity results in multiple possible coupling
regimes in a plasmon-emitter coupled system, from weak-
coupling to intermediate-strong-coupling to strong-coupling.20

The coupling energy itself can be altered in exciton-
polariton,21 molecular vibration-polariton,3 and plasmon-
polariton systems,22 by controlling the number of contributing
molecular or excitonic modes. However, there is a need for
new strategies for controlling coupling strengths that can
operate at room temperature, are conveniently externally

controlled, and can allow operation on a single nano-object.
Tailoring interactions at the single-particle level is particularly
important for QIS applications23,24 and for photonics-based
single-particle and single-molecule detection strat-
egies.10,12,15−17,25,26

Recently, coupled plasmonic−photonic systems7,22,25,27−36

have emerged as rich platforms for control of light−matter
interactions because they may inherit the ultrasmall mode
volumes and ultrahigh Q-factors from their respective
plasmonic and photonic components, leading to strong Purcell
enhancement. We have recently demonstrated new ways to
control detuning through controlled nanorod melting27 and
quantitatively determine all system parameters that govern
energy dissipation pathways in a coupled plasmonic−photonic
cavity through simultaneous measurement of photothermal
absorption and two-sided transmission.36 The ability to tailor
these system parameters, particularly the coupling between the
photonic and plasmonic constituents, is needed to create a
tunable multi-component photonic network for applications in
photonic sensing10 and QIS.8 Further, coupled plasmonic−
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photonic cavities with high Q-factors and low mode volumes
may allow stronger interactions between the mixed photonic
structure and a two-level system, potentially opening an avenue
for attaining strong-coupling in polariton chemistry when
molecules or other two-level systems are coupled to the
coupled plasmonic−photonic cavity. The mode overlap, the
spatial overlap of field profiles of the plasmonic and photonic
modes in the two constituents, influences the coupling
strength. Increasing the mode overlap by directly embedding
plasmonic nanoparticles into an optical microcavity may entail
difficult fabrication (though this strategy is more easily used for
rare-earth dopants37,38) or the need for additional polymer
layers.39,40 Precisely tuning the cavity diameter, as demon-
strated in hybrid plasmonic-microfiber systems,13,41,42 can also
alter the coupling strength. However, these strategies lack the
capability for active modulation of mode overlap.
In this work, we present a solvent-embedding approach to

actively modulate plasmonic−photonic interactions between a
microfluidics-integrated whispering-gallery mode (WGM)
microbubble cavity and single gold nanorods (AuNRs)
deposited on the inner wall (Figure 1). The alteration in

interior dielectric environment exerts an effect upon the
distribution of plasmonic−photonic coupling strengths, which
is highly dependent on both spatial locations and orientations
of the AuNRs relative to the WGMs in the microbubble cavity.
As shown below, optical simulations qualitatively agree with
the experimentally determined distribution in coupling
strengths, showing that both mode volume and mode overlap
play important roles in shaping the distributions of coupling
strengths. For some WGMs, the coupling strength is seen to
increase, while for others, the contribution from an increase in
mode overlap is largely counteracted by an increase in mode
volume, rendering minimal change in coupling strength.

■ METHODS
Sample Preparation.Microbubble cavities were fabricated

as described previously.43 The procedure for AuNRs
deposition (see Figure S1) on the interior surface of a
microbubble was adapted from refs 17 and 44. First, a diluted
HCl solution (pH ∼ 1.3) prepared from concentrated HCl
(Sigma-Aldrich, ACS Grade) was flowed from one end of the
microbubble using a Luer Lock syringe assembly until about 10
drops came out from the other end. Subsequently, a diluted

