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The protein-protein interaction (PPI) networks can be regarded as powerful platforms

to elucidate the principle and mechanism of cellular organization. Uncovering protein

complexes from PPI networks will lead to a better understanding of the science of

biological function in cellular systems. In recent decades, numerous computational

algorithms have been developed to identify protein complexes. However, the majority

of them primarily concern the topological structure of PPI networks and lack of the

consideration for the native organized structure among protein complexes. The PPI

networks generated by high-throughput technology include a fraction of false protein

interactions which make it difficult to identify protein complexes efficiently. To tackle these

challenges, we propose a novel semi-supervised protein complex detectionmodel based

on non-negative matrix tri-factorization, which not only considers topological structure

of a PPI network but also makes full use of available high quality known protein pairs

with must-link constraints. We propose non-overlapping (NSSNMTF) and overlapping

(OSSNMTF) protein complex detection algorithms to identify the significant protein

complexes with clear module structures from PPI networks. In addition, the proposed

two protein complex detection algorithms outperform a diverse range of state-of-the-art

protein complex identification algorithms on both synthetic networks and human related

PPI networks.

Keywords: PPI, protein complex, NMTF, module structure, must-link constraint

1. INTRODUCTION

Specific biological functions are usually carried out by a group of interacted proteins rather than
by a single protein in human cells. In the past few decades, a large amount of protein-protein
interactions (PPI) have been exploited with the development of a broad range of high-throughput
experimental technologies, such as two-hybrid systems (Ito et al., 2001) and mass spectrometry
(Aebersold and Mann, 2003). However, there is plenty of scientific knowledge that remains to be
uncovered from PPI networks beyond sole interactions between proteins. A tacit assumption is
that protein pairs with similar links are considered to perform similar functions which paves the
way of exploring protein complexes. Generally, PPI networks have diverse topological properties
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such as module structure (Wagner et al., 2007), which
possess numerous densely connected. Then, a large number
of researchers focus on splitting a PPI network into dense
groups such as protein complexes (Zahiri et al., 2020). Therefore,
identifying protein complexes accurately is fundamental to
demonstrating the underlying biological processes within cells.
In recent years, large amounts of computational algorithms have
been presented to detect protein complexes automatically from
PPI networks in computational biology fields (Ashtiani et al.,
2018).

As we all know, a PPI network is usually formulated as
an undirected graph with weighted or un-weighted edges in
accordance with the protein-protein interaction data. In general,
proteins are treated as nodes and interactions act as edges
in a graph. Since proteins that interact with each other are
thought to be more likely to execute similar biological function
to those non-wired proteins within PPI networks, thus, there
are more than one tightly linked regions in a graph which
are empirically considered as protein complexes (Spirin and
Mirny, 2003; Tadaka and Kinoshita, 2016). The problem of
detecting protein complexes can be regarded as a community
detection issue in the complex network field. Therefore, it is a
popular way to make use of classical clustering algorithms or
community detection methods to discover potential modular
structures within which proteins that are densely linked to each
other are treated as protein complexes from PPI networks (Bader
and Hogue, 2003; Liu et al., 2019).

In recent decades, numerous computational algorithms
have been exploited to identify protein complexes from PPI
networks. These methods can generally be grouped into two
categories: unsupervised and supervised (or semi-supervised).
Many unsupervised methods have been proposed to detect
non-overlapping protein complexes from PPI networks, such
as the betweeness-based algorithm proposed by Holme et al.
(2003), shortest path based approach devised by Arnau et al.
(2005) and other hierarchy-based clustering algorithms (He
and Chan, 2018). Furthermore, proteins often participate in
more than one complex to accomplish various functions;
therefore, methods have been developed to consider overlaps
among protein complexes (e.g., MCODE Bader and Hogue,
2003, CFinder Adamcsek et al., 2006, and ClusterONE Nepusz
et al., 2012). However, these unsupervised algorithms solely
focus on the topological structures of PPI networks. Currently
available PPI networks are sparse because only a small
subset of interactions between protein pairs generally occur
(e.g., fewer than 20% of the possible links have been
exploited in human cells) (Menche et al., 2015). Furthermore,
considerable amounts of false positive interactions exist in
sparse PPI networks, such that the proportion of false positive
edges between proteins may approach 50% (Von Mering
et al., 2002). These limitations have been the dominant
obstacles to the discovery of specific protein complexes
from PPI networks (Xu et al., 2018). Thus, the protein
complexes detected by the existing unsupervised protein complex
predicted algorithms, which solely focus on PPI network
topological structure, may have limited accuracy (Yao et al.,
2019).

Fortunately, substantial high-quality hand-curated protein
complex data are available (e.g., MIPS protein complex database
for yeast species Pagel et al., 2005 and CORUM protein complex
catalog for mammalian species Giurgiu et al., 2019); these
can be regarded as prior information and used to enhance
the detection of protein complexes for supervised algorithms.
Therefore, various supervised models have been devised to
identify protein complexes by simultaneously considering both
prior knowledge and topological structures of PPI networks.
To the best of our knowledge, SCI-BN (Qi et al., 2008) is
the first supervised protein complex detection algorithm; this
was proposed by using conditional probability for a subgraph
of complex building. A Bayesian network was first calculated
for each subgraph; the topological and biological features of
known complexes were then used to train the BN model to
enable estimation of parameters in the model. Finally, the
underlying protein complexes in PPI networks were exploited
in accordance with confidence scores generated by the trained
BN model. Recently, a novel neural network-based semi-
supervised model has been developed (Shi et al., 2011), in
which a neural network was trained using combinations of
both topological and biological features of known protein
complexes. In contrast to these two supervised learning models,
multiple complex features have been extracted from true protein
complexes and subjected to regression analysis to discover
protein complexes (Yu et al., 2014). Notably, protein complexes
can be obtained from individual experiments (e.g., tandem
affinity purification with mass spectrometry), but this process
is inefficient because biological experiments are usually time-
consuming and expensive (Wang et al., 2019).

The supervised algorithms described above can detect
true protein complexes that may be missed by unsupervised
algorithms; however, prior knowledge regarding known
complexes does not directly enable identification of protein
complexes. This may hamper the use of prior information, such
that real protein complexes cannot be mined effectively. Most
algorithms regard a protein complex as a module that has a
set of proteins with similar linkage patterns (Cao et al., 2018).
The cluster separation principle (Yu and Xu, 2014) indicates
that a good protein complex detection result should have a
minimum number of links among modules to imply clear
module structure. However, there has been minimal attention
to the module structures of protein complexes detected by the
supervised and unsupervised algorithms mentioned above.

To address these challenges, we propose a novel semi-
supervised protein complex detection model based on non-
negative matrix tri-factorization (SSNMTF). This combines
network topological structure and prior information indicating
that some proteins belong to the same protein complex, thus
enabling efficient discovery of protein complexes from PPI
networks. Moreover, the physical meanings of the two factorized
matrices in SSNMTF are clear, such that one matrix depicts
protein community membership and the other matrix indicates
module structure. Additionally, the prior information is modeled
as a pairwise constraint to guide the learning process regarding
each protein’s module membership and clarify the module
structures of detected protein complexes.
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In this work, our main contributions are as follows:

1. We propose a novel semi-supervised module detection
model (SSNMTF) that uses protein pairwise constraint as
prior information to identify non-overlapping or overlapping
protein complex fromweighted or un-weighted PPI networks.

