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Abstract 

Objectives: Human T cell leukemia virus‑1 (HTLV‑1) infection may lead to one or both diseases including HTLV‑1‑as‑
sociated myelopathy/tropical spastic paraparesis (HAM/TSP) or adult T cell leukemia lymphoma (ATLL). The complete 
interactions of the virus with host cells in both diseases is yet to be determined. This study aims to construct an 
interaction network for distinct signaling pathways in these diseases based on finding differentially expressed genes 
(DEGs) between HAM/TSP and ATLL.

Results: We identified 57 hub genes with higher criteria scores in the primary protein–protein interaction network 
(PPIN). The ontology‑based enrichment analysis revealed following important terms: positive regulation of transcrip‑
tion from RNA polymerase II promoter, positive regulation of transcription from RNA polymerase II promoter involved 
in meiotic cell cycle and positive regulation of transcription from RNA polymerase II promoter by histone modifica‑
tion. The upregulated genes TNF, PIK3R1, HGF, NFKBIA, CTNNB1, ESR1, SMAD2, PPARG and downregulated genes 
VEGFA, TLR2, STAT3, TLR4, TP53, CHUK, SERPINE1, CREB1 and BRCA1 were commonly observed in all the three enriched 
terms in HAM/TSP vs. ATLL. The constructed interaction network was then visualized inside a mirrored map of signal‑
ing pathways for ATLL and HAM/TSP, so that the functions of hub genes were specified in both diseases.
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Introduction
Infection with Human T cell leukemia virus-1 (HTLV-1) 
which normally takes an innocuous and insidious course 
in humans can rarely manifest as adult T cell leukemia/
lymphoma (ATLL) and/or HTLV-1-associated myelopa-
thy/tropical spastic paraparesis (HAM/TSP). HAM/

TSP results in lower back pain, limb spasticity, progres-
sive neurological decline, and urinary disturbances [1]. 
Contrastingly, ATLL is characterized by unrestrained 
growth of T-cell precursors in blood, bone marrow, thy-
mus, or lymph nodes. Despite thorough investigations, it 
is still unclear what triggers HTLV-1 infection to remain 
innocuous or to progress to either of these complica-
tions [2, 3]. A thorough examination of the pathogenic 
pathways and the disruptions in host proteins and their 
interactions might therefore reveal novel aspects of the 
disease through identification of unbalanced pathways 
in HTLV-1 related diseases. Identifying the key dysregu-
lated pathways could be utilized to screen individuals 
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with higher risk and reveal novel therapeutic approaches 
to prevent the progression to either of these diseases. 
Analyzing the cellular gene expression signature in both 
of these complications highlights common and specific 
deregulated pathways in HTLV-1 related diseases which 
are likely to provide novel insight into the pathogenesis 
and the management of HTLV-1 related diseases.

Several analytical approaches and softwares have been 
developed (https:// pubs. acs. org/ doi/ abs/ 10. 1021/ acs. 
jprot eome. 5b010 80, https:// acade mic. oup. com/ bioin 
forma tics/ artic le- abstr act/ 35/8/ 1436/ 51028 73, https:// 
journ als. plos. org/ ploso ne/ artic le? id= 10. 1371/ journ al. 
pone. 01899 22) [4] as means to further analyze the high-
throughput data derived from previous genomic studies 
to extract and conclude additional results which would 
only be available when the data from different studies 
were compared with each other. A well-known method 
to analyze previous datasets is to search for differentially 
expressed genes (DEGs) between normal individuals and 
those harboring the disease or between several complica-
tions associated with a single pathogen [5, 6].

In this study we performed the protein–protein inter-
action network-based analysis to determine DEGs 
between HAM/TSP and ATLL samples. The resulting 
networks and related hub genes were enriched in gene 
ontology for biological processes (BP) and the results and 
their implication is discussed.

Main text
Methodology
Microarray dataset
The gene expression profile GSE19080 was acquired from 
the public repository database gene expression omni-
bus (GEO) (www. ncbi. nlm. nih. gov/ geo) which includes 
an individual platform, GPL9686. The dataset contains 
the results of microarray experiments using the human 
ImmuneArray cDNA array. The data related to ATLL (7 
specimens) and HAM/TSP (12 specimens) patients were 
extracted and then analyzed.

