
Protein-Protein Interface Detection Using the Energy
Centrality Relationship (ECR) Characteristic of Proteins
Sanjana Sudarshan1, Sasi B. Kodathala1, Amruta C. Mahadik1, Isha Mehta1, Brian W. Beck1,2,3*

1 Department of Biology, Texas Woman’s University, Denton, Texas, United States of America, 2 Department of Mathematics and Computer Science, Texas Woman’s

University, Denton, Texas, United States of America, 3 Department of Chemistry and Biochemistry, Texas Woman’s University, Denton, Texas, United States of America

Abstract

Specific protein interactions are responsible for most biological functions. Distinguishing Functionally Linked Interfaces of
Proteins (FLIPs), from Functionally uncorrelated Contacts (FunCs), is therefore important to characterizing these interactions.
To achieve this goal, we have created a database of protein structures called FLIPdb, containing proteins belonging to
various functional sub-categories. Here, we use geometric features coupled with Kortemme and Baker’s computational
alanine scanning method to calculate the energetic sensitivity of each amino acid at the interface to substitution, identify
hotspots, and identify other factors that may contribute towards an interface being FLIP or FunC. Using Principal
Component Analysis and K-means clustering on a training set of 160 interfaces, we could distinguish FLIPs from FunCs with
an accuracy of 76%. When these methods were applied to two test sets of 18 and 170 interfaces, we achieved similar
accuracies of 78% and 80%. We have identified that FLIP interfaces have a stronger central organizing tendency than FunCs,
due, we suggest, to greater specificity. We also observe that certain functional sub-categories, such as enzymes, antibody-
heavy-light, antibody-antigen, and enzyme-inhibitors form distinct sub-clusters. The antibody-antigen and enzyme-
inhibitors interfaces have patterns of physical characteristics similar to those of FunCs, which is in agreement with the fact
that the selection pressures of these interfaces is differently evolutionarily driven. As such, our ECR model also successfully
describes the impact of evolution and natural selection on protein-protein interfaces. Finally, we indicate how our ECR
method may be of use in reducing the false positive rate of docking calculations.
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Introduction

Proteins interact with and bind to other proteins forming both

transient and long-term networks of specific complexes whose

interfaces have highly-specific amino acid interactions [1–6].

These interfaces play vital roles in biological functions such as

signal transduction, enzyme and immune regulation, adhesion,

force generation, and maintenance of cellular structure. Methods

for the identification and characterization of protein-protein

interactions (PPIs) are thus critical to understanding how living

systems function.

Development of experimental and computational techniques to

identify PPIs has shed light on the determinants of specific

interactions, as well as on some general features for different types

of interactions [2–5,7–13]. Experimental high throughput screen-

ing methods [3–5,16] have provided information to construct large

databases [17–19] of PPIs and related functions. Computational

methods such as molecular modeling and docking, have generally

identified the shape, electrostatic complementarity, buried surface

area, flexibility, solvation energy, and sequence conservation of the

interactors (amino acid residues) as key features in interface

detection [6,7,11–13,20–23]. Use of these known relationships to

better elucidate the principles by which amino acids are

positionally organized and thus contribute energetically to

interfaces would allow specific structure/function relationships to

be characterized. Such knowledge could also promote the finding

of novel interfaces via computational docking calculations, as well

as allowing the testing of rival protein structure/function

hypotheses. Unfortunately, the different attempts at characteriza-

tion continue to be hampered by a fundamental lack of

understanding about the underlying geometric and energetic

principles of amino acid interaction across protein interfaces

[6,8,15,21,24–26].

Several potential reasons for this exist. Both experimentally and

computationally, it has been observed that few of the residues

present in a PPI are essential for maintenance of the integrity of

the interface [2,8,15]. Some success has been had identifying these

important ‘‘hotspots’’, particularly with computational alanine

scanning methods (CAS) [2,27–31]. However, the use of CAS in

PPI detection has had mixed success. CAS methods often very

accurately distinguish residues critical to known interfaces, while

failing to identify all the residues in an interface [15]. Ofran and

colleagues suggest that this may be due, in part, to a bias towards

hotspot residues that may treat non-hotspot residues as ‘‘noise’’

and thus fail to identify all the residues in a PPI [15].

An additional reason PPI principles may be difficult to elucidate

can be found in how the experimental data used to develop

computational methods like docking is organized and utilized.
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Most data for the patterns of amino acid characteristics at PPIs

come from atomic resolution structures of protein complexes

deposited at the Protein Data Bank (PDB) [32]. While an

understanding of PPI principles for both prediction and design

necessitates the use of natural exemplars, whether a reference

structure is a highly specific interaction used in nature and critical

for a biological function or whether the association is the result of

the experimental conditions used in the technique can often be

unclear. The majority (approximately 80%) of PPI structures

available from the PDB are obtained through X-ray crystallogra-

phy [33]. The very symmetrical and tightly packed structures that

promote facile structure determination can also indicate interfaces

not present in the cellular milieu [26,34,35]. As with hotspot/non-

hotspot bias, development of PPI predictive methods based

simultaneously on both aggregative (e.g. crystal contacts) and

functionally-linked PPIs may obscure trends such that both can fail

to be identified.

Several groups have classified PPIs into different operationally

defined categories such as, homo- and hetero- complexes, obligate

and non-obligate complexes, and transient and permanent

complexes (reviewed in [6,36]). These categories, however, often

mix structural and functional properties in their operational

definitions. While structure and function are, of course, related,

natural selection operates on biological function, and it may serve

useful to identify the functional importance of a given PPI as a

separate characteristic feature. In this work, we operationally

define Functionally-Linked Interfaces of Proteins (FLIP), and the

residues forming these interfaces, to be those for which mutation

or other chemical modification has been found to alter the native

biological function. Similarly, we define PPIs that do not have such

a known alteration in function as Functionally uncorrelated

Contacts (FunC).