2. We use prior information to simultaneously guide the learning
processes of a protein membership indicator matrix and a
module relationship matrix in SSNMTF.

3. We develop a novel parameter-free method to automatically
identify overlapping protein complexes using the protein
membership indicator matrix.

4. We provide a corresponding initialization strategy for each
respective variable to ensure that the proposed model
SSNMTF has a stable solution.

2. MATERIALS AND METHODS

In this section, we provide a detailed demonstration of the
proposed novel semi-supervised protein complex detection
model based on non-negative matrix tri-factorization. The
process of protein complex identification is likely to benefit from
incorporating prior information, which is available from various
sources. For example, when the gene expression level or semantic
similarity and biological meaning are comparable between two
proteins, this valuable prior information can support the protein
complex detection algorithm by allowing clustering into a single
protein complex, although these proteins may not directly
interact in a PPI network. Furthermore, we show that the
proposedmodel SSNMTF ismore efficient than traditional NMF-
based methods for detecting protein complexes.

In this manuscript, we denote a PPI network by an undirected
graph P = (V ,E), where V = {Vi}ni=1 is a collection of n
proteins and E is a set of m edges, such that each edge links a
pair of proteins in V . Generally, a symmetric adjacency matrix
A = [aij] ∈ R

n×n
+ is used to indicate an undirected graph P and

the element aij indicates the weight of a link between the ith and
jth proteins. If a PPI network is un-weighted, by convention, we
set aij = 1 if and only if the ith protein and jth proteins interact
with each other; otherwise, we set aij = 0. Because of the limited
small amount of protein-protein interaction data, the adjacency
matrix A is sufficiently sparse to elicit poor performance from
protein complex detection algorithms.

2.1. Non-negative Matrix Factorization
NMF is a method of decomposing a given original non-negative
matrix into low rank non-negative matrices; multiplication
of these matrices can approximate the original matrix. The
NMF exhibits great power with respect to better parts-of-
whole interpretability of the factorized matrices, and it has
been successfully applied to a broad range of real-world
context (e.g., image, text, information retrieval, community
detection, and bioinformatics) (Liu et al., 2017b; Ma et al.,
2018). NMF comprises a high-performance approach to detect
protein complexes within PPI networks. Non-negative matrix

factorization-based models have been designed to identify
modules from complex networks; furthermore, NMF-based
algorithms have a strong scalability for the use of prior
information (Yang et al., 2014). However, the physical meaning
of the two factorized matrices is unclear, and the approximating
matrix produced by these matrices cannot describe specific
links between any two proteins (Binesh and Rezghi, 2018) in
PPI networks.

In the traditional NMFmodel, the Euclidean distance between
original matrix and the product of these two factorizedmatrices is
regarded as the cost function, and its objective function is defined
as follows.

J1(W,H) = min
W≥0,H≥0

∥

∥

∥
A−WHT

∥

∥

∥

2

F
(1)

where W = [wij] ∈ R
n×k
+ is the base matrix and H = [hij] ∈

R
n×k
+ is the module indicator matrix and k (k≪ n) is the number

of modules. However, the intuitional physical meanings of the
two factorized matrices W and H are ambiguous (Binesh and
Rezghi, 2018), and their product cannot effectively describe the
original interaction between protein pairs because the rows and
columns of matrix A are indexed by proteins. However, there
is no evidence that the rows and columns of the approximating
matrix (produced by matricesW andH) are indexed by the same
objects (Zhu et al., 2007). Because the adjacency matrix A is
symmetric, the symmetric NMF (SNCF) (Ou-Yang et al., 2013)
community detection method has been proposed to uncover
protein complexes and the objective function is involved as

J2(H) = min
H≥0

∥

∥

∥
A−HHT

∥

∥

∥

2

F
(2)

Notably, the eigenvalues of a semi-positive definite matrix
Ā= HHT are all non-negative, but the eigenvalues of the original
matrix A might be negative. Therefore, SNMF is unsuitable for
approximating the original matrix (Zhang and Yeung, 2012).
Moreover, the diagonal entities of Ā are generally positive,
whereas the corresponding entities of matrix A are equal to zero.

To overcome the drawback of NMF and SNMF, a bounded
nonnegative matrix tri-factorization (Jing et al., 2012), NMTF,
has been proposed which is formulated as

J3(F,G) = min
F≥0,G≥0

∥

∥

∥
A− FGFT

∥

∥

∥

2

F
(3)

where k (k≪ n) is the number of modules, F ∈ R
n×k
+ is a protein

membership indicator matrix, and G ∈ R
k×k
+ is a symmetric

module relationship matrix that is responsible for the negative
eigenvalues. Furthermore, G can be regarded as the structure of
detected modules because gij describes the relationship between

modules i and j. Additionally, the product of FGFT can identify
relationships between any two proteins. Therefore, NMTF is used
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in this work to detect protein complexes from PPI networks.

2.2. Clear Module Structure With Pairwise
Constraint
The pairwise constraint utilized in this work is the must-link
constraint that indicates that two proteins should be clustered
into the same protein complex (i.e., two corresponding proteins
with the must-link constraint should have the same module
label). If we know that the prior information which formulated
as must-link constraint in advance, then a must-link constraint
matrix M = [mij] ∈ R

n×n
+ is constructed, where mij = α if the

ith protein and the jth protein belong to a same protein complex;
otherwise, mij = 0. In this work, the must-link constraint is
introduced into the NMTF model to simultaneously guide the
learning processes of protein membership indicator matrix F and
module structure matrix G.

To ensure that a protein pair (i and j) with must-link
constraint has the same module label, the two corresponding
module indicator vectors (fi and fj) should be similar to each
other. Thus, the distance between fi and fj should be as small
as possible. Euclidean distance is utilized as the distance metric
between two vectors in this work which can be denoted as
d1(fi, fj) = ‖fi − fj‖22. Then the learning process of matrix F

can be guided by the must-link constraint matrix M with the
following term:

P1(F) = min
F

1

2
×

∑

i,j

mi,j × d1
(

fi, fj
)

= min
F

Tr
(

FTDF
)

− Tr
(

FTMF
)

= min
F

Tr
(

FTLF
)

(4)

where D = [di,j] ∈ R
n×n
+ is the diagonal matrix for matrix M

(di,i =
∑n

j=1mi,j) and L = D − M is the Laplacian matrix,

Tr(•) denotes the trace of matrix. In each row of matrix F, the
index of the largest element is the protein complex label for the
corresponding protein.

It is difficult to use prior information to guide the learning
process regarding the relationship of the detected protein
complexes to directly obtain a clear module structure. Moreover,
we noticed that matrixG depends on matrix F, thus, the presence
of matrix F implies a corresponding matrix G. The (i, c)th
element fic denotes the propensity that the ith protein belongs
to the cth module. Considering the relationships between the
cth module and all detected modules, we reconstruct a new
propensity that the ith protein belongs to the cthmodule by ric =
∑

k fikgkc. For example, as shown in Figure 1, the reconstructed
propensity between protein p and module 1 can be acquired
by rp1 =

∑

k fpkgk1. Accordingly, when we reconstruct the
probability that protein p belongs to module 1, the propensities
between protein p and all detected modules are considered, as are
the relationships between module 1 and all modules.