cetyltrimethylammonium bromide (CTAB) (Sigma-Aldrich,
SKU: M6880-25G) solution prepared in HCl (100 μM, pH ∼
1.3) was flowed in a similar way. The two steps readied the
interior surface of the microbubble for binding AuNRs.
Afterward, a 250× diluted AuNR solution was prepared from
a stock AuNR solution (25 × 137.5 nm2, Nanopartz A12-25-
1064) by serial dilution using diluted CTAB solution. This
diluted AuNR solution was flowed through the microbubble
until about 12 big drops came out. The microbubble was
flushed by the diluted CTAB solution (100 μM, pH ∼ 1.3),
diluted HCl (pH ∼ 1.3), and Milli-Q water to remove extra
unbound AuNRs and excess CTAB. Finally, Milli-Q water was
pushed out from the microbubble and taken away by flushing
the microbubble with methanol (high-performance liquid
chromatography (HPLC) grade) for several minutes. The
remaining methanol was removed, and then the microbubble
was allowed to dry overnight under ambient conditions.
Chloroform (Sigma-Aldrich, HPLC grade) was then flowed
through the microbubble for several minutes, after which the
two capillary ends of the microbubble were sealed to retain
chloroform inside by dipping them in a degassed aqueous
solution of sodium silicate (J.T. Baker) and then taking the
capillary out for drying for a few seconds; this step was
repeated three times.
Spectroscopic Measurements. The previously described

experimental setup (see Figure S2) was used to carry out
spectroscopic and polarization characterization.25,36 A free-
space pump beam is amplitude-modulated at 510 Hz for all of
the measurements. The resulting photothermal signal is
demodulated by a lock-in amplifier (Ametek, Signal Recovery
7265). Note that the uncertainty of mode identity prevents
quantitative determination of absorption cross section, unlike
in previous microresonator experiments.25,36

Optical Simulations. All electromagnetic simulations were
run in COMSOL Multiphysics using Oxborrow’s method.45

First, the diameter and length of the microbubble used in
experiments were determined from an optical image. Then, the
wall thickness was estimated, as described previously.46,47

These geometric parameters were used to create a model to
solve for mode eigenvalues and eigenfunctions. The domain
designated for the air or chloroform medium has a refractive
index of 1.0 or 1.43, respectively. For a given azimuthal mode
number, a set of eigen solutions were obtained and then
exported along with field intensity data to compute g. Note
that only transverse electric (TE) polarization modes were
kept for further analysis.

■ EMBEDDING METHOD
Optical microbubble cavities48,49 have been used for a variety
of applications in (bio)sensing,50−52 spectroscopy,44,53 las-
ing,38,54 and frequency comb generation55 because of their
attractive properties that include ultrahigh Q-factors (∼107)
(see Figure S3), hollow structure that can be integrated with
microfluidics, and subwavelength wall thickness.56 Recently,
this photonic structure has enabled photothermal monitoring
of chemical reaction dynamics of gold AuNRs exposed to
aqueous solution at the single-particle level.44 An intriguing
feature in this cavity is the tunability in mode properties, which
are highly dependent on the refractive index of the interior (air,
solvent, etc.) and can be easily controlled. This tunability may
lead to a very high thermo-optic coefficient, a figure of merit
for applications in photothermal measurement51 and micros-
copy57−60 due to the large negative thermo-optic response in

Figure 1. Schematic of active control via modifying the interior
dielectric environment in a microbubble cavity via solvent. The
microbubble is either filled with air (A) or chloroform (B) in this
work. The zoomed-in field intensity profile for a fundamental mode
shows a pronounced difference when the solvent dielectric constant
matches that of the SiO2 wall. The white scale bar: 1 μm. Note that
the dimension of the AuNRs used in this work is 25 × 137.5 nm2.
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liquids (e.g., water and organic solvents) while introducing
minimal absorption loss to the cavity in visible or tele-
communication bands.
In this study, we perform single-particle photothermal

spectroscopy (see below) on AuNRs coupled to microbubble
WGMs. Chloroform is chosen to fill the microbubble cavity
because it has a very similar refractive index (n = 1.43) to the
silica comprising the microbubbles (see Methods), and
therefore a chloroform-filled microbubble may provide the
maximum mode overlap in a plasmonic−photonic coupled
system, as illustrated in Figure 1. Embedding the AuNRs in a
solid polymer matrix may also allow tuning of the mode
overlap but not in an easily adjustable manner that also allows
before-and-after characterization.39,40 Another consideration is
that chloroform absorbs less light than other solvents (water,
toluene, etc.) at both the pump (1275−1355 nm) and probe
(1550−1570 nm) wavelengths36 of our experiment, resulting
in very small losses to the Q-factors (see Figure S3). These
characteristics, combined with chloroform’s large thermo-optic
coefficient, may render the chloroform-filled microbubble an
excellent single-particle absorption spectrometer for non-
aqueous analytes. Spectroscopy in other wavelength regions
could make optimal use of different solvents. After AuNRs
were deposited as described previously (see Methods),44 the
remaining aqueous solution was removed, and the cavity was
flushed by flowing Milli-Q water, then methanol, and finally
drying the cavity (Methods). This treatment leaves AuNRs
exposed to the air inside the cavity (see Figure S4). Single