Separation of FLIPs from FunCs can be problematic using PDB

data alone, and additional knowledge is generally required

[7,13,37] FLIPs and FunCs can be thought of as positive-design

(specific) and negative-design (aggregative) natural exemplars in

the parlance of Havranek [38]. While the PDB often provides a

‘‘Biological Assembly’’ structure (BioUnit) in addition to the

standard ‘‘Asymmetric Unit’’ structure, in our experience, the

correlation of the BioUnit structures with FLIPs is not straight-

forward. BioUnits are often not available, are duplicates of the

Asymmetric Unit with little justification for that assignment, or are

specified for non-native interactions as in the case of rabbit actin

with bovine DNase (PDBid: 1ATN). As mentioned previously,

shape and electrostatic complementarity, buried surface area,

flexibility, solvation energy, amino acid composition, hydropho-

bicity, and sequence conservation are all common used features

use to characterize and predict the quaternary assemblies and

improve estimation of likely solution state structures [7,11–

13,22,39]. Indeed, more recent BioUnit assignments have been

improved through the automated use of tools like PISA, which has

a particular strength in that it leverages solvation energy

calculations in addition to other features to identify macromolec-

ular complexes in solution [13]. Even with these enhanced

analyses, the relationship of the complex with function may still be

problematic. For example, PISA, NOXclass, and EPPIC servers

all identify Actin:DNase as the likely BioUnit [11–13]. As a result,

the ability to distinguish FLIP from FunC, though improved,

remains obscure. While large interactome databases exist that

often do indicate functional correlation [17–19], they generally

specify whole protein chain or complex interactions and do not

specify data at the atomic level.

In principle, it is possible to use atomistic or coarse-grain

computational methods, including docking methods, that use

generic, empirical amino acid interaction functions to successfully

predict quaternary interactions [21,31,40–42]. Unfortunately, two

problems generally arise: 1) the false positive rate (average number

of predictions needed to obtain a structure similar to a natural

exemplar) is fairly high [14,40,43] and 2) while accurate structures

can be identified, assessment as to the functional significance (i.e.

FLIP or FunC) is not generally identified or remains obscure

[14,21,26,40].

Physico-chemical properties of the amino acid residues in PPIs

other than sensitivity to alanine substitution have also been

investigated, including hydrophobicity, amino acid composition,

hydrogen bonding potential, sequence conservation, and solvent

accessible surface area (SASA), all with differing success [6,14,26].

Combining these methods in hybrid approaches has improved

successful identification of native PPIs relative to any one property

alone [6,11,13,26].

In light of these improvements, a hybrid approach that includes

the statistical analysis of (a) atomic-resolution interface geometries

and (b) CAS-based energy data of protein structures pre-classified

based on functional importance (FLIP/FunC) may be successful,

both in improving detection of interfaces and increasing our

understanding of general principles of interface formation. To test

this concept, we collected a set of PPI structures available in the

PDB starting from a subset of members of commonly used sets to

test PPI and docking software [7,22,44–46], and added additional

structures of interest to the lab. We then used additional literature

sources to manually categorize the interfaces as being FLIP or

FunC (FLIPdb, see Methods). For each interface in FLIPdb, we

used Baker’s CAS method [30] and our own geometry calculations

(see Methods) to determine the energetics of alanine substitution of

residues in a PPI as a function of geometric distribution in the

interface. No attempt was made to bias towards only hotspot data.

Using Principal Component Analysis [47] and K-means clustering

[48] we were able to identify seven physical characteristics that

could distinguish FLIP interfaces from FunC interfaces with 76%

accuracy. These same characteristics, when tested against a set of

18 unrelated PPI structures and a subset of 170 PPI from the set of

Dey et al., were also able to distinguish FLIP from FunC with 78–

80% accuracies. Overall, FLIP interfaces appear to have greater

overall sensitivity to ala substitution than FunC (Figures 1–4),

particularly toward the center of the interfaces. This may be related to the

finding that cores of interfaces have greater sequence conservation,

than interfaces rims [49]. Both are consistent with the ideas that

FLIP interfaces are more specific than FunC interfaces [1,6] and

that they may evolve increasing specificity radially across a PPI

over evolutionary time (Figure 2a–c).

The novelty of this approach, which we term the Energy

Centrality Relationship (ECR), is that through the combination of

geometric and energetic data, we are able to not only reproduce

functional classifications, and describe physical chemical sources of

these differences, but also have a model that is consistent with

natural selection pressures on protein interfaces.

Results

Database Composition, FLIPdb
After construction, our FLIPdb database referenced 160 PPIs

between 233 protein chains that were contained in 94 PDB

structural files. This set was categorized and divided into 100 FLIP

interfaces and 60 FunC interfaces. We further sub-categorized

these PPIs into 7 FLIP and 2 FunC sub-categories: 1) antibody-

antigen (AbAg); 2) immunoglobin Heavy Chain/Light Chain

(AbHL); 3) Enzyme-Enzyme, both transient and persistent

(Enzyme); 4) having a generally persistent structure that provides

The ECR Characteristic of Protein Interfaces
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mechanical stability, such as cytoskeletal or viral proteins

(Structural); 5) peptide/protein inhibitors to an enzyme (Inhibitor);

6) proteins whose function is to recognize peptides/proteins

(Receptor); 7) proteins regulated by post-translational modification

by another protein (Regulated); 8) PPIs in an asymmetric crystal

unit NOT found to be FLIP (FunC); and 9) PPIs obtained by

applying crystal symmetry transforms to FLIP structures (XFunC).

This set of PPIs (see supplementary Table S1) was used for training

and development (summary in Table 1).

An additional set of 18 PPIs between 19 protein chains in 7

PDB files was also categorized into 13 FLIP and 5 FunC interfaces

and sub-categorized as above (see supplementary Table S1). This

second set of PPIs was comprised of proteins that were generally

Figure 1. Distribution of alanine substitution energies in FLIP and FunC interfaces. (a) and (b) show a histogrammed contour plot colored
blue-to-red of the DDGala of substitution to alanine of interfacial residues (blue: more favorable values, red: more disruptive values). The plot axes are
the first two principal components of the geometric distribution of alanine Ca positions. PCA was used to align the interface along the X- and Y-axes.
Axes are normalized. (a) DDGala of the FunC interface from PDBid: 1c02, chains A&B. (b) DDGala of the FLIP interface from PDBid: 1b5e_AB, chains
A&B. (c) Linear regressions of DDGala vs. Distance from interface center. Regressions for the interfaces in the FLIPdb training set with the 10 most
positive [1acy_HP, 1biq_AB, 2cii_AC, 1b5e_AB, 1edh_AB, 1pky_BD, 1tx4_AB, 1hjc_AC, x1bsf8_AJ, 1bo5_OZ] and 10 most negative [1tzi_AV, 1acy_LP,
x1ppf2_EZ, x1dv82_AC, x1wtl_BZ, x1py94_AE, x1erv2_AC, x1gaf2_LY, 1scu_BD, 1c02_AB] intercepts. FLIP are shown in green and blue [1tzi_AV,
1acy_LP]. FunC are shown in red and yellow [x1bsf8_AJ, 1bo5_OZ]. DDGala are normalized to MAX(ABS(DDGala)), while distances of each residue’s Ca
from the mean of the Ca positions (Center of Interface) are normalized to MAX(distance). All 3 plots generally show that FLIP interfaces are more
centralized and radially symmetric than FunC interfaces. 80% of shown positive intercepts are FLIP and 80% of shown negative intercepts are FunC.
[Figures (a,b) generated using JMP [46]. Figure (c) generated using Microsoft Excel, 2008]
doi:10.1371/journal.pone.0097115.g001
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less than 70% sequence identical to proteins in the training set and

was used for cross-validation testing (Table 2).