FIGURE 1 | Reconstruction of propensity between a protein and modules. p

denotes a protein, m represents a module and k represents the number of

modules.

The reconstructed matrix is defined as R = [ric] ∈ Rn×k
+ =

FG, which can be viewed as a new membership matrix for
all proteins. From a mathematical perspective, with the aid of
module structurematrixG, we projected the proteinmembership
indicator matrix F into the protein-to-module relationship
matrix R; each row of R denotes the reconstructed protein
module indicator vector for each protein. The two corresponding
rows (ri and rj) of a protein pair (i and j) with the must-
link constraint should also be similar to each other to enable
clustering into a single protein complex. Hence, to achieve a clear
module structure of all detected protein complexes, we proposed
a novel penalty term for the must-link constraint. The Euclidean
distance is used to measure the difference between ri and rj
which denotes the memberships for the ith and jth proteins,
respectively. Thus, ri and rj should be as close to each other as
possible if proteins i and j with the must-link constraint. This

yield d2(ri, rj) = ‖ri − rj‖22 =
∥

∥(FG)i − (FG)j
∥

∥

2

2
. Consequently,

the novel penalty term of the must-link constraint that is used to
achieve a clear module structure can be formulated as follows:

P2(F,G) = min
F,G

1

2
×

∑

i,j

mi,j × d2(ri, rj)

= min
F,G

Tr
(

(FG)TD(FG)
)

− Tr
(

(FG)TM(FG)
)

= min
F,G

Tr
(

(FG)TL(FG)
)

(5)

where the matrices D, M, and L are the same as in Equation (4).
Moreover, this term can be utilized to concurrently guide the
learning process of matrices F and G.

2.3. SSNMTF
The main idea in this work is not to simply incorporate the
prior information into the original PPI network;instead, it is
intended to merge prior information into a unitary model to
concurrently guide the learning process of protein membership
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indicator matrix F and module structure matrix G. Therefore,
the objective function of the proposed model SSNMTF has been
formulated as follows:

J(F,G) = min
F≥0,G≥0

∥

∥

∥
A− FGFT

∥

∥

∥

2

F
+ Tr

(

(FG)TL(FG)
)

+ Tr(FTLF)

(6)

The second term is used to learn a more rationalG, thus ensuring
that the module structure of the detected protein complexes is
clear. The corresponding protein complexes can more easily be
separated from each other. The third term is used to learn the
protein membership indicator matrix, which can ensure that two
proteins with the must-link constraint are clustered into a single
protein complex. According to the trace knowledge of matrices
such as Tr(A) = Tr(AT), ‖A‖2F = Tr(AAT) and Tr(AB) =
Tr(BA), Equation (6) can be rewritten as follows:

J(F,G) = min
F≥0,G≥0

Tr(FGFTFGFT − AFGTFT

− FGFTAT + AAT)+ Tr
(

(FG)TL(FG)
)

+ Tr(FTLF)

(7)

To satisfy the non-negative constraints on matrices F = [fij] ≥ 0

and G = [gij] ≥ 0, two Lagrange multipliers 9 = [ψij] ∈ R
n×k
+

and8 = [φij] ∈ R
k×k
+ are introduced for each respective matrix.

Then the lagrange (Equation 7) can be rewritten as follows:

Jl(F,G) = min
F,G

Tr(FGFTFGFT − AFGTFT − FGFTAT

+ AAT)+ Tr
(

(FG)TL(FG)
)

+ Tr(FTLF)

+ Tr(9FT)+ Tr(8GT)

(8)

Equation (8) is not convex with both matrices F and G as
concurrent variables, but it is convex when one matrix (only F or
only G) is constant. To obtain optimal F and G, thus achieving
a local minimum for (Equation 6), we iteratively update one
matrix while keeping the other fixed. The partial derivatives of
Equation (8 against variable matrices F and G are

∂Jl

∂F
= 2FGFTFG− 2AFG+ LFGG+ LF +9

∂Jl

∂G
= FTFGFTF − FTAF + GFTLF +8

(9)

By letting the partial derivatives of F and G be equal to zero and
employing Karush-Kuhn-Tucker (KKT) conditions ψikfik = 0
and φjkgjk = 0, then the updating rules of matrices F and G can
be obtained as follows:

F = F ⊗ 2AFG+MF(GG+ I)

2FGFTFG+ DF(GG+ I)
(10)

G = G⊗ FTAF + GFTMF

FTFGFTF + GFTDF
(11)

where ⊗ represents the Hadamard product of two matrices,
I is the identity matrix. The two matrices F and G will be
updated iteratively until the value of Equation (6) does not
change or the maximum number of iterations set in advance has
been reached.

2.4. Initialization Strategy
Because the proposedmodel SSNMTF is sensitive to initial values
of matrices F and G, we provide an initialization strategy for
each matrix, thus achieving a stable solution for SSNMTF. A
community detection algorithm named K-rank-D (Li et al., 2015)
has been proposed in which initial seeds for all modules are
provided. The meaning of matrix C, composed of these seeds,
is similar to the meaning of matrix F in SSNMTF. Therefore,
we initially set F = C. Because G describes the module
structure of predicted protein complexes, we initially expect that
the relationships are similar among all protein complexes. The
following two strategies are then used to initialize G in a row
specific manner. For the ith row, the sum of all elements is one,
∑k

j=1 gij = 1. Moreover, the value of each element is close to

but not equal to 1/k, gi,j = 1/k + ǫ, where ǫ is a small value
and k is the number of predicted protein complexes. We describe
the proposed SSNMTF model in Algorithm 1, ǫ was set to 10−15

and the maximum number of iterations τmax was set to 1,000 in
this work.

Algorithm 1: The proposed SSNMTF

Input: parameter α, adjacency matrix A ∈ Rn×n, must-link set
MS, number of protein complexes k, maximum number of
iterations τmax

1: Construct the must-link constraint matrix M ∈ Rn×n in
terms of MS

2: Initialize: F and G according to the initialization strategy, t
= 1

3: while not converge do
4: Keep matrix G fixed, and update matrix F according to

Equation (10)
5: Keep matrix F fixed, and update matrix G according to

Equation (11)
6: Calculate the value Jt of objective fuction according to

Equation (6)

7: Check the convergence: if |Jt+1−Jt |
Jt

< ǫ or t > τmax, else t =
t +1

8: end while

Output: module indicator matrix F and module relationship
matrix G

2.5. Protein Complex Detection
2.5.1. Non-overlapping Protein Complex Detection
The element fic in matrix F indicates the strength of the
prediction that protein i belongs to protein complex c.
Accordingly, the index cwith themaximum value in the ith row is
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the assigned protein complex of protein i, which can be expressed
as c = argmax

c
fic. The number of protein complexes is difficult

to determine because prior information is sparse regarding the
number of modules in real PPI networks. Each column in Fmay
represent an empty module if no value is the largest value in
its corresponding row. Therefore, k can receive a comparatively
large value to ensure that it can adaptively determine the number
of modules. In this work, the proposed non-overlapping protein
complex detection method is denoted as NSSNMTF.