Exploration of differentially expressed genes
The Data was first normalized and preprocessed with 
log2 transformation. Then, the differentially expressed 
genes (DEGs) and their value of fold changes (FC) 
were acquired by GEO2R, which is an interactive web 
tool based on GEOquery and limma packages in R com-
puting language. The adjusted P-value < 0.05 (calculated 
by FDR) was selected as the criterion for selection of 
DEGs. The direction of dysregulation of each for DEGs 
was reported as upregulation (positive logFC) and down-
regulation (negative logFC) compared to baseline.

Construction of protein–protein interaction (PPI) network
In order to construct the PPI network, the online 
STRING (Search Tool for the Retrieval of Interacting 
Genes) database version 10.5 was employed [7]. The 
information and interactions from various biological 
sources, including physical interactions, functional asso-
ciation, high-throughput experiments, genomic context, 
co-expression, databases, and text-mining were consid-
ered. The cut-off criterion was set at combined score > 0.4 
to analyze the PPINs.

Identification of hub genes
The network was analyzed by Network Analyzer app in 
Cytoscape (3.5.1) to calculate “degree” and “between-
ness” centrality measures. The number of edges of a node 
is assigned as the degree [8] and the number of node 
visiting during moving all shortest paths is defined as 
betweenness centrality [9]. The genes with higher degree 
and betweenness scores were selected as hub genes. 
These genes and their associated PPIN were visualized 
using Gephi version 0.9.1 [10].

Gene ontology analysis
Gene ontology BP was assessed by Enrichr website [11]. 
Top ten major functional terms were selected based on 
z-scores for further analysis.

Signaling network analysis
The HTLV-1-implicated signaling network was depicted 
based on the KEGG and WikiPathway databases. The 
upregulated and downregulated genes were presented 
with red and blue coloring in visualized pathways, 
respectively.

Results
Identification of DEGs and hub genes
The number of 1116 DEGs was recognized accord-
ing to FDR < 0.05 by Benjamini–Hochberg procedure. 
Following the construction of the primary network by 
STRING, the network was analyzed by means of degree 
and betweenness centrality measures. 57 genes (Table 1) 
were selected as hub genes based on the aforementioned 
criteria. The logFC for each hub gene is reported in Addi-
tional file 1: Figure S1.

PPIN construction
The relationship between hub genes was specified using 
STRING database. The network was constructed, as 
shown in Additional file 2: Figure S2. The network con-
sists of 57 nodes and 716 edges. The  size of each node 
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was determined based on its degree value and the color 
of each node was specified according to their direction of 
deregulation with higher values of logFC represented by 
colors closer to red and lower values by blue.

Gene ontology biological processes
The upregulated and downregulated hub genes were 
individually enriched in gene ontology BP and the top 
functional terms were selected. Additional file  3: Fig-
ure S3a, b reveals the BP of hub genes associated with 
upregulated and downregulated genes, respectively. 
The comparison between the Gene Ontology BP of 
the enriched upregulated and downregulated genes 
revealed that positive regulation of transcription from 
RNA polymerase II promoter (GO: 0045944), positive 

regulation of transcription from RNA polymerase II 
promoter involved in meiotic cell cycle (GO: 0010673) 
and positive regulation of transcription from RNA 
polymerase II promoter by histone modification (GO: 
1903757) are common in the samples of this analysis. 
Figure  1 is a circos plot demonstrating the contribu-
tion amount of proteins in each of the GO BPs (GO: 
0045944, GO: 0010673 and GO: 1903757). The upreg-
ulated genes including TNF, PIK3R1, HGF, NFKBIA, 
CTNNB1, ESR1, SMAD2, PPARG and downregulated 
genes comprised of VEGFA, TLR2, STAT3, TLR4, 
TP53, CHUK, SERPINE1, CREB1 and BRCA1 were 
commonly observed in all of the three enriched terms 
in TSP vs. ATLL.

Signaling network displaying differentiation between HAM/
TSP and ATLL
The related pathways and the connections between them 
are depicted in Fig.  2. The signaling network mapping 
for ATLL and HAM/TSP is illustrated mirror wise to 
provide a visual comparison of hub genes were specified 
in both diseases. The expression level of the following 
genes is increased in ATLL; TNF, AP1, NFAT, CLAM1, 
PI3K-AKT, PRKCB, NGF which is accompanied by spon-
taneous promotion of NF-κB pathway and persistent 
lymphocyte activation. In addition, the upregulation of 
PRKCB, ITGA2, IL8, and NOS2 genes is associated with 
inflammation, angiogenesis, cell survival, and migration 
pathways. Contrarily, promotion of pathways related to 
apoptosis and immune dysregulation are noticeable in 
HAM/TSP. The upregulation of genes including TP53, 
EGR1, Serpine1, IGFR1 can induce apoptosis, while the 
increase in STAT3, TLR2/4, MAP3K1, CREB1, and APP 
lead to disruption of the immune response.