Finally, a third set of 170 PPIs between 301 protein chains in

139 PDB files was examined. These 170 PPIs represent a subset of

54% of the weakly and strongly interacting PPIs characterized by

Dey and colleagues [7]. This set was not rigorously curated as to

FLIP/FUNC status so as to compare the results of our training set

with that of Dey. Overall, the structures and energetics of 348 PPIs

were categorized and examined.

Figure 2. The Energy Centrality Relationship (ECR) for interface evolution. The ECR hypothesis is that upon initial fortuitous protein-protein
association, residues in a nascent interface have a selective pressure to maintain or improve the affinity arising from the initial contact, while
simultaneously having a similar pressure on residues surrounding that contact. (a) and (b) show a conceptual PPI that has a radially symmetric
distribution of ‘hot’ (energetically favorable, red) and ‘cold’ (energetically unfavorable, blue) residues in a FLIP, while (c) and (d) are example residue
energy distributions of weaker (c) and stronger (d) affinity FunC. Over evolutionary time (c–f), selective activity, affinity, and specificity pressures on
residues in a FunC produce a radially symmetric pattern in the energetics of the interface. The resulting interface should demonstrate ‘‘stronger’’
energies near the ‘‘older’’ regions of the interface. These ‘‘older’’ regions may or may not demonstrate sequence conservation as the pressure is on
energy, not identity. As natural interfaces are generally more punctate than the ideal model, we expect that while both FLIP and FunC interfaces may
demonstrate multiple contacts, only FLIP interfaces will maintain overall centrality (e–f).
doi:10.1371/journal.pone.0097115.g002

Figure 3. Correlation of Features with Principal Components. Loading plots of the eigenvector coefficients of each feature analyzed by PCA
show the influence and correlations of each variable to the principal components. Eight features were analyzed to identify the set of features that
could represent ,80% of data variation in the first two principal components (see text for feature descriptions). (a) 80.3% of the total variance of all
eight features could be accounted for with just the first two PCs, though R2_DDG (red) had demonstrably smaller coefficients. (b) Exclusion of
R2_DDG produced a PCA over 7 features whose PC1 and PC2 accounted for 87.9% of the variance. (c) After removal of 49 interfaces predicted to be
FLIP in the first PCA, a second round of PCA using the same seven features but with only data for the remaining 110 protein interfaces was calculated.
This PCA produced eigenvectors that had 84.2% of the variance in the first two PCs. [Figure generated using JMP [46] and Microsoft Excel, 2008].
doi:10.1371/journal.pone.0097115.g003
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CAS DDG distribution in PPI
We used Baker’s CAS method [30] coupled with our own

software to determine the sensitivity to alanine substitution of

residues in a PPI, as a function of geometric distribution in the

interface. All geometric analyses were based on residue Ca
positions. This sensitivity was compared between FLIP and FunC

PPIs in the FLIPdb. Two representatives of this are shown in

Figure 1, in which we compare a FunC (Yeast Phosphotransferase

Ypd1p, PDBid: 1C02) and a FLIP (T4 bacteriophage dC-

hydroxymethylase dimer, PDBid: 1b5e). Histogrammed contours

of the pseudo-free energy change upon alanine substitution (DDG)

are plotted on the principal component analysis (PCA) projections

of the interface residue geometry (Figures 1a,b). (Note, that in this

work, we follow Baker’s use of the terms ‘‘free energy’’ and ‘‘DG’’

for consistency with the software output.) These distributions

indicate that in the FLIP, ‘‘hotter’’ residues (whose CAS analysis

resulted in more PPI destabilization upon substitution) tend to be

more centrally located and tend to show a progressive radial

symmetry. In contrast, the ‘‘hotter’’ residues in the FunC are fairly

evenly distributed throughout the interface. Some ‘‘cold’’ residues

(those favoring Ala substitution) are found near the interface

center. These CAS energy distributions are representative of other

FLIPs and FunCs. When all the DDG vs. distance from the Center

of Interface (CoI) were then fitted to a 1st order polynomial line

via linear regression, 8 of the 10 highest intercepts were found to

be FLIP, while 8 of 10 lowest intercepts were found to be FunC

(Figure 1c). In general, FLIPs were found to fit a line better than

the FunC (coefficients of determination, R2, were an order of

magnitude larger). The FLIPs were also found to generally have a

negative slope, indicative of a central tendency, whereas the FunCs

generally had near flat or small magnitude positive slopes. The

small magnitude slope and poor R2 suggests little geometric

central tendencies in the FunC. These trends were generally

maintained throughout FLIPdb, with most FLIPs having a radially

symmetrical central tendency and most FunCs demonstrating

little-to-no correlation with distance from the center of the

interface. One-way pairwise ANOVA at an a = 0.10 analyzing

the slopes and intercepts indicated that the differences between

Figure 4. PCA and K-means clustering of Training and Test-18 sets. Principal component analysis followed by K-means clustering was
performed on the residues in the 100 FLIP and 60 FunC interfaces in the FLIPdb. The same 7 features identified in Figure 3 are used here and the
number of clusters was set to k = 2. Green (‘‘cluster 1’’) and red (‘‘cluster 2’’) ovals represent 1 standard deviation for Euclidean distances around the
cluster centroid marked by ‘‘x’’. Interfaces are indicated with symbols representing their functional sub-category. Green and Blue symbols are FLIP
structures, but blue symbols are specifically AbAg and Inhibitor sub-categories. Red symbols are FunCs. (a) and (b): training set. (c) and (d): Test-18
testing set. (a) 49 FLIP interfaces (mostly enzymes and immunoglobin Heavy-Light chains) and 1 FunC are identified in cluster 1 (98% precision). (b)
After removal of these 50 interfaces, a second PCA analysis of the remaining 110 interfaces produces new clusters with 48 and 62 members,
respectively. PCA 2 Cluster 1 is 64% FLIP and cluster 2 is 68% FunC. Overall accuracy across both (a)+(b) is 76%. (c) and (d) show the projection of the
7 feature values 18 unrelated PPIs in the Test-18 set through the principal components developed on the training set. Enzymes and immunoglobin
Heavy-Light again dominate cluster 1 (100%) and overall accuracy in both clusterings is 78%. [Figure generated with JMP [46] and Microsoft Excel,
2008].
doi:10.1371/journal.pone.0097115.g004
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FLIP and FunC were significant with P,0.0006 and P,0.09,

respectively.