2.5.2. Overlapping Protein Complex Detection
We propose a novel parameter-free method to detect overlapping
protein complexes, using matrix F. Suppose that we have four
proteins p1, p2, p3, p4 that belong to three protein complexes
m1,m2,m3, where m1 = {p1, p2}, m2 = {p2, p3, p4} and m3 =
{p1, p4}. The protein membership indicator matrix F can be
constructed for all proteins, such that fij = 1 if protein i belongs
to protein complex j, otherwise, fij = 0. Notice that the values

of the product of FTF provide the overlap (number of member
proteins) of corresponding protein complexes, accordingly, the
diagonal elements indicate the size of corresponding protein
complexes (these diagonal elements will be real values when the
value of the element in F ranges from 0 to 1).

F =









1 0 1
1 1 0
0 1 0
0 1 1









FTF =





2 1 1
1 3 1
1 1 2



 (12)

In PPI network applications, each column of F represents a
protein complex and each entry of one column indicates the
strength of a protein’s contribution to this protein complex.
Therefore, all entries are ranked in descending order according
to their values in each column. For any protein complex c, the

cth column of ordered F is indicated by f̂c
T = (f̂ c1 , f̂

c
2 , . . . , f̂

c
n),

where f̂ c1 > f̂ c2 > . . . > f̂ cn . Thus, the corresponding protein

vector of f̂c
T
is expressed by pTc = (pc1, p

c
2, . . . , p

c
n) where p

c
i is the

protein associated with value f̂ ci . We sequentially accumulate the

elements in f̂c until their sum is greater than or equal to the size
of module c which is the cth item in a vector composed of the

diagonal elements of matrix FTF. For example, if f̂ c1 + f̂ c2 + f̂ c2 ≥
(FTF)cc and f̂ c1 + f̂ c2 < (FTF)cc, the corresponding proteins pc1,
pc2 and p

c
3 will be selected as members of the cth protein complex.

The detected protein complexes will overlap with each other if
they are essentially overlapped. The predicted protein complexes
containing fewer than three member proteins will be filtered out.
We also assign k a comparatively large value, which allows it to
adaptively determine the number of modules. In this manuscript,
the proposed overlapping protein complex detection method is
denoted as OSSNMTF.

2.6. Datasets
In this manuscript, five binary PPI networks of humans extracted
from HuRI (Luck et al., 2020), MINT (Licata et al., 2012),

BioGRID (Oughtred et al., 2019), mentha (Calderone et al.,
2013), and STRING (version 11) (Szklarczyk et al., 2019),
respectively, and one weighted PPI network extracted from
STRING are used. The network we extracted from BioGRID
is based on BioGRID multi-validated datasets in which each
physical interaction passes a specific set of criteria. Each
interaction between a protein pair in STRING has a confidence
score. We extract a weighted PPI network named WSTRING,
in which the confidence score of each interaction is ≥700
(Ananthasubramanian et al., 2012). In addition, an un-weighted
PPI network named STRING is extracted from WSTRING by
ignoring the weights of interactions.

Two manually curated protein complex databases are used
as references. The first is the human protein complex database
with a complex quality index (PCDq) (Kikugawa et al., 2012),
which includes both known and predicted complexes. The
second protein complex database is extracted from CORUM
(Giurgiu et al., 2019), including a set of manually annotated
mammalian protein complexes, by filtering out nonhuman
protein complexes. Additionally, the prior information is derived
from CORUM and PCDq (details are provided in section D).
Proteins absent from the corresponding PPI networks are filtered
out from PCDq and CORUM, respectively. Moreover, we only
retained protein complexes comprising at least three distinct
proteins. The detailed information regarding the original PPI
networks and corresponding protein complex databases is shown
in Table 1,

#protein is the number of proteins and #edge is the number of
interactions in PPI networks. #cc and #cp denote the respective
numbers of covered complexes and proteins for each human
PPI network according to different complex references, and
#as represents the mean size of the covered complexes. The
information regarding WSTRING is identical to the information
describing STRING.

2.7. Evaluation Metrics
To evaluate the performance for protein complex detection
algorithms, the metrics such as cluster-wise Sensitivity (Sn),
cluster-wise positive predictive value (PPV), Accuracy (Acc),
precision, recall, F1 (Cao et al., 2016) and maximum matching
ratio (MMR) (Nepusz et al., 2012) are used to assess the
similarity between the predicted protein complexes (P) and the
golden standard complex sets (G). To measure the matching rate

TABLE 1 | Information of 5 human PPI networks and 2 golden standard complex

databases.

PPI

network

#protein #edge CORUM PCDq

#cc #cp #as #cc #cp #as

HuRI 8,135 52,398 259 840 6.05 322 1,046 4.17

BioGRID 8,766 4,0621 762 2,012 6.31 725 2,473 4.63

MINT 9,995 31,324 674 1,763 6.21 618 2,088 4.59

mentha 16,584 180,948 815 2,139 6.15 890 2,974 4.41

STRING 17,185 420,534 821 2,143 6.17 881 2,989 4.51
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between a predicted protein complex and a benchmark one, we
follow the neighborhood affinity (NA) score which is defined
as follows:

NA(p, g) =
|Np ∩ Ng |2
|Np||Ng |

(13)

NA is used to measure the overlapping degree between a
predicted protein complex p and a golden standard reference
complex g, and p, and g are regarded to match each other
when NA(p, g) ≥ 0.25. Then the precision, recall, F1 sensitivity
(Sn), positive predictive value (PPV), and accuracy (Acc) are
introduced to assess the performance of the protein complex
detected algorithms. After all detected protein complexes get
their best matched real protein complexes in terms of NA values,
then precision, recall, and F1 are defined as

Ncb = |{b|b ∈ Gc, ∃p ∈ Ds,OL(p, b) ≥ 0.2}|
Ncp = |{p|p ∈ Ds, ∃b ∈ Gc,OL(b, p) ≥ 0.2}|

(14)

Precision =
|Ncp|
|Ds|

,Recall = |Ncb|
|Gc|

(15)

F1 = 2× Precision× Recall

Precision+ Recall
(16)

Letm = |P|, n = |G|, tij denote the number of common proteins
that exist in both the ith predicted protein complex and jth
reference golden standard complex, andNj denote the number of
proteins in the jth complex and then Sn, PPV and Acc are defined
as follows:

Sn =
∑n

j=1maxi{tij}
∑n

j=1 Nj
(17)

PPV =
∑m

i=1maxj{tij}
∑m

i=1

∑n
j=1 tij

(18)

Acc =
√
Sn× PPV (19)

Sn is used tomeasure the proteins in predicted protein complexes
covered by reference complexes, PPV is utilized to assess
the matching rate between detected protein complexes and
golden standard complexes and acc is the geometric means
of Sn and PPV. MMR is calculated by a maximal one-to-one
mapping between predicted protein complexes and gold standard
complexes which is defined as follows:

MMR =
∑n

i=1maxjNA(i, j)

n
(20)

The enrichment analysis for predicted protein complexes was
performed by calculating the p-value from the hypergeometric
distribution (Li et al., 2010), which is defined as follows:

p− value =
f

∑

x=q

(f
x

)(t−f
t−x

)

(t
k

)
(21)

where t represents the total number of proteins in the PPI
network, k is the number of proteins in one identified protein
complex, f denotes the number of proteins annotated by any
one Gene Ontology (GO) term gt and q indicates the number of
proteins annotated by gt in any one detected protein complex.
The smaller the p-value, the more biologically significant the
corresponding detected protein complex (Bhowmick and Seah,
2015), in other words, a predicted protein complex with a smaller
p-value is more likely to be a true protein complex.