AuNRs were identified using photothermal imaging and
polarization measurements (see Methods), where a high
depth of modulation strongly suggests a single AuNR.25,61 A
photothermal map in Figure 2A shows several individual
AuNR particles sparsely distributed on the interior surface of
the microbubble cavity. Subsequently, single-particle photo-
thermal absorption spectroscopy was conducted, where each
particle acts as an individual coupled plasmonic−photonic
system independent from all other AuNRs due to their sparse
distribution. Upon the introduction of chloroform (Methods),
photothermal imaging (Figure 2) determines that the spatial
location of individual AuNRs under study does not change,
suggesting that chloroform neither washes away nor translates
the particles. At the same time, polarization dependence
measurements (bottom panel of Figure 2 and Table S1)
demonstrate that the AuNR orientations also do not change.
Taken together, these results indicate that introducing
chloroform does not impact the geometry of our coupled
systems, rendering the change in spectral behavior solely
attributable to shifted environmental refractive index and
downstream consequences, including altered optical modes
and therefore different coupling strengths.

■ SINGLE-PARTICLE SPECTROSCOPY
We have recently demonstrated a single-particle photothermal
absorption technique that takes advantage of the combination
of ultrahigh sensitivity of whispering-gallery mode micro-
cavities along with sophisticated locking and modulation

Figure 2. Fixation of single AuNRs on the interior surface of the microbubble. Both spatial locations and orientations are not perturbed by filling
the microbubble with chloroform, as evidenced by photothermal coarse (top) and fine (bottom) maps and polarization plots (objects i and ii)
under air-filled (A) and chloroform-filled (B) conditions. The polar plots are fitted to cos2(θ) (red dashed line) for determination of the depth of
modulation (M) and peak angle (θmax). Each dashed square indicates a single AuNR, while other unlabeled objects seen in the coarse map are not
single AuNRs. The red dashed line shows where the fiber taper is and resides at slightly different locations relative to those of the AuNRs in panels
(A) and (B). The scale bars in coarse (fine) maps are 10 μm (2 μm). Though only two particles are highlighted here, all seven detected particles are
included in the following analysis.
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schemes. This technique enables the measurement of
resonance shifts induced by thermal dissipation from an
excited nano-object by a pump laser, with a limit of detection
down to under 1 attometer.25 Leveraging this ultrahigh
sensitivity, we have interrogated properties of conductive
polymers,62,63 examined plasmonic−photonic interac-
tions,25,27,36 introduced transparent substrates compatible
with visible spectroscopy,64,65 and shown the capability of
real-time monitoring and control of nanoparticle properties44

at the single-particle level. Photothermal absorption spectra at
various spectral resolutions (low, intermediate, and high) were
taken for each single AuNR, as described previously,36 to
determine how altering the medium refractive index influences
the light−matter interaction as inferred from spectral
signatures. The low-resolution (32 μeV per point) spectra,
with the broadest spectral window, show that the peaks of the
broad plasmonic absorption of most of the single AuNRs
under study are beyond our pump spectral range for all but one
of the AuNRs (Figure S5). Fitting of these low-resolution
spectra in isolation does not allow precise determination of the
spectral center or width. However, simultaneous fitting of the
high- and low-resolution spectra (see below and Supporting
Information) largely mitigates this issue. Intermediate-reso-
lution (3.2 μeV per point) spectra, Figure 3, contain rich
information about the plasmonic−photonic couplings, with the
Fano antiresonance a signature of the light−matter interaction