Energy Centrality Hypothesis
There is no a priori reason FLIP PPIs should demonstrate a

central tendency relative to FunC PPIs. Unless an organizing

principle was involved, one might expect an interface to have a

random correlation between CAS DDG and geometry (Figure 2c–

d). The presence of such a central tendency (Figure 1) in FLIP

interfaces suggests that they are indeed organized (Figure 2e–f),

perhaps through a natural selection process (see Discussion and

Figure 2).

Energetic and Geometric Features
Though PPIs are complex 3-dimensional entities, for the sake of

simplicity of analysis, we unified CAS DDG and structural

geometry characteristics into scalar quantities that could be used

to describe a PPI. Three features arose from the regression of

energy to geometry: the rate of change of substitution energy as a

function of distance (Dr) from the interface center (slope_DDG),

the extrapolated maximum DDG sensitivity at the interface center

(intcpt_DDG), and the adherence of the DDG and Dr data to a

linear relationship (coefficient of determination, R2_DDG). Three

features were found that describe the net sensitivity of an interface

to CAS: net sum of all DDG changes (Sum_DDG), mean DDG for

all interface residues (Avg_DDG), and total number of residues in

the interface (#total). The remaining two features address the

number of residues extremely sensitive to Ala substitution (‘‘hot’’

residues, residues with DDG larger than +1 kcal/mol): the number

of hot residues (#hot), and the ratio of hot to total (frac_hot). One-

way pairwise ANOVA at an a = 0.10 indicated that all features

except R2_DDG were significantly different between FLIP and

FunC with #hot, total, Sum_DDG, frac_hot, and Avg_DDG

having P,0.0001, intcpt_DDG having P,0.0006, and slo-

pe_DDG having P,0.09. Since these features could reasonably

be viewed as coupled, we also performed one-way ANOVA with

repeated measure at an a = 0.10 and with Tukey-Kramer post-

hoc analysis. This analysis indicated differences between FLIP and

FunC for #hot, total, Sum_DDG that were significantly different

with P,0.0001. Though shown to be statistically different,

individually none of these features were found to sufficiently

correlate with FLIP or FunC categories such that a single feature

could be used to identify the category.

Principal Component Analysis and K-Means Clustering
When no single feature could easily discriminate FLIP from

FunC, yet each feature yielded significant differences between

groups, the multi-factoral approach of PCA was used. Initial PCA

analysis of the 8 features for all 160 PPI in the training set yielded a

set of principal components (PCs) that reproduced 80% of the

normalized data variation in the first two PCs (Figure 3a). Analysis

of the eigenvector coefficients (Figure 3a) agreed with the

ANOVAs indicating that the variance in the data was far less

dependent on a strict adherence to a 1st order linear model. Thus,

for all subsequent analyses, R2_DDG was dropped as a feature.

The resultant 7-feature PCA reproduced 88% of the remaining

data variation in the first two PCs (Figure 3b). Subsequent K-

means cluster analysis with a two-cluster assumption of this data

(Figure 4a), produced two clusters whose centroids straddled the

origin for both PC1 and PC2 indicating opposing correlation

trends. Analysis of these clusters revealed they had high precision

and specificity. Cluster 1contained 49% of all FLIPs but only 2% of

FunC PPI (Table 2). Cluster 2 contained 51% of all FLIPs and

98% of FunC PPI. The FLIP PPI in cluster 1 were predominately

in the Enzyme (72% of Enzyme) and Antibody-Heavy/Light sub-

categories (100% of AbHL). Cluster 2 was dominated by FunC/

XFunC (98% of FUNC), Antibody-Antigen (75% of AbAg), and

Inhibitor sub-categories (100% of Inhibitor). Closer examination

of cluster 2 revealed that FLIPs assigned to this cluster tended

towards more positive PC1 values and larger magnitude PC2

values than FunCs/XFunCs. This consistency in trend suggested a

second PCA over the same features might provide further

distinction between FLIPs and FUNCs. A new PCA of only the

110 PPI in cluster 2 of the first PCA produced new PCs with

extremely similar eigenvector coefficient correlations to the first

PCA (Figure 3c). The same set of features still produced PCs that

represented 84% of the resultant data variation in the first two

PCs. This confirmed that similar data dependencies were in effect

between the two PCA. K-means clustering of this second PCA

again produced 2 clusters that straddled the origin for both PC1

Table 2. Accuracy of clustering in Training and Test-18 sets.

Training Set{ True Positive (TP) False Positive (FP) False Negative (FN) True Negative (TN) Accuracy MCC

1st clustering

49 1 51 59 67.5% 0.49

2nd Clustering

31 17 20 42 66.4% 0.32

Total 80 18 20 42 76.3% 0.50

Test 18 Set{ 1st clustering

3 0 10 5 44.4% 0.28

2nd clustering

6 0 4 5 73.3% 0.58

Total 9 0 4 5 77.8% 0.62

{) TP: FLIP found in Cluster 1TN: FUNC found in Cluster 2
FP: FUNC found in Cluster 1FN: FLIP found in Cluster 2
The accuracy and Matthews correlation coefficient (MCC, a measure of the quality of a binary classification) of the results of the clusterings shown in Figure 4 are
indicated. The overall accuracy is 76% and 78% for both training Test-18 sets, respectively. TPs are quite readily identified in both training and Test-18 sets (80% and
69% sensitivity, respectively). The majority of TPs are enzymes and immunoglobin heavy chain-light chain interactions. TNs are less well identified (70% and 56%
negative predictive values, respectively). MCCs of 0.50 and 0.62 indicate that our simple two-category approach is generally appropriate.
doi:10.1371/journal.pone.0097115.t002
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and PC2 (Figure 4b). As with the first PCA, cluster 1 of the second

PCA was predominately FLIP, containing 61% of the remaining

FLIPs but only 28% of the total FunCs. Likewise, cluster 2 was

predominately FunCs, containing 20% of the FLIPs and 70% of

the FunCs PPI (Table 2). Over two-rounds of PCA, 80% of the

FLIPs were found in the clusters positively correlated with the

features, and 70% of the FunCs were found in clusters negatively

correlated with the features.