Discussion
The results of this analysis indicate high dissimaliri-
ties in regulation of cell proliferation and inflammatory 
pathways in ATLL and HAM/TSP. While the enriched 
pathways regarding RNA polymerase II [12] and DNA 
replication in this study just allude to a surge in clonal 
expansion or increased viral transcription of TATA-box 
containing 5′LTR of HTLV-1 [13] in the provirus-harbor-
ing cells in ATLL, the identified hub genes provide fur-
ther insight into the pathogenesis of both diseases.

The SRC gene is highly overexpressed in a variety of 
human cancers [14]. In this study, however, ATLL was 
associated with lower levels of SRC expression. Counter-
intuitively, the loss of src homology 2 containing tyros-
ine phosphatase (SHP-1) is associated with spontaneous 
activation in HTLV-1 infected T-cells [15]. Furthermore, 
another src-like tyrosine kinase LYN, which is normally 

Table 1 List of the up‑regulated (positive logFC) and down‑
regulated (negative logFC) hub genes in TSP vs. ATLL

TSP vs. ATLL

Gene logFC Gene logFC

TNF 2.08 CD44 − 0.3

ITGA2 1.97 VEGFA − 0.38

PIK3R1 1.51 TLR2 − 0.41

CALM1 1.41 ACACB − 0.42

PTK2 1.27 STAT3 − 0.46

HGF 1.25 TLR4 − 0.47

NFKBIA 1.22 EHMT2 − 0.61

PIK3CD 1.11 LYN − 0.64

PRKCB 1.06 TP53 − 0.65

EZH2 0.99 CHUK − 0.69

CTNNB1 0.9 KIT − 0.71

GMPS 0.88 SERPINE1 − 0.75

IL8 0.81 CREB1 − 0.76

CAD 0.8 MAP3K1 − 0.76

YWHAZ 0.77 BTK − 0.79

PPP2CA 0.76 TOP2A − 0.8

NOS2 0.74 CD19 − 0.83

ESR1 0.74 SOCS3 − 0.85

SMAD2 0.72 SRC − 0.86

RB1 0.68 BRCA1 − 0.91

NGF 0.66 IRS1 − 0.93

MAPK14 0.63 RANBP2 − 0.98

PTGS2 0.62 EEF2 − 0.98

PPARG 0.6 EGR1 − 0.99

CBL 0.58 TBP − 1.25

PARP1 0.51 IGF1R − 1.49

XPO1 0.48 APP − 1.7

PHLPP2 0.47

CDKN2A 0.4

FN1 0.4
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upregulated via Tax in HTLV-1 cell lines [16], is down-
regulated in this study compared to HAM/TSP. This 
suggests that the increased LYN expression is not main-
tained with the loss of Tax expression in later stages of 
ATLL development [17]. Further studies are needed to 
determine the role of src-like tyrosine kinases in ATLL 
and HAM/TSP.

One of the major pathways in ATLL is lymphocyte 
activation, which is of particular importance in ATLL 
compared to ACs and HAM/TSP [6]. Transduction of 
lymphocyte activation signals occurs through the fol-
lowing ways: (i) activation of NF-kappa B, (ii) increase 
the AP1 gene expression via up-regulation of TNF [18], 
and (iii) enhancement the expression of NFAT gene due 
to up-regulation of CALM1 [19]. The diminished expres-
sion of the aforementioned genes in HAM/TSP indicates 
their lesser significance compared to ATLL. Therefore, 
it could be speculated that NF-κB pathway is likely the 

major signaling pathways in ATLL compared to other 
forms of HTLV-1 infection, as inhibition of NF-κB by 
a super-repressor form of IκBα (SR-IκBα) in infected 
T-cells in ATLL results in cell death regardless of Tax 
expression [20]. Furthermore, there was a significant dis-
ruption of genes related to phosphatidylinositol 3-kinase-
Protein kinase B (PI3K-AKT) pathway in ATLL (PIK3CD, 
PIK3R1, and IRS1) which has been demonstrated to have 
a role in activation of NF-κB pathway [21].