between the spectrally broad plasmonic mode and compara-
tively narrow photonic mode.25,27,66−72 The relative difference
in spectral density of Fano antiresonances between air and
chloroform samples is highly variable, suggesting that the
specific details of each coupled system exert an effect on the
spectral density of Fano antiresonances. For example, Figure 3
shows that in one of the AuNR-microcavity coupled systems,
the Fano spectral density barely changes (Figure 3A,C) upon
the introduction of chloroform, whereas a drastic increase in
Fano spectral density is observed in the other coupled system
(Figure 3B,D). The scarcity of Fano antiresonances seen in this
particular system under the air-filled condition is attributed to
the fact that this AuNR is approximately 30 μm away from the
center of the microcavity along the z-axis (see Figures S6 and
S7A). At this large shift, the only WGMs available to interact
with the localized surface plasmon (LSP) are high-order polar
WGMs with large mode volumes (∼3000 μm3), and their
coupling strength is consequently weak. When AuNRs are
located closer to the center of the microcavity where the
tapered optical fiber resides (Figures 2 and S6), the LSP
interacts with fundamental or low-order polar WGMs, and
Fano antiresonances are more likely to be seen assuming
nonorthogonal polarization of the LSP and the transverse
electric (TE) polarization of the WGMs. The increasing
number of WGMs in the radial direction (see Figure S7B)
upon the introduction of chloroform suggests the possibility

Figure 3. Intermediate-resolution and high-resolution photothermal absorption spectra of two single AuNRs in the air-filled (A, B) and chloroform-
filled (C, D) microbubble. The spectra are normalized to their own maximum absorbance. The two AuNRs are objects i and ii in Figure 2. Fits
(cyan and blue solid curves) to high-resolution spectra (black and red dots) are presented at different spectral locations. The dips at the pump
energy of ∼0.952 eV shown in the intermediate-resolution spectra are artifacts due to imperfect power spectrum correction.
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that a better mode overlap outcompetes the effect due to the
increase in mode volume. In contrast, the drastic difference in
Fano spectral density is not seen for those AuNR-microcavity
systems where AuNRs are located close to the center of the
microcavity.
High-resolution (0.8 μeV per point) spectra of the Fano

antiresonances are critical to extract the system parameters of
the coupled photonic−plasmonic system. Representative
spectra are shown as insets in Figure 3A,C, where minor
differences in spectral lineshapes are observed between air-
filled and chloroform-filled cases. Because these system
parameters extend over many energy scales, quantitative fitting
of the spectra must be carried out simultaneously over multiple
spectral resolutions. To accomplish this fitting, we developed a
fitting protocol that treats high-resolution and low-resolution
absorption spectra simultaneously. Here, a 0 (1) subscript
denotes a LSP (WGM) property. A low-resolution spectrum
carrying information about LSP parameters, i.e., plasmon
resonant frequency (ω0), nonradiative damping rate (γ0,NR),
and radiative damping rate (γ0,Rad), and a high-resolution
spectrum, containing information about WGM parameters, i.e.,
WGM’s resonant frequency (ω1), nonradiative decay rate
(γ1,NR) and radiative decay rate (γ1,Rad), and couplings (g), in
addition to LSP parameters, are simultaneously fitted to a
phenomenological composite function (G). Here, G is a linear
combination of the normalized LSP absorption cross section
( f1) scaled by a weighting factor (χ) and reduced absorption
cross section ( f 2), as shown below
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the bare LSP absorption cross section,36 σabs
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cross section of the unperturbed LSP absorption, σabs is the
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3 , see Supporting Information).73

An optimal value of χ is chosen such that fitting errors in both
high-resolution and low-resolution spectra remain low and do
not fluctuate appreciably through fit iterations (Figure S8). A
global optimization algorithm (MultiStart, MathWorks Inc.) is
utilized to avoid convergence to local minima of G (Supporting
Information).
The first results of the parameter extraction are shown in

Figure 4, which presents bar plots of plasmon natural
frequency (ω0) and plasmon total damping rate (γ0,Tot) for
different AuNRs under air- and chloroform-filled conditions.
Determination of ω0 is consistent with the spectral location of
the longitudinal LSP resonance (∼1.16 eV) reported by the
manufacturer (Nanopartz Inc., see Figure S10). ω0 decreases

upon introduction of chloroform in all of the coupled systems
under study with a difference of up to 70 meV, showing that an
increase in the interior dielectric constant induces a red shift in
the LSP resonance, which is consistent with previous literature
studies on LSP environmental effects.74,75 This relatively small
shift is likely due to substrate effects74 as AuNRs in the air-
filled microbubble experience a highly asymmetric dielectric
environment, while shifting to chloroform results in a nearly
symmetric dielectric environment. Values of γ0,Tot are observed
to decrease as well on average (see the Supporting Information
and Figure S9), although the effect is usually modest and
within measurement uncertainty.