Accuracy and Matthews Correlation
Analysis of the two rounds of PCA of the training set PPI data

indicated that the overall accuracy (the propensity to correctly

identify FLIP or FunC) was ,67% in each PCA round. Over both

rounds of PCA, the accuracy was 76% (Table 2). The Matthews

Correlation Coefficient, a measure of how well a binary

classification matches the data, was 0.49 in PCA round one,

0.32 in PCA round two, and 0.50 across both rounds. Such MCCs

indicate a two-category assumption is quite consistent with the

data.

Cross-validation Testing
While analysis of the training set data very favorably predicted

distinct feature set correlations between FLIPs and FunCs, it was

possible that the relationship was training set dependent and

demonstrated compositional bias. In order to test this, we

undertook three types of cross-validation testing: validation on

two test sets and random sub-sampling validation on the training

set.

We first repeated the analyses on the 18 member test set

(hereafter, Test-18). The additional interfaces in this set were

between protein chains that generally had less than 70% sequence

identity to chains in the training set (Table S1, see Methods). No

new PCA or K-means clustering was undertaken; rather the

features of Test-18 were projected through the PCs of the training

set. Test-18 projections are shown in Figures 4c,d. As with the

training set, FLIPs in the Enzyme and Antibody-Heavy/Light sub-

categories could be reliably identified in cluster 1 of PCA round 1.

Similarly, FunCs dominated the composition of cluster 2 in PCA

round 2. While the accuracies of the PCA 1 projection were

disappointingly lower than the training set (48%), the 2nd round

projection accuracies were larger (73%), and the overall two-round

accuracy was actually slightly higher than the training set at 78%

(Table 2). Similarly, MCC values were also slightly higher, at 0.62

(Table 2). This backhanded success may in part arise due to the

relatively high fraction of AbAg in Test18, as AbAg are generally

identified in round 2.

We next repeated the analyses on a second test set of 170 PPI

derived from the dataset of Dey and colleagues (see Methods) [7].

The dataset of Dey and colleagues was designed to analyze PPI

known to interact weakly or strongly in solution. Our subset

(hereafter Dey-170) represents about 54% of the full Dey dataset

and contains 32 weakly interacting PPI (weak) and 138 strongly

interacting PPI (strong) (Table S2). Dey-170 was not rigorously

curated as to FLIP/FUNC status but instead was used to examine

two model assumptions: a) Assume all 170 PPI are FLIP-like since

all are known to oligomerize in solution or b) Assume weak PPI are

more FUNC-like and strong PPI are more FLIP-like. Testing these

assumptions allows us to examine how well our operationally

defined categories of FLIP and FUNC agree with the weak and

strong PPI characterized by Dey. Again, the values of the 7

features of each Dey-170 PPI were projected through the PCs of

the training set (Figure S1a,b, Table S3). In projection round 1,

cluster 1 contained 59% of the strong PPI and no weak PPI.

Cluster 2 contained 100% of the weak PPI and 41% of the strong

PPI. In round 2, 75% of the remaining strong PPI and 38% of the

weak PPI were found in cluster 1, while 62% of weak PPI and 10%

of strong PPI were found in cluster 2. If we follow crude

assumption (a) that all Dey-170 are FLIP (i.e. no true negatives or

false positives exist), we still achieve an overall accuracy of 80%

(Table S3a). As this assumption is false, this accuracy likely

represents a lower limit. Interestingly, though this assumption has

a near zero MCC (random guessing) in round 1, subsequent

rounds of projection positively improve the correlation to an

overall MCC of 0.12. The accuracy and improving MCC suggest

that a two-category model, even when mis-assigned is superior to

random chance. If we follow crude assumption (b) that weak PPI

are FUNC-like and strong PPI are FLIP-like, we obtain results

consistent and slightly superior to the training set results with

accuracies of 84.7% and an MCC of 0.51 (Table S3b).

As the accuracy and MCC varied somewhat from training set to

Test-18 set to Dey-170 set, we evaluated the compositional bias of

our training set using random sub-sampling validation (Table S4).

Sub-samples of the training set were generated randomly in

triplicate for subsets of the training set ranging from 90% down to

20%. Regression analysis at an a = 0.10 for 1st through 6th order

polynomial fits of number of PPI vs. Accuracy show substantial

Lack of Fit error and a lack of statistical significance for each.

Overall, while this suggests that little compositional bias exists until

the number of PPI falls substantially below 80 (50% of the training

set), it also suggests that analyzing more PPI will not dramatically

improve the overall accuracy.

Taken together these training set and random sub-sampling

results suggest our method is robust to protein identity and of

general applicability, though likely needing additional refinement

in order to boost the accuracy to levels found in other methods

[11–13].

Discussion

ECR analysis can reproducibly distinguish FLIP from FunC
interfaces

Through the coupling of biological functional categorization

with interface geometries and energetics, the ECR methodology

produces very consistent results, both between training and testing

sets, as well as between functional sub-categories of PPI. FLIP PPIs

can be distinguished from FunC PPIs with 76% accuracy (Table 2).

In addition, PPIs of the same functional sub-category generally

have similar PC projection values such that they cluster (Figures 4

& S1). An accuracy of 76% compares favorably with other

approaches combining several methods [15,21,26]. It has slightly

lower accuracies (by approximately 10–12%) than PISA, NOX-

class, and EPPIC [11–13]. While lower in overall accuracy than

some of the most accurate methods, it does not appear to have any

significant compositional bias. ECR also has a distinct advantage

over many methods in that it is based solely on interaction energies

and structural features and does not rely on sequence conservation

patterns or interactome maps [17–19]. However, given the success

of approaches like those above that use sequence conservation,

particularly sequence entropy, we can expect that future inclusion

of features from these other approaches in our analysis would not

hinder and might even improve our accuracy. Furthermore, the

reproducibility across functional sub-categories, a characteristic

not included in the model but rather emergent from the analysis,

suggests that this method may also be useful in the annotation of

PPIs with unknown function. It is also an improvement on

methods that rely solely on hot spot analysis in that through

examination of all interface residue interactions it provides an
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energetic context for the hot spots and their differential presence in

FLIP and FunC PPIs.