3. RESULTS

We performed experiments regarding both synthetic benchmark
networks and human-related PPI networks to investigate
the effectiveness of our proposed models NSSNMTF and
OSSNMTF. We first assessed the performances of NSSNMTF
and OSSNMTF on synthetic networks with known benchmarks.
The LFR network generator was used to produce networks
with non-overlapping and overlapping modules. To clarify the
effectiveness of our proposed models NSSNMTF and OSSNMTF,
we compared the following algorithms: six semi-supervised
module detection algorithms (i.e., PCNMF, PCSC Yang et al.,
2014, CPSNMF Wang et al., 2015, PCNMTF Liu et al., 2017a,
svdcnmf Lu et al., 2020, and SNFM Man et al., 2019, which
can use identical pairwise constraints and a single initial protein
membership matrix F, as in our proposed algorithms), and two
unsupervised module identification algorithms (i.e., ClusterONE
Nepusz et al., 2012 and NCMine Tadaka and Kinoshita,
2016, which can identify overlapping protein complexes). All
parameters used in each compared algorithm were set according
to the suggestions of their authors. Additionally, PCNMF,
CPSNMF, PCSC, svdcnmf, SNFM, PCNMTF, and ClusterONE
have been shown to identify protein complexes from weighted
PPI networks.

3.1. Parameter Analysis
Only one parameter α used in SSNMTF can balance the tradeoff
between topological information and priori information. To
explore how this parameter affects the performance of SSNMTF,
we evaluated the performance of our proposed two algorithms
NSSNMTF and OSSNMTF on HuRI network as α varied
from 0.1 to 1,000. To discuss how to determine α, for better
illustration, we displayed ACC, MMR, and F1 (mean values over
50 experiments) with different α by taking CORUM as the golden
standard in Figure 2. Since the must-link information used in
this work comes from the golden standard protein complexes, the
performance of our proposed algorithms consistently increases as
we weight more on must-link information. Figures 2A,B show
that as the value of α increases, the performances of NSSNMTF
andOSSNMTF improve at first and then decrease after α is larger
than 10. Taking NSSNMTF on HuRI network as an example due
to the fact that NSSNMTF is more sensitive than OSSNMTF as
shown in Figure 2, as 10% must-link is used, the ACC reaches
0.31, 0.32, and 0.39 when we set α as 0.1, 1, and 10 respectively.
However, the ACC reaches 0.32 and 0.28 when we set α as 100
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FIGURE 2 | The impact of parameter α on the performance of NSSNMTF and OSSNMTF. (A) The performance of NSSNMTF with different values of α on HuRI. (B)

The performance of OSSNMTF with different values of α on HuRI. The x-axis represents the value of α, y-axis denotes values of ACC, MMR and F1.

and 1,000. The reason is that according to the objective function
of the proposed mode SSNMTF (Equation 6), α controls the
contribution of the topological structure of the PPI network
and must-link information. At the beginning, increasing α can
significantly improve the performance (e.g., α = 10) which
means the must-link information plays a important role in
detecting protein complexes, but the performance degrades when
we set a large α (e.g., α = 1, 000) that indicates (Equation 6)
pays much more attention to must-link information than to the
topological structure of a PPI network. From Figure 2, we can
find that both NSSNMTF and OSSNMTF perform better when
α is in the vicinity of 10 in terms of ACC, MMR, and F1. The
influences of α on other human PPI networks are similar to the
influences on HuRI, thus the only one parameter α in SSNMTF
is set to 10 for all experiments.

3.2. Synthetic Networks
To clarify the performance difference of all compared methods,
we first evaluated the performance improvement on synthetic
networks. The LFR networks (Lancichinetti et al., 2008)
generator can produce networks with known overlapping and
non-overlapping ground truth and it allows to specify the
generated networks with serval parameters including N (number
of nodes), ad (average degree of nodes), dmax (maximum degree
of nodes), mmin (minimum module size), mmax (maximum
module size), µ (mixing parameter), on (number of overlapping
nodes), and om (number of modules for overlapping nodes). The
mixing parameter µ determines the clarity of the topological
structure, and the greater value of µ means the more blurred
module structure of generated networks. In this manuscript, we
set N = 1, 000, ad = 15, dmax = 50, mmin = 20, mmax = 50 and
µ varying from 0.6 to 0.7 for non-overlapping and overlapping
module benchmark networks. In addition, for overlapping
module benchmark networks, we set on = 200 and om =

2. The normalized mutual information (NMI) (Lancichinetti
et al., 2009) was used to evaluate performances for both non-
overlapping and overlappingmodule detectionmethods. A larger
value of NMI is associated with algorithm based detection of a
better module result.

The must-link constraints were derived from ground-truth
with the same method as was introduced in Yang’s work (Yang
et al., 2014). We generated 100 LFR networks in a random
manner, using the parameters introduced above for different
µ; we then reported the mean NMI and standard deviation
in terms of different percentages of must-link constraints in
Figure 3. With respect to non-overlapping (Figures 3A,B) and
overlapping (Figures 3C,D) network benchmarks, NSSNMTF
is superior to PCNMF, PCSNMF, and PCSC, while OSSNMTF
is superior to ClusterONE and NCMine particularly when the
modular structure becomes unclear (i.e., a lager µ). Figure 3
shows that prior information regarding must-link constraints
can significantly improve the performance of module detection
methods. Moreover, the performances of both NSSNMTF and
OSSNMTF shows greater increases in ambiguous networks (i.e.,
µ = 0.7). For example, the NMI of NSSNMTF reached 0.99 when
a 7% must-link constraint was used; the second highest NMI
0.87 was observed on non-overlapping networks with µ = 0.7.
When the networkmodule structure was ambiguous (Figure 3D)
and nodes could belong to multiple modules, the performances
of NSSNMTF and OSSNMTF were significantly better than the
performances of other compared algorithms.

The proposed model SSNMTF outperforms other state-of-
the-art module identification approaches on diverse synthetic
networks because it appeared to more efficiently make full use
of prior information. The pairwise constraint is used to guide the
process of leaning module membership for each node; it can also
clarify the module structure of detected modules. For example,
the module structures of distinct module results generated by
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FIGURE 3 | NMI of compared methods with respect to diverse percentages of must-link constraints extracted from ground-truth. (A,B) Regarding LFR networks with

non-overlapping modules; (C,D) Regarding LFR networks with overlapping networks. The x-axis represents the ratio of must-link constraints, y-axis denotes value of

NMI.

PCNMTF and NSSNMTF, using identical prior information,
on the LFR network with µ = 0.7 are shown in Figure 4.
The relationships among modules detected by PCNMTF are
shown in Figure 4A. The findings show that some relationships
between predicted modules are larger than the module itself
which implies an ambiguous module structure. Furthermore, the
module structure matrix G is learned by the proposed model
NSSNMTF using only 1% pairwise constraint is showed in
Figure 4B, the result indicates that the diagonal values are larger
than other values, suggesting that the detected modules have a
clear module structure.