■ DETERMINING COUPLINGS AND OPTICAL
SIMULATIONS

Of key interest is how the coupling strength (g) for the
interaction between a single LSP and a set of WGMs in each
AuNR-microcavity coupled system is influenced by the
solvent-induced shifting spatial overlap of the photonic and
plasmonic modes. Due to the absence of a direct method of
mode identification in our coupled system, our experimental
method is unable to interrogate the exact same coupled WGM
while altering the interior dielectric environment. Instead, the
statistical analysis of the WGMs’ response to this alteration is
discussed. By fitting to each Fano antiresonance in the high-
resolution spectra, our analysis gives rise to a statistical
distribution of experimental coupling strengths, with ℏg
reaching up to 7.5 × 10−4 eV in one of our studied coupled
systems (Figure S11), which is comparable to our estimated
maximum value (6.7 × 10−4 eV, see below) for a fundamental
WGM when the maximum mode overlap is achieved under
chloroform-filled conditions. This value is less than γ0,Tot by
about 2 orders of magnitude, confirming that our system still
operates in the weak-coupling regime even if the maximum
mode overlap is achieved. The lowest determined coupling
strength is approximately 1.0 × 10−4 eV, at which point our
experimental signal-to-noise ratio (SNR) in high-resolution
spectra precludes observation of weaker Fano antiresonances
due to their smaller magnitude.

Figure 5A shows that the distribution profile of g values
shifts to smaller values under chloroform-filled condition
relative to that under air-filled condition in one coupled system
(panel i, mean value decrease of 1.3×), whereas in another

Figure 4. LSP parameters determined via simultaneous fits to high-
resolution and low-resolution spectra. NR1-7 are single AuNRs
studied on one microbubble, and NR8 is a single AuNR on a different
microbubble. The error bar for NR3, chloroform-filled, is too small to
be observable.
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system (panel ii), larger g values are seen (mean value increase
of 1.4×). Further examination of other AuNR-microcavity
coupled systems (panels iii and iv in Figures 5A and S11)
shows that the distribution profile can upshift, downshift, or
barely change when chloroform fills the microbubble. Overall,
the mean of g across all of the experimental data sets is not
seen to change significantly, though specific nanorods may
exhibit an increase in g due to the location of the specific
nanorod relative to the WGMs. Simply analyzing the influence
of the chloroform on the mean of g and its distribution profile
is insufficient for deciphering the roles mode volume and mode
overlap play in affecting g and its statistical distribution.
Optical simulations via a finite element method provide

eigen solutions for WGM optical modes from which the mode

volume and mode spatial distribution can be derived to
compute theoretical estimates of g, which can be compared
with experimental values obtained through fits. Furthermore,
these theoretical estimates can be used to quantify the
interplay between changes in mode volume and mode overlap.
Thus, optical simulations were conducted to reveal the
contributions of mode volume and mode overlap to g. The
simulations take into consideration all of the WGM
eigenfunctions, regardless of mode volume, in a frequency
range that matches our pump range in experiments. These
simulations are then filtered to include only the specific
frequency ranges of the high-resolution spectra. In addition,
our finite SNR only allows fitting of Fano signatures with the
coupling strength above an experimentally determined
minimum value (∼1.0 × 10−4 eV), so simulations were post-
processed to only include those that are likely experimentally
observable (Supporting Information).