Physical Interpretation
From the analysis of CAS DDG energetic and geometric

features, several clear patterns emerge. The first of these is that

FLIPs appear to have greater overall sensitivity to Ala substitution

than FunCs (Figures 3, 4). FLIPs have strong positive correlations

with Sum_DDG, #hot, and Avg_DDG in PC1, while FunCs are

negatively correlated with these traits (Figure 3b,c and Figure 4).

This suggests the FLIPs have more specific interactions that

produce large disruptions on Ala substitution than those of FunCs,

a finding that agrees with experimental work [1] and is consistent

with the characterization of weak and strong interfaces [7].

FLIPs also appear to have larger magnitude feature correlations

along PC2 than FunCs, which cluster closer to the PC2 origin.

PC2 is dominated by Slope_DDG, intcpt_DDG, and #total

(Figure 3b,c), all 3 of which are statistical distinct between FLIP

and FunC (P,0.09, P,0.0006, P,0.0001). Taken together, the

correlations along PC2 suggest FLIPs have a strong central

tendency with hotter centers and more interfacial residues than

FunCs. This central tendency of FLIPs is also shown in Figure 1.

While superficially, this is in agreement with certain precepts of

Bogan and Thorn’s ‘‘O-ring’’ hypothesis [8], it helps explain

failures of the O-ring hypothesis to explain confounding examples

of structures with hydrophilic or mixed hydrophilic and hydro-

phobic interfaces. A central tendency towards stability could be

present in both proteins that follow a hydrophobic O-ring type

structure, but could also be present in more hydrophilic interfaces

that rely more on solvent and electrostatic interactions.

Implications for Interface Evolution
The emergence of both a larger specificity and a central

organizing tendency from our ECR methodology suggests a model

of interface evolution in which nascent, fortuitous interactions in a

loose protein-protein association develop residue contacts that

improve biological function for the organism. These interactions

may have a selective pressure to be maintained or even improved

(via mutation) in order to maintain or enhance the specific affinity

of the two protein chains (Figure 2c–f). Residues surrounding these

contacts may also have pressure to enhance affinity. Over

evolutionary time, these selective pressures on the size and specific

affinity produce a radially symmetric pattern in the energetics of

the interface (Figure 2b,f). The resulting interface should

demonstrate ‘‘stronger’’ energies near the ‘‘older’’ regions of the

interface. This hypothesis qualitative agrees with the Evolutionary

Trace results of Lichtarge and colleagues, who identify radially

symmetric ‘‘bulls-eye’’ sequence conservation patterns near

functionally important residues [50]. It also helps explain why

sequence conservation methods alone without spatial, accessibility,

or energetic contributions do not perform well as PPI predictors

[15]. As the selective pressure on an interface is on energetic

affinity and specificity, not sequence identity, FLIP interfacial

residues may actually demonstrate larger sequence variation

during the evolutionary ‘‘optimization’’ events. This can occur

since improvements in specific affinity could arise if residues in

both sides of a PPI were replaced via mutation. Similarly, one

would not expect interfaces that are not acted upon by natural

selection to have a priori central tendency patterns (Figure 2f). They

should instead show a more random distribution of important

residues (Figure 2c,d).

The ECR concept that evolutionary pressure will produce

central tendency patterns with large specificity helps explain some

discrepancies in our PCA/K-means cluster data as well. Both

Antibody-Antigen and Inhibitor sub-categories cluster near the

FunCs and XFunCs in our analysis (Figure 4). While antibody-

antigen interactions are decidedly functionally linked, their

quaternary structures are generally not evolutionarily driven.

Instead, they are produced in a stochastic manner during V(D)J

recombination [51]. As somatic cell hypermutation and B-cell

selection is an evolutionary-like process [52] and antibody-

antigens are minimally oligo-trimers, it is also likely that center

of interface of a large oligomer is not near the pairwise center, thus

obscuring any central tendency. Similarly, enzyme inhibitors are

often produced by infectious organisms to impede a host’s native

functions. While, the infecting organism may have a selective

pressure to improve inhibitor binding, the host organism actually

has selective pressures to escape inhibitor binding. For both

antibodies and inhibitors, the lack of a pairwise central organizing

tendency is thus not unlikely and may explain why these two

functional sub-categories cluster with the FunCs.

Implications for Protein Docking
Many protein-docking methods attempt to determine PPI

structures by rapidly identifying and scoring regions of comple-

mentary shape and electrostatics [40]. Unfortunately, the large

false positive rates of most docking methods reduce the usefulness

of docking approaches [14,40,43]. Presumably, docking calcula-

tions are identifying regions of quaternary interaction conforma-

tional space that are not accessed by native conformations. As

ECR can successfully distinguish FLIP conformations from FunC

conformations, we propose ECR’s use as a post-filter on the poses

resulting from docking calculations. Our preliminary attempts at

this look promising. As a proof of concept, we filtered the top 500

scoring poses generated by the docking program Hex [53] with

ECR for several Enzymes and Antibody-HL interactions (1tzi_AB,

1bsr_AB, 1bsl_AB, 1biq_AB). In all these, we were able to identify

the lowest RMSD pose and in one case, 1bsr_AB, were able to

identify a lower RMSD pose than Hex. Though very preliminary,

we expect that our ECR method may substantially reduce false

positive rates.

Conclusions
In this work, we have introduced the FLIPdb, a database of

protein-protein interfaces categorized by biological function. We

have also introduced the Energy Centrality Relationship (ECR)

method for analysis of computational alanine scan energetic

distributions within protein-protein interfaces. We have success-

fully identified energetic and geometric features of interfaces that

may be used to distinguish between functionally-linked (FLIP) and

functionally uncorrelated (FunC) interfaces with a 76–80%

accuracy. We have identified that FLIP interfaces have a stronger

specificity and central organizing tendency than FunCs. Our ECR

model also successfully describes the impact of evolution and

natural selection on protein-protein interfaces. Finally, our ECR

method may be of use in reducing the false positive rate of docking

calculations.