3.3. Human PPI Networks
The prior information (i.e., must-link constraints) used in
SSNMTF is extracted from CORUM and PCDq using the
approach suggested in Yang et al. (2014). Because some proteins

participate in multiple complexes, a must-link constraint is
constructed for a protein pair if the two corresponding proteins
are involved in only a single protein complex. Thus, Np =
Nc(Nc − 1)/2 must-link constraints will be extracted from a
specific complex, which contains Nc proteins. In this work, we
randomly chose 10% must-link constraints, based on Np, as
prior information. The information regarding extracted must-
link constraints from CORUM and PCDq for all three human
PPI networks is listed in Table 2. To assess the quality of the
proposed protein complex detection model SSNMTF, we first
evaluated the ability of the proposed model SSNMTF to predict
true protein complexes. The initial possible number of detected
protein complexes was set to 1,000 for all PPI networks. Although
the must-link constraints used as prior information were derived
from CORUM and PCDq, these data do not explicitly indicate
the protein memberships of protein pairs. Furthermore, the data
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FIGURE 4 | Module structures (matrix G) of the LFR (µ = 0.7) network generated by PCNMTF and NSSNMTF. (A) Module structure generated by PCNMTF using 1%

prior information; (B) Module structure predicted by NSSNMTF using 1% prior information. The x- and y-axis denotes the ID of detected modules. The color scale

represents the strength of the correlation between two modules, blue means the correlation is weak, while yellow means strong.

TABLE 2 | Information of must-link constraints (10%) for all PPI networks.

Network #must-link #covered protein

HuRI 788 1,017

BioGRID 1,249 1,509

MINT 1,352 1,971

mentha 2,569 2,765

STRING 2,563 2,769

do not indicate the number of protein complexes in which
PPI networks should be clustered. Importantly, the proteins
used in must-link constraints are only a subset of data from
CORUM and PCDq, and both CORUM and PCDq are used as
complex references.

We first used precision, recall, and F1 as the evaluated
metrics to assess the performance of our proposed models
NSSNMTF, OSSNMTF and other compared algorithms. The
comprehensive comparison results using CORUM and PCDq
as gold standard datasets of the five unweighted and one
weighted PPI networks are showed in Figures 5, 6, respectively.
The proposed models NSSNMTF and OSSNMTF could detect
protein complexes with greater accuracy compared with other
algorithms. Figures 5A, 6A show that when HuRI was used
as the input PPI network, NSSNMTF and OSSNMTF had the
highest and second highest F1 values, significantly outperforming
other compared algorithms. Regardless of the reference dataset,
the performances of our proposed models NSSNMTF and
OSSNMTF were superior to the performances of other semi-
supervised algorithms that used identical prior information.
This included a comparison with the algorithm PCNMTF,
which used tri-factorization and prior information in a manner
identical to our proposed model, but without considering the
module structure. This finding implied that the use of prior

information to ensure that identified protein complexes have a
clear module structure can markedly improve the accuracy of
protein complex detection.

After that, we then employ Sn, PPV, ACC, and MMR as
evaluate metrics to compare detected protein complexes with
two golden standard datasets. The results of all compared
algorithms are listed in Table 3. For each compared method,
we demonstrated the number of detected protein complexes
(#m) and the number of protein complexes matched with at
least one known complex (#mm). For non-overlapping protein
complex detection methods, the proposed model NSSNMTF has
the highest ACC and MMR scores, compared with other semi-
supervised non-overlapping methods. For overlapping protein
complex detection methods, the proposed model OSSNMTF
outperformed all other overlapping algorithms. The NSSNMTF
and OSSNMTF showed the highest and second highest ACC and
MMR scores on all five unweighted and one weighted human PPI
networks. For example, the highest MMR scores of OSSNMTF
were 0.2750 and 0.2434 using CORUM and PCDq as respective
golden standards on the STRING network. Additionally, the
highest MMR scores of OSSNMTF were 0.2723 and 0.2402
using CORUM and PCDq as respective golden standards, thus
indicating that OSSNMTF can achieve better maximal one-to-
one mapping to real protein complexes. These results imply that
the proposed models NSSNMTF and OSSNMTF can provide
a more effective method to detect protein complexes from
human PPI networks. Additionally, the ACC and MMR scores
of both NSSNMTF and OSSNMTF for weighted PPI networks
were higher than those scores for unweighted PPI networks,
which suggests that the quality of detected protein complexes
can be substantially improved by considering the weights of
interactions between protein pairs. Furthermore, the weights
of interactions can reduce the impact of noisiness (e.g., false
positive interactions) in some PPI networks (Bhowmick and
Seah, 2015).
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FIGURE 5 | Precision, recall and F1 of compared algorithms on different PPI networks using CORUM as gold standard dataset. The x-axis represents precision,

recall, and F1, y-axis denotes the corresponding values. (A) HuRI; (B) BioGRID; (C) MINT; (D) mentha; (E) STRING; (F) WSTRING.

To further probe the functional homogeneities of detected
protein complexes, gene ontology (GO) (Consortium, 2019)
data were used to assess the biological roles of these protein
complexes. We conducted enrichment analysis on all detected
protein complexes in terms of the GO sub-ontology category
denoted as “biological process" (BP), using p-values with false
discovery rates. These results imply the enrichment of a specific
GO term in a single protein complex. Thus, the detected protein
complexes were presumed to have greater biological importance
when they exhibited smaller p-values. The proportions of protein
complexes with p-values below a given threshold can represent
the performance of protein complex detection algorithms. In this
paper, we varied the threshold from 10−10 to 0.01, then measured
the proportions of functionally enriched protein complexes in
each threshold interval for each algorithm. A higher proportion
indicated better performance of the corresponding algorithm in
the detection of protein complexes from PPI networks. Figure 7
shows the p-value proportion distributions for all compared
algorithms with respect to BP. The proposed method NSSNMTF
outperformed other non-overlapping protein complex detection
methods (i.e., 66.62% of protein complexes had p ≤ 0.01 in
terms of BP on MINT), while OSSNMTF outperformed other
overlapping protein complex detection methods (i.e., 68.15% of
protein complexes had p ≤ 0.01 in terms of BP on MINT).

Overall, the protein complexes detected by the proposed models
NSSNMTF andOSSNMTF had greater probabilities of predicting
real protein complexes.

To further explore the biological significance of detected
protein complexes, the top six enriched protein complexes
provided by NSSNMTF based on BioGRID PPI database are
presented is Table 4. We listed the size of protein complex, GO
ID, p-value and GO term, respectively. We can find that the p-
values of the six protein complexes are very low which means
they have higher probabilities to be regarded as real complexes.
As the p-value is closed to the size of protein complex, and the
p-value of the small protein complex is usually high. Therefore,
the second column of Table 4 shows the sizes of enriched protein
complexes. From this column, we can find that our detected
protein complexes with big size can match well with the gene
ontology term. This means the biological significance of protein
complexes detected by our model is high, and that indicates that
the protein complexes predicted by our proposed model have
greater probability to be true protein complexes.