The expression for g is adapted from our previous work36

and shown in eq 2

=g e
mV

J4
(2)

where =J cos( )I r

I r

( )

max( ( ))
0

0

, = | |÷÷ ÷÷ ÷÷I r r E r( ) ( ) ( )0 0 0
2, ÷÷r( )0 is

the permittivity, and ÷÷E r( )0 is the electric field strength at the
location of an examined AuNR calculated by solving Maxwell’s
equations, and cos(θ) determines the AuNR’s orientation
relative to the TE polarization of the WGM with field vectors
parallel to the interior surface of a microbubble. Note that V is
obtained using the equation (V = ∫ ε(r)|E(r)|2 d3r/max[ε(r)|
E(r)|2]) according to ref 45. In addition to mode volume (V)
and mode overlap (J), factors specific to a particular WGM in
the weak coupling regime, the expression also contains the
effective mass (m). Using the relationship73 between the
effective mass and the ideal radiative damping rate for a point

dipole =i
k
jjj y

{
zzzm e

c
2
3

1
2

0,Rad

2

3 results in an underestimation of the

simulated g by over 2× (Supporting Information). However,
this calculation suffers from several non-idealities, including
imprecise experimental determination of γ0,Rad36 and an
assumption of perfect harmonic behavior73 despite consid-
erable damping. This issue was resolved instead by employing
a prolate spheroid model to analytically determine the effective
mass.76,77 This method is further corroborated in a different
recently examined coupled plasmonic−photonic cavity,36

where a microtoroid allows more accurate determination of
key system parameters due to the less densely packed mode
structure (see the Supporting Information and Figure S12). J is
spatially dependent on where single AuNRs are deposited on
the interior surface relative to the equator of the microbubble
along the z-axis and is thus a function of polar mode number
(Figure S7). Since the mode volume in the AuNRs is
substantially smaller as compared to that of WGMs in the
microbubble, the LSP is treated as a point dipole. When the
AuNR is located in the maximum of the WGM field, J is equal
to 1, i.e., maximum mode overlap is achieved, leading to the
above calculation for maximum coupling strength. Otherwise, J
decreases rapidly and may vanish when the AuNR sits in a
WGM node.

Unfortunately, estimating the precise position of the
nanoparticle relative to the microbubble waist is challenging
due to the difficulty of determining the absolute position of the

Figure 5. Distributions of g determined in experiments for four single
AuNRs (i−iv) (A) and comparison of changing distributions for g
between experiments and simulations for four AuNRs under air-filled
(black) and chloroform-filled (red) conditions (B−E), which are also
presented in Figure S13. The values of g are scaled by an implicit
factor of ℏ.
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waist using the photothermal image. Coarsely coaligning the
photothermal map and the optical image of the microbubble
allows determination of this parameter with an uncertainty of
∼10 μm, which prevents determination of the exact location of
individual AuNRs on the interior surface relative to the equator
along z-axis (Figure S6). To work around this limitation,
multiple spatial locations on the interior surface relative to the
equator are sampled for each WGM in our simulations (see the
Supporting Information and Figure S11). A distribution of g is
obtained at individual discrete spatial locations where a AuNR
may reside. As shown in Figure 5B−E, the changing behavior
in the simulated distributions of g due to different interior
photonic environments qualitatively resembles those in
experimentally determined distributions for the AuNRs.
When the spatial location of a AuNR moves further away
from the center of an air-filled microcavity (i.e., z has a large
magnitude), Fano antiresonances with low-valued coupling
strength are more common. Our simulations clearly demon-
strate this distinct trend (see Figure S13). Fano antiresonances
with smaller coupling strengths are less likely to be observed in
our measurements (see Figure 3A,B) because the spectral
features are less pronounced since there is a finite amount of
experimental noise. However, changing the dielectric environ-
ment from air to chloroform shmears out this spatial
dependence due to a rising number of accessible WGMs
(see Figure 3C,D), leading to a weaker dependence of Fano
antiresonance density on nanoparticle position and higher
overall density.
Importantly, simulations only include as inputs the LSP

resonant energy (ℏω0), which is extracted from the course
spectra, and the physical dimensions of the AuNR and
microbubble. The simulations do not include inputs from the
fine spectra, which are used to determine the experimental
values of g and are thus an independent estimation. In general,
simulations are able to approximate the magnitude of the g
values Figure 5B−E), as well as situations where higher g
values are observed in chloroform (Figure 5C), seen in air
(Figure 5E), or situations where the magnitudes are largely
similar (Figure 5B,D). Simulations for other AuNRs deposited
onto the same interior surface of the microbubble also
qualitatively agree with experimental results at particular
AuNR locations (Figure S11).
We further investigate the distribution of possible V, J, and