Methods

Dataset: FLIPdb
We collected a set of atomic-resolution structures all of which

are available in the PDB [32] and then used additional literature

and database sources to manually assign protein-protein interfaces

to pre-decided categories. The database consists of 94 structures

involving 233 individual proteins chains that formed 160

interfaces, which were grouped into two primary categories,

functionally-linked (FLIP) or functional uncorrelated (FunC). We
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initially combined selected subsets of structures from the databases

of Janin and Weng [7,44–46]. These datasets characterize proteins

by whether they are known to be in protein complexes, have

crystal contacts, are weakly or strongly interacting in solution, and

how difficult they are to predict. Finally, we supplemented these

with structures of general interest in our research. In this work, we

chose to expand from prior datasets rather than simply use the

datasets outright as these other sets were created to study specific

questions but more importantly, did not always clearly delineate

biological functional relevance of the PPI. For this work, we

limited our selections to only bound complexes in an effort to

purposefully limit structural variability and thus bias towards

conformations with enhanced specificity. From this initial set,

structures with resolutions greater than 3 Å were rejected. We also

generally excluded structures with very large cavities or projections

whose curvature would produce interface centroids (based on Ca
positions) either out in space or far within the interior of one of the

binding partners. We further removed any structure with 2 or

fewer residues in the interface, partly in an effort to bias towards

larger affinities and partly because the use of linear regression to

map geometric features requires at least 3 bodies. We rejected

structures with disordered residues or heteroatoms other than

water or simple ions in the interface in order to bias the analyses

towards amino acid interactions.

For each of the resultant interfaces, we performed a limited

literature search focused on identifying: (1) whether the proteins

were known to oligomerize in vivo; (2) whether the proteins were

known to oligomerize in vitro but under conditions similar to those

within living systems; and (3) if mutations, post-translational

modification, chemical modification, or small-molecule binding of

residues within the interface were known to alter the function of

the protein. (4) Additionally, we identified PPIs whose quaternary

geometries were generally indicative of biological function, such as

cytoskeletal proteins, viral capsid proteins, or immunoglobin

interactions between the heavy-chains as well as immunoglobin

heavy-chain:light-chain interactions outside the Fv region. We

noted, but did not exclusively depend upon, whether PDB/PISA

had designated the interface as being present in a Biological

Assembly Unit (BioUnit). We categorized interfaces passing all

these tests as FLIP. In addition, as a tool to aid our categorization,

we noted whether the proteins could be simplistically sub-

categorized into: (1) antibody-antigen (AbAg); (2) immunoglobin

Heavy Chain/Light Chain (AbHL); (3) Enzyme-Enzyme, both

transient and persistent (Enzyme); (4) having a generally persistent

structure that provides mechanical stability, such as cytoskeletal or

viral proteins (Structural); (5) peptide/protein inhibitors to an

enzyme (Inhibitor); (6) proteins whose function is to recognize

peptides/proteins (Receptor); or (7) proteins regulated by post-

translational modification by another protein (Regulated). We

elected to use these 7, admittedly simplistic, operationally-defined

sub-categories, rather than use SCOP [54], CATH [55], or GO

[56] designations in order to limit the number of sub-categories

and thus examine general FLIP characteristics. This is also

consistent with categorizing all PPI into only the 2 FLIP/FunC

categories. Most interfaces that could not be annotated as FLIP

were categorized as FunC, though some interfaces were eliminated

from study if a number of conflicting annotations existed.

As the exclusions mentioned previously tended to eliminate

FunC structures, we augmented our FunC numbers in two ways.

First, we increased the number of proteins with a functionally

unrelated PPI in the asymmetric unit by following the inverse of

the method of Dey et al.[7]. We supplemented our set with entries

from the PiQSi server [39] that were listed as solution-state

monomers yet also had an entry of ‘‘PROBYES’’ in the Error field

that indicates whether literature is in conflict with the reported

quaternary assessment at PDB/PISA. Secondly, we utilized the

available crystal symmetries to transform the coordinates of FLIP

proteins such that crystal packing contact interfaces were

produced. These transformations were created using the SY-

MEXP module of Pymol [57] and were sub-categorized as

XFunCs. While it is generally desirable to have low similarity

between dataset members to minimize compositional bias, our use

of XFunCs derived from FLIPs actually provides a valuable

internal control in that the two should be distinguishable. Failure

to distinguish XFunCs from FLIPs in the same protein might

suggest that general features of the protein rather than the

interface were being biased towards. In order to further increase

our FunC structures while maintaining some continuity with the

datasets from the literature, we also created XFunCs from a subset

of the members of the weakly interacting set of Dey et al. that were

listed as only having crystal symmetry. All additional FunCs/

XFunCs were also rejected if they failed to pass the same

exclusionary limits placed on existing FLIPs and FunCs. In

addition, we rejected XFunC structures that literature review

suggested might in reality be FLIP. The final database consisted of

94 structures comprised of 219 individual proteins chains that

formed 160 interfaces. Of these, 100 were FLIP interfaces and 60

were FunC interfaces. Summary statistics of the FLIPdb are shown

in Table 1.

In additional to this training set of interfaces, 18 additional

interfaces (Test-18) were analyzed in order to provide a test set for

cross-validation. All but two of the proteins in Test-18 had less

than 70% sequence identify to proteins in the training set. Identity

was determined using BLAST [58] run with default parameters

available at servers at the National Center for Biotechnology

Information. The remaining 2 proteins (immunoglobin chains),

though not identical to immunoglobins in the training set, did have

substantial similarity outside of the Fv region. These 18 PPI were

subjected to the same physical and literature exclusionary limits as

the training set. Summary statistics of the Test-18 are shown in

Table 1.

Finally, as the training set had 38 members in common with the

set of Dey and colleagues (16 weak and 22 strong in the training

set), we created a second cross-validation testing set from 32

additional weak and 138 additional strong interfaces of Dey and

colleagues [7]. Dey and colleagues purposefully characterized PPI

predicted to have some level of oligomerization in solution, some

weakly but most strongly. It is tempting to presume that the

majority of these proteins would have some functional importance

since they oligomerize in solution. However, without literature

curation, one can only assume either (a) that all 170 PPI are FLIP

or (b) the strong PPI are more FLIP-like and the weak PPI are

more FUNC-like. These assumptions were evaluated in this work.

Summary descriptions of these 170 PPI are listed in Table S2.

Computational Alanine Scanning (CAS)
The CAS method of Kortemme and Baker [29,30,59], was used

to process all the interfaces in the FLIPdb. In brief, this method

evaluates enthalpy and free energy of solvation terms over

conformations arising from a rotamer library for both the existing

and alanine substituted residues in a PPI (native Gly and Pro

excluded). These terms are used to determine a pseudo-free energy

change upon substitution (DDG) [30]. Computational Alanine

Scanning (CAS) calculations were performed using the Agnito

HPC Linux cluster at Texas Woman’s University according to

scripts and libraries kindly supplied by Dr. Tanja Kortemme

(UCSF). These results were spot-checked against CAS calculations
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made using the ROBETTA server of David Baker’s lab [60]. In all

cases the results were identical.