Several genes like FN1, ITGA, PTK2, HGF, and CBL 
can affect PI3K-AKT pathway in the focal adhesion and 
ECM Receptor interaction pathways [22–24]. Moreo-
ver, PI3K-AKT itself is indirectly activated through the 
ROS pathway. This pathway can be stimulated through 
upregulation of PRKCB due to functions of NGF and 
HGF which are in turn mediated by PLC-γ and PLC-β, 
respectively [25–27]. The increase in NF-κB action is also 
important in upregulation of PTGS2, TNF, NGF, IL8, and 

Fig. 1 Circos plot of the common GO biological process between up‑regulated and down‑regulated genes in TSP vs. ATLL. The upregulated genes 
including TNF, PIK3R1, HGF, NFKBIA, CTNNB1, ESR1, SMAD2, PPARG and downregulated genes containing VEGFA, TLR2, STAT3, TLR4, TP53, CHUK, 
SERPINE1, CREB1 and BRCA1 were common in all the three enriched terms
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NFKBIA in ATLL [25, 28–31], as well as NOS2 [32, 33]. 
The NFKBIA increase in ATLL cells however, supposedly 
inhibit NF-κB pathway [28]. However, pathways such as 
PARP-1 that lead to NFKBIA degradation, are activated 
in ATLL to overcome the inhibition. The NF-κB path-
way is less prominent in HAM/TSP, as the effective genes 
mentioned above are inversely expressed in it.

Inhibition of apoptosis is another pivotal distinction 
in signaling pathways between ATLL and HAM/TSP, 
marked by significant dowregulation of TP53 in ATLL 
[6]. TP53 loss or mutation in ATLL cells reflects their 
aggressive proliferation and poor prognosis as described 
in many other cancers [34, 35]. The upregulation of 
SMAD2 in ATLL facilitates metastasis and is associated 
with TP53 mutation [36].

Furthermore, MDM2 can increase the expres-
sion of CDKN2A, which in turn increases TP53 [37]. 
Although, upregulation of CDKN2A secondary to the 
induction of oncogenes is unavoidable, EZH2 function-
ally inhibits the role of CDKN2A in cell cycle [38]. The 
decrease in expression level of TP53 is accompanied by 
downregulation of its target genes including Serpin1 in 

ATLL. Serpin1 has been linked to reduction of tumor 
invasion and growth [39]. In addition, the downregu-
lation of EGR1 tumor repressor is also observed in 
ATLL in this study. The increase in the expression level 
of EGR1 in HAM/TSP along with the higher levels of 
TP53 and Serpin1 compared to ATLL restricts the 
uncontrolled proliferation of infected cells as seen in 
ATLL [40]. Furthermore, the analysis revealed PRKCB, 
ITGA2, IL8, and NOS2 genes to be significantly upreg-
ulated in ATLL. The afforementioned genes are associ-
ated with cell motility and angiogenesis and could be 
surmised to contribute to the metastasic properties of 
leukemic cells in ATLL.

Viral persistence cannot continue without significant 
dysregulation of the host immune response. The bal-
ance of immune response can tip to either immuno-
suppression or hypersensitivity in HTLV-1 infections, 
resulting in ATLL and HAM/TSP, respectively. The 
mild immunodeficiency almost exclusively associated 
with ATLL is partly the consequence of disruption of 
regulatory genes implicated in the immune response. 
In this study, the expression levels of STAT3, TLR2/4, 

Fig. 2 The proposed mirror‑like signaling network for the pathogenesis of ATLL and HAM/TSP diseases. The upregulated and downregulated 
genes are identified by colors of red and blue, respectively. The signaling pathways were manually drawn according to the KEGG, WikiPathway, and 
literature reports
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MAP3K1, CREB1, and APP genes in ATLL have been 
reportedly decreased, leading to reduced antigen pres-
entation, T-cell costimulation, and immune response 
against the virus [41–45]. The different patterns of gene 
expression described throughout the article further 
elaborates the unique immunophenotype observed in 
each of these two diseases.

Conclusion
This study provides a novel approach to gene expres-
sion analyses regarding HTLV-1 related diseases by 
comparing the gene expression signature between sam-
ples from HAM/TSP and ATLL patients. The results 
revealed distinct patterns of gene expression, especially 
in cell cycle regulation and immune response between 
the two diseases.

Limitations
Further detailed studies help us understand other 
functions of the involved genes in the pathogenesis of 
HTLV-1.
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