Furthermore, to better demonstrate the biological meaning of
our detected protein complex, we do KEGG pathway analysis
for all six of the protein complexes. The results are showed in
Figure 8, and we can find that all six of the predicted protein
complexes are enriched on one or more pathways with very small
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FIGURE 6 | Precision, recall, and F1 of compared algorithms on different PPI networks using PCDq as the gold standard dataset. The x-axis represents precision,

recall, and F1, the y-axis denotes the corresponding values. (A) HuRI; (B) BioGRID; (C) MINT; (D) mentha; (E) STRING; (F) WSTRING.

p-values based on KEGG database. The result shows that these
six protein complexes enriched on BP also have high biological
significance on pathways. More importantly, we found that all 14
proteins (RPL10, RPL21, RPL23, RPS3A, RPL9, RPS4X, RPS26,
RPS25, RPL7A, RPL37A, RPS3, RPL14, RPL36, and RPL19) in
the fifth protein complex (ID=5) are annotated by the COVID-
19 pathway from Figure 8E. Then this predicted protein complex
can provide molecular support for the treatment mechanism and
drug development of COVID-19. Therefore, the KEGG pathway
enrichment results illustrate that our proposed model is reliable
for protein complex detection.

3.4. Case Study
To demonstrate the superiority of our proposed model, two
well-studied protein complexes (chaperonin containing TCP1
complex Li et al., 2021 and Anaphase-promoting complex Li
et al., 2020) are chosen as examples in this paper. Figures 9,
10 show the detected results of different algorithms on the two
protein complexes from BioGRID PPI network, respectively.

The proposed NSSNMTF and OSSNMTF give the same
predicted results on identifying these two protein complexes.
Obviously, on identifying chaperonin containing TCP1 complex,
all the compared algorithms cover all the 8 standard proteins
and predict one or more false positive proteins, but the protein
complexes detected by our proposedmodel NSSNMTFmatch the

standard protein complex exactly. PCNMTF, PCNMF, CPSNMF,
PCSC, SNFM,NCMine, svdcnmf, and ClusterONE predict 1, 2, 4,
5, 7, 8, 10, and 30 false positive proteins, respectively. Specifically,
for the Anaphase-promoting complex, NSSNMTF, ClusterONE,
and PCSC cover all the 9 standard proteins, and predict 4, 24,
and 28 false positive proteins, respectively. NCMine covers 8 out
of the 9 standard proteins and predict 6 false positive proteins
and 1 false negative protein. PCNMF and CPSNMF cover 4
and 3 out of 9 standard proteins that means they fail to detect
the Anaphase-promoting complex. SNFM covers 7 out of the 9
standard proteins and predicts 2 false positive proteins and 2 false
negative proteins. svdcnmf covers 6 out of the 9 standard proteins
and predicts 2 false positive proteins and 3 false negative proteins.
PCNMTF covers 5 out of the 9 standard proteins and predicts
2 false positive proteins and 4 false negative proteins. Although
the number of false positive standard proteins predicted by
these 3 algorithms is 2, they all missed some standard proteins.
In conclusion, our proposed model detects fewer false positive
proteins to protein complexes without detecting false negative
standard proteins, and indicates the best performance.

4. DISCUSSION

In this paper, we proposed the SSNMTF semi-supervised
protein complex detection model, which can simultaneously
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TABLE 3 | Detailed results of compared algorithms on six human PPI networks using CORUM and PCDq as gold standards.