J/√V values. Here, we perform this analysis on the full set of
WGM eigenmodes over the pump wavelength window rather
than limiting to specific high-resolution windows and high
SNR values. The probability density distribution profiles of V
for air-filled and chloroform-filled microbubbles are shown in
Figure 6A. V in a chloroform-filled microbubble shows a
bimodal distribution, with peaks at 4500 and 5800 μm3. Only
the fundamental and a few low-order modes in the chloroform-
filled microbubble extend to the low-V regime, where they are
comparable to the mode volumes in the air-filled micro-
bubbles. Overall, the mean of V increases by a factor of ∼2
when chloroform is added. On the other hand, the distribution
of J spreads out relatively evenly in the chloroform-filled
microbubble (Figure 6B), whereas J exhibits a bimodal
distribution in the air-filled microbubble due to alternating
even and odd nodes. These two peaks will gradually merge as
the spatial location of the nanoparticle moves away from the
equator, and the values of J pile up at the lower bound,
suggesting very weak coupling strengths for nanoparticles far
from the equator (Figure S14). Such peaks are not initially

visible in the chloroform distribution because of the
contributions of high-order radial modes. Figure 6C shows
the probability density distribution of J/√V (∝g), where the
profile of the air-filled microbubble is also bimodal like J,
whereas the distribution profile is relatively narrow compared
to the distributions of both J and V in the chloroform-filled
microbubble. Thus, the diluting effect of the large mode
volumes in the chloroform-filled microbubble sometimes
offsets the contribution of the stronger mode overlap to the
overall interaction, particularly for higher-order modes. On the
other hand, in low-order modes, particularly fundamental
modes, this diluting effect is weaker, and overall, a stronger
interaction is seen. For example, when the fundamental modes
in both air and chloroform are coupled to a AuNR at z = 0, the
mode overlap increases from 0.1 to 1, whereas the mode
volume increases from ∼1100 from ∼2000 μm3. Taken
together, g is expected to increase by a factor of ∼7 for the
fundamental modes.

Alternative geometries can be pursued to decouple the
degrees to which J and V rise together when the AuNRs are
embedded in chloroform. If a single AuNR is embedded in a
thin layer of chloroform less than or comparable to the
thickness of the glass wall (∼608 nm) instead of a bulk
chloroform medium, then V does not increase significantly
while a stronger mode overlap is still preserved. Alternatively, a
smaller microbubble (diameter: ∼50 μm) provides a relatively
small V to begin with, which may decrease the degree to which
V increases when the microbubble is filled with chloroform.50

Another alternative strategy focuses on the use of water. If the

Figure 6. Kernel density distributions of V (A), J (B), and J/√V (C)
under air-filled (black curve) and chloroform-filled (red curve)
conditions. Distributions of J and J/√V are presented at the spatial
location of z = 0 μm projected along the microbubble z-axis (see
Figures S6 and S7). The values of J/√V are scaled by an implicit
factor of c6 3 3 . cos(θ) is assumed to be 1 in J.
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microbubble cavity operates at 780 nm, the interfacial mode in
a water-filled microbubble50 may provide the maximum mode
overlap with only a modest increase in mode volume, leading
to the maximum coupling strength.

■ CONCLUSIONS
We present a solvent-embedding method to influence
plasmonic−photonic interactions in a microbubble cavity.
We find that changing the dielectric environment by filling the
microbubble cavity with chloroform alters the system
parameters (g in particular), resulting in an increased
interaction for low-order WGM modes and a decreased or
minimally changed interaction for high-order WGM modes.
Our combined experimental and numerical approach reveals
that both V and J increase as the dielectric contrast decreases,
influencing the change in g in a competing manner. Our
simulated results qualitatively agree with the experimentally
determined distribution of g. This agreement implies that the
spatial locations of AuNRs relative to mode profiles of WGMs
may result in distinct distributions of g as the LSP interacts
with fundamental or low-order WGMs more strongly in the
chloroform-filled microbubble.28 The active control of the
interaction provides a new experimental handle for the design
of plasmonic−photonic microsensors for sensing of biomole-
cules and for other applications which rely on control of light−
matter interactions.
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