Interfacial Geometry
Interfacial residues were defined using the same interface

definition as in the CAS method of Kortemme and Baker [30].

The geometric distribution of residues in each PPI were

determined by calculating the displacement (Dr) of the Ca position

from the mean of the Ca positions (termed the Center of Interface,

CoI) using software written by the authors. A linear regression of

the DDG and Dr data to a first-order polynomial (DDG = slope *

Dr + intercept) was calculated for each interface using software

written by the authors as well as GNUPLOT [61]. The

calculations provided 8 features for each interface: the slope

(slope_DDG), intercept (intcpt_DDG), coefficient of determination

(R2_DDG), net sum of all DDG changes (sum_DDG), mean DDG

for all interface residues (avg_DDG), total number of residues in

the interface (#total), number of residues with DDG larger than +
1 kcal/mol (#hot), and the ratio of ‘‘hot’’ to total (frac_hot).

Examples of the distribution of these DDG values for a FLIP

(PDBid: 1vfr) and FunC (PDBid: 1c02) are shown in Figure 1.

Principle Component Analysis (PCA)
Principle component analysis of the variation of CAS energetic

and geometric feature data for all PPI was undertaken using JMP

[62]. PCA determines a set of linearly-uncoupled eigenvectors

from normalized correlations between variables that progressively

describe the largest sources of variance in a data set [47]. The

eigenvector coefficients for each principal component vector

indicate the relative correlation between each feature and the

overall variation of all features. In this work, we sought to identify

the set of features that would describe more than 80% of the total

set variation in the first two principal components (PCs) such that

we could use a minimum number of PCs to discriminate between

FunC and FLIP data. The results from these PCA analyses are

shown in Figures 3 and 4 and Table 2. Due to the lower

contribution of the coefficient of determination (R2) of the linear

regression towards overall feature variation, this term was dropped

and only the remaining seven features were used.

K-means clustering
K-means clustering [48] is a data analysis method that clusters

observations into a specific number of clusters by attempting to

find the point(s) that have the lowest mean variation from the other

input data. When combined with PCA, the combination of

features that allows input data to be clustered can be identified. In

this work, two clusters were specified and the correlations between

cluster and functional category determined (Figure 4a,b and

Table 2). Forty-seven (47) FLIP interfaces (mostly enzyme and

immunoglobin heavy-chain/light chain interfaces) could easily be

identified. A second round of PCA and K-means clustering

excluding these 47 FLIP (and 2 FunC PPI falsely identified as

FLIP) was subsequently performed (Figure 4c,d and Table 2).

Accuracy and Matthews Correlation Coefficient
The following measures were used to assess the performance of

our clustering analysis:

Accuracy (ACC), the propensity to correctly identify FLIP or

FunC:

ACC~
TPzTNð Þ

TPzTNzFPzFNð Þ ð1Þ

and Matthews correlation coefficient (MCC), a measure of how much a

set of predictive data agrees with a two-state model:

MCC~
TPxTN{FPxFN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(TPzFP)(TPzFN)(TNzFP)(TNzFN)

p ð2Þ

where,

TP = the number of interfaces correctly predicted as FLIPs

(True Positive)

TN = the number of interfaces correctly predicted as FunCs

(True Negative)

FP = the number of interfaces wrongly predicted as FLIPs

(False positive)

FN = the number of interfaces wrongly predicted as FunCs

(False Negative)

These values are shown in Tables 2, S3.

Supporting Information

Figure S1 PCA and K-means clustering of Dey-170 set.
Projection of the 7 feature values of the PPI in the Dey-170 set

through the principal components developed on the training set.

Grey dots show the values of the training set. Green and red ovals

represent 1 standard deviation for Euclidean distances around the

cluster centroid marked by ‘‘x’’. Values for Dey-170 interfaces are

indicated with purple symbols representing ‘‘Strong’’ PPI

interactions and blue symbols representing ‘‘Weak’’ PPI interac-

tions. (a) and (b) shows projections through PCA 1 and 2 principal

components, respectively. (a) 60% of Strong PPI and 0% Weak

PPI group in cluster 1 while 40% of Strong and 100% of Weak

group in cluster 2, yielding 100% precision and 100% negative

predictive value. (b) After removal of the 82 PPI in cluster 1, a second

projection of the 88 remaining values through PCA 2 produces

new clusters with 54 and 34 members, respectively. PCA 2 Cluster

1 is 78% Strong while cluster 2 is 59% Weak. [Figure generated with

JMP [46] and Microsoft Excel, 2008].

(TIF)

Table S1 FLIPdb interface composition. Structures and

interfaces used in the training and testing sets. The FLIPdb

database contained 160 pairwise PPI between 219 protein chains

that were contained in 94 PDB structural files. The Test-18 set

contains 18 pairwise PPI between 19 proteins chains contained in

7 PDB files. Based on literature review, these PPIs were

categorized into the FLIP or FunC interface class (100 FLIP, 60

FunC). The PPIs were further sub-categorized into 7 FLIP and 2

FunC sub-categories: 1) antibody-antigen (AbAg); 2) immunoglo-

bin Heavy Chain/Light Chain (AbHL); 3) Enzyme-Enzyme, both

transient and persistent (Enzyme); 4) having a generally persistent

structure that provides mechanical stability, such as cytoskeletal or

viral proteins (Structural); 5) peptide/protein inhibitors to an

enzyme (Inhibitor); 6) proteins whose function is to recognize

peptides/proteins (Receptor); 7) proteins regulated by post-

translational modification by another protein (Regulated); 8) PPIs

in an asymmetric crystal unit NOT found to be FLIP (FunC); and

9) PPIs obtained by applying crystal symmetry transforms to FLIP

structures (XFunC). The Dey-170 set contains 170 pairwise PPI

between 301 proteins chains contained in 139 PDB files.

Categories were uncurated and sub-categories of ‘‘Strong’’ and

‘‘Weak’’ were derived from [7]. The number of chains, number of

interfaces, and the references used to justify classification for each

pairwise interface are listed.

(XLSX)
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Table S2 Summary of protein and protein interface
counts in Dey-170.

(DOCX)

Table S3 Pseudo-Accuracy of clustering in Dey-170 Test
set.

(DOCX)

Table S4 Random sub-sample validation of FLIPdb
training set.

(DOCX)
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