Network Method #m CORUM PCDq

#mm Sn PPV ACC MMR #mm Sn PPV ACC MMR

HURI

PCNMF 758 113 0.1971 0.3184 0.2505 0.2131 188 0.2740 0.4178 0.3383 0.2277

CPSNMF 948 136 0.2602 0.3599 0.3060 0.2436 244 0.3812 0.4761 0.4260 0.2825

PCSC 782 90 0.2098 0.2726 0.2392 0.1965 173 0.2614 0.3473 0.3013 0.2186

ClusterONE 1,250 231 0.2883 0.3537 0.3193 0.2751 382 0.3946 0.5022 0.4452 0.3128

NCMine 2,680 427 0.1658 0.3704 0.2478 0.1887 742 0.2405 0.3664 0.2969 0.2067

SNFM 745 105 0.1990 0.3111 0.2488 0.2180 172 0.2800 0.4243 0.3447 0.2234

PCNMTF 730 115 0.2423 0.3373 0.2859 0.2344 199 0.3120 0.4462 0.3731 0.2420

svdcnmf 613 110 0.5834 0.2212 0.3593 0.2220 200 0.5225 0.2633 0.3709 0.2217

NSSNMTF 719 146 0.4158 0.3706 0.3925 0.2819 262 0.4840 0.5047 0.4942 0.3359

OSSNMTF 921 173 0.3705 0.3551 0.3627 0.2763 345 0.4698 0.4895 0.4796 0.3478

BioGRID

PCNMF 843 278 0.3526 0.3250 0.3385 0.2739 239 0.3551 0.3855 0.3700 0.2140

CPSNMF 894 219 0.4552 0.2233 0.3188 0.2188 252 0.4237 0.2964 0.3544 0.2115

PCSC 237 91 0.3609 0.2186 0.2809 0.1441 75 0.4374 0.1814 0.2817 0.1864

ClusterONE 1,016 338 0.5797 0.2678 0.3940 0.2831 436 0.5203 0.3983 0.4552 0.2897

NCMine 3,263 1007 0.5991 0.1032 0.2487 0.2414 951 0.4603 0.1515 0.2641 0.2787

SNFM 861 190 0.5124 0.1817 0.3051 0.1891 239 0.4711 0.2378 0.3347 0.1880

PCNMTF 852 276 0.3597 0.3142 0.3362 0.2814 239 0.3479 0.3819 0.3645 0.2155

svdcnmf 529 192 0.4123 0.1757 0.2691 0.2245 201 0.4246 0.2677 0.3371 0.2123

NSSNMTF 724 277 0.5076 0.3076 0.3951 0.2891 349 0.5274 0.4203 0.4708 0.2834

OSSNMTF 939 359 0.5026 0.3129 0.3965 0.2961 367 0.5355 0.4036 0.4649 0.2870

Mint

PCNMF 793 190 0.2739 0.2477 0.2605 0.2244 179 0.2983 0.3484 0.3224 0.1956

CPSNMF 719 139 0.6018 0.1456 0.2960 0.1674 187 0.5234 0.2429 0.3566 0.1838

PCSC 601 76 0.3344 0.1044 0.1869 0.1207 100 0.3318 0.1414 0.2166 0.1189

ClusterONE 1,307 275 0.3081 0.3088 0.3084 0.2311 342 0.3311 0.4304 0.3775 0.2335

NCMine 1,335 388 0.3050 0.1301 0.1992 0.2215 290 0.2990 0.1353 0.2011 0.1670

SNFM 812 205 0.2801 0.2385 0.2585 0.2196 186 0.3059 0.3299 0.3176 0.2015

PCNMTF 665 212 0.3734 0.2572 0.3099 0.2232 250 0.4556 0.3346 0.3905 0.2368

svdcnmf 524 142 0.2749 0.2512 0.2628 0.2244 131 0.3059 0.3299 0.3176 0.1979

NSSNMTF 647 198 0.4343 0.2723 0.3439 0.2307 250 0.4882 0.3771 0.4291 0.2410

OSSNMTF 872 255 0.4214 0.2408 0.3185 0.2300 289 0.4935 0.3102 0.3912 0.2420

Mentha

PCNMF 876 217 0.3981 0.2667 0.3258 0.2144 222 0.3565 0.3220 0.3388 0.1819

CPSNMF 995 175 0.7043 0.1313 0.3041 0.1669 275 0.6826 0.1842 0.3546 0.1693

PCSC 960 98 0.1688 0.1637 0.1662 0.1462 92 0.2323 0.2194 0.2257 0.1259

ClusterONE 1,813 403 0.4314 0.3214 0.3723 0.2347 592 0.3276 0.4295 0.3751 0.2127

NCMine 11,961 2815 0.6316 0.0893 0.2374 0.2414 2012 0.5316 0.1073 0.2389 0.2293

SNFM 912 229 0.4106 0.2579 0.3254 0.2144 235 0.3571 0.3310 0.3438 0.1890

PCNMTF 872 261 0.4987 0.2696 0.3666 0.2213 335 0.4985 0.3411 0.4124 0.2185

svdcnmf 763 196 0.4012 0.2701 0.3292 0.2216 202 0.3601 0.3314 0.3455 0.1871

NSSNMTF 855 246 0.5037 0.2713 0.3697 0.2412 351 0.5454 0.3601 0.4432 0.2323

OSSNMTF 978 296 0.5292 0.2797 0.3847 0.2510 397 0.5326 0.3621 0.4392 0.2416

STRING

PCNMF 914 274 0.4869 0.2887 0.3749 0.2590 266 0.4186 0.3572 0.3867 0.2091

CPSNMF 842 178 0.5713 0.2285 0.3613 0.2103 256 0.5084 0.2881 0.3827 0.1911

PCSC 932 93 0.1689 0.1553 0.1620 0.1436 103 0.2259 0.2075 0.2165 0.1288

ClusterONE 1,800 300 0.5763 0.2068 0.3452 0.2139 480 0.4513 0.2858 0.3591 0.2002

NCMine 7,838 2447 0.8267 0.1035 0.2925 0.2644 2046 0.6189 0.1403 0.2946 0.2313

SNFM 926 281 0.4910 0.2889 0.3767 0.2603 272 0.4307 0.3732 0.4009 0.2103

(Continued)
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TABLE 3 | Continued

Network Method #m CORUM PCDq

#mm Sn PPV ACC MMR #mm Sn PPV ACC MMR

PCNMTF 813 259 0.5012 0.2802 0.3748 0.2691 264 0.4987 0.2881 0.3790 0.2219

svdcnmf 580 205 0.4281 0.2792 0.3457 0.2349 214 0.4483 0.3785 0.4119 0.1663

NSSNMTF 796 269 0.5119 0.2855 0.3823 0.2789 323 0.5278 0.3693 0.4415 0.2402

OSSNMTF 996 364 0.5340 0.2920 0.3949 0.2750 408 0.5630 0.3167 0.4223 0.2434

WSTRING

PCNMF 902 271 0.4867 0.2832 0.3713 0.2583 262 0.4307 0.3460 0.3860 0.2094

CPSNMF 815 181 0.5544 0.2301 0.3571 0.2076 253 0.5150 0.2863 0.3840 0.1909

PCSC 126 16 0.5784 0.0905 0.2288 0.1676 31 0.5279 0.1014 0.2314 0.1726

ClusterONE 1,474 256 0.5998 0.1926 0.3399 0.1948 385 0.5079 0.2523 0.3580 0.1818

NCMine - - - - - - - - - - -

SNFM 897 274 0.4951 0.2817 0.3734 0.2596 287 0.4267 0.3532 0.3882 0.2127

PCNMTF 900 319 0.5135 0.2781 0.3779 0.2541 352 0.5623 0.3038 0.4133 0.2207

svdcnmf 660 209 0.5115 0.2591 0.3640 0.2533 199 0.4392 0.3008 0.3635 0.1751

NSSNMTF 786 271 0.5054 0.2826 0.3780 0.2723 341 0.5278 0.3728 0.4436 0.2496

OSSNMTF 996 367 0.5299 0.2923 0.3936 0.2765 396 0.5590 0.3227 0.4247 0.2380

Bold means the best value.

FIGURE 7 | P-value proportion distributions of significant detected protein complexes with respect to BP. The x-axis represents p-values, y-axis denotes the

proportion of protein complexes. (A) HuRI; (B) BioGRID; (C) MINT; (D) mentha; (E) STRING; (F) WSTRING.

learn protein membership and module relationship matrices
by using pairwise constraints as prior information from
weighted and unweighted PPI networks. We also proposed

two initial approaches for the two variables in SSNMTF and
two parameter-free protein complex detection methods: a non-
overlapping module detection algorithm (NSSNMTF) and an
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TABLE 4 | The top 6 enriched protein complexes based on BioGRID PPI network

in terms of BP.

ID Size GO ID p-value GO term

1 79 GO:0006412 3.45E-93 Translation

2 54 GO:0006120 1.57E-68 Mitochondrial electron transport,

NADH to ubiquinone

3 132 GO:0000398 3.03E-55 mRNA splicing, via spliceosome

4 14 GO:0006385 5.71E-32 Transcription elongation from

RNA polymerase III promoter

5 14 GO:0006415 5.73E-29 Translational termination

6 20 GO:0033572 1.68E-27 Transferrin transport

overlapping protein complex detection algorithm (OSSNMTF).
We have conducted experiments on both synthetic networks
and human PPI networks to evaluate the performances of
our proposed algorithms, and the experimental results showed
that SSNMTF is superior to all compared algorithms. These
findings indicate that the use of high-quality prior information
can help to efficiently discover important biological protein
complexes with clear module structures. In our future work,
we will simultaneously consider protein complexes and GO
information when mining protein complexes from human
PPI networks.

FIGURE 8 | KEGG pathway analysis for the top 6 protein complexes enriched on BP. The GeneRatio is the number of proteins annotated by a specific pathway

divided by the number of proteins annotated by any pathway. The size of the circle represents the number of proteins annotated by one pathway. (A) module 1; (B)

module 2; (C) module 3; (D) module 4; (E) module 5; (F) module 6.
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FIGURE 9 | The chaperonin containing TCP1 complex detected by different algorithms based on BioGRID PPI network. Standard means the true protein complex.

True positive proteins are shown in gray. False positive proteins are shown in pink. False negative proteins are shown in green. (A) standard; (B) PCNMF; (C) svdcnmf;

(D) CPSNMF; (E) PCSC; (F) ClusterONE; (G) NCMine; (H) PCNMTF; (I) SNFM; (J) NSSNMTF.

FIGURE 10 | The Anaphase-promoting complex detected by different algorithms based on BioGRID PPI network. Standard means the true protein complex. True

positive proteins are shown in gray. False positive proteins are shown in pink. False negative proteins are shown in green. (A) standard; (B) PCNMF; (C) svdcnmf; (D)

CPSNMF; (E) PCSC; (F) ClusterONE; (G) NCMine; (H) PCNMTF; (I) SNFM; (J) NSSNMTF.
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