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Abstract
Glutathione S-transferases (GSTs) play important roles in the protection of cells against tox-

ins and oxidative damage where one Arabidopsis member,GSTF8, has become a com-

monly used marker gene for early stress and defense responses. AGSTF8 promoter

fragment fused to the luciferase reporter gene was used in a forward genetic screen for Ara-

bidopsis mutants with up-regulatedGSTF8 promoter activity. This identified the esr1-1 (en-
hanced stress response 1) mutant which also conferred increased resistance to the fungal

pathogen Fusarium oxysporum. Through positional cloning, the ESR1 gene was found to

encode a KH-domain containing RNA-binding protein (At5g53060). Whole transcriptome

sequencing of esr1-1 identified altered expression of genes involved in responses to biotic

and abiotic stimuli, hormone signaling pathways and developmental processes. In particular

was an overall significant enrichment for jasmonic acid (JA) mediated processes in the

esr1-1 down-regulated dataset. A subset of these genes were tested for MeJA inducibility

and we found the expression of some but not all were reduced in esr1-1. The esr1-1mutant

was not impaired in other aspects of JA-signalling such as JA- sensitivity or development,

suggesting ESR1 functions in specific components of the JA-signaling pathway. Examina-

tion of salicylic acid (SA) regulated marker genes in esr1-1 showed no increase in basal or

SA induced expression suggesting repression of JA-regulated genes is not due to antago-

nistic SA-JA crosstalk. These results define new roles for KH-domain containing proteins

with ESR1 unlinking JA-mediated growth and defense responses.
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Introduction
Plants are subject to constant changes in their environment and rapid molecular responses to
these are necessary for plant survival. Upon detection of abiotic or biotic stress a series of in-
duced signalling pathways are activated, mediated by key signalling hormones such as salicylic
acid (SA), jasmonic acid (JA) and abscisic acid (ABA), culminating in the expression of plant
protectant and defense genes (reviewed by [1–8]). However, as multiple abiotic and biotic
stresses can take place at the same time, a complex interplay of signalling pathways and re-
sponses can manifest resulting in opposing reactions. One mechanism to rapidly modify op-
posing stress-induced transcriptomes is to control the stability, degradation or turnover of
specific transcripts at a post-transcriptional level through RNA-binding proteins.

RNA-binding proteins are mostly characterised by the presence of one or more RNA-bind-
ing domains. In addition to mRNA stability and decay, RNA-binding proteins are involved in
diverse post-transcriptional processes including the maturation of mRNA through splicing,
capping, polyadenylation and export from the nucleus [9, 10]. Along with plant specific pro-
cesses such as flowering, the sessile nature of plants and a necessity to adapt quickly to chang-
ing environmental conditions may be why plants encode many RNA-binding, with over 200
RNA-binding proteins predicted in Arabidopsis [11]. Interestingly though, very few RNA-
binding proteins have been functionally characterised in plants.

One group of genes expressed in response to biotic and abiotic stress are those belonging to
the ubiquitous GLUTATHIONE S-TRANSFERASE (GST) enzyme family [12–15]. Plant GSTs
protect tissues against oxidative damage or from toxic products typically by catalyzing the con-
jugation of glutathione to a variety of electrophilic substrates of endogenous or exogenous ori-
gin, rendering the substrate less toxic (reviewed by [13, 15]). Expression of the Arabidopsis
GSTPHI8 (GSTF8) gene is induced rapidly by diverse biotic and abiotic elicitors including
pathogen attack, phytohormones, herbicides, heat and high-light stress, and as such has be-
come a marker gene for early stress and defense responses [12, 16–23].

Using the GSTF8 promoter to control the expression of a Firefly Luciferase reporter gene
(GSTF8:LUC), we have been able to non-invasively monitor the plant’s stress status, primarily
within root tissues where GSTF8 is predominantly expressed [17, 19, 21, 24]. To identify mech-
anisms controlling GSTF8:LUC activity we conducted a forward genetic screen using mutagen-
ized populations of plants containing GSTF8:LUC [23]. One mutant isolated from this screen,
designated disrupted in stress responses (dsr1), exhibited loss of SA inducible GSTF8:LUC activ-
ity and increased susceptibility to several fungal and bacterial pathogens [23]. The dsr1muta-
tion was mapped to a single amino acid change in a subunit of the mitochondrial energy
machinery (complex II subunit SDH1-1), causing a reduction in induced reactive oxygen spe-
cies production (ROS) from mitochondria and identifying mitochondrial derived ROS as a
critical component of plant defense [23].

To complement the dsr1 study, we screened for mutants with enhanced GSTF8:LUC expres-
sion in the aim of identifying mutants with increased tolerance to biotic stress. We identified
several alleles of a mutant called enhanced stress response 1 (esr1) encoding a K homology (KH)
domain containing RNA-binding protein (At5g53060). The esr1mutants confer constitutive
GSTF8:LUC expression and increased resistance to the root-infecting fungal pathogen Fusari-
um oxysporum. Detailed analysis of the esr1-1 allele also identified significant down-regulation
of genes enriched for involvement in JA-mediated responses. Other mutants of At5g53060 are
reported to confer altered tolerance to abiotic stress [25–27] such as heat stress which we also
established for esr1-1. While many Arabidopsis mutants conferring increased resistance to spe-
cific pathogens have been identified, these are commonly associated with a consequential de-
crease in tolerance to abiotic stress, or fitness costs such as poor growth or yield [2, 6, 28, 29].
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By contrast, esr1-1 displays increased F. oxysporum resistance, heat tolerance, and lacked ob-
servable defects in growth or development. These results define new roles for ESR1/At5g53060,
functioning in biotic stress responses, JA-signalling, and unlinking growth restraint and resis-
tance to stress.

Materials and Methods

Plant material and growth conditions
Unless otherwise specified, all experiments were conducted with the Arabidopsis thaliana Co-
lumbia-0 transgenic line (JC66/GSTF8:LUC) containing 791 bp of the GSTF8 promoter fused
to a luciferase reporter [17, 24]. Seeds were surface-sterilized, stratified at 4°C, and plated onto
100-mm square agar plates containing Murashige and Skoog (MS) salts as described previously
[17]. Plates for luciferase assays were supplemented with 50 uM luciferin (Biosynth AG). Plate
and soil grown plants were incubated under a 16-h light/8-h dark cycle at 22°C. The T-DNA
insertion mutant [30] used to generate esr1-2 (SALK_095666) was obtained from the Arabi-
dopsis Biological Resource Centre (ABRC). For generation of plants expressing candidate ESR1
genes the At5g53060, At5g53150 and At5g52860 CDS were amplified using primers listed in S1
Table. The resulting amplicons were cloned into BamHI/EcoRI digested binary vector pKEN
[31] and confirmed by sequencing. 35S:At5g53060 pKEN, 35s:At5g53150 pKEN and 35S:
At5g52860 pKEN were mobilized into Agrobacterium tumefaciens AGL1 and transformed into
esr1-1 as per [31]. Transgenic plants were selected based on resistance to 10 ug/mL glufosinate
ammonium (Fluka). To generate esr1-2, SALK_095666 and wild-type GSTF8:LUC lines were
crossed and F3 seedlings homozygous for the T-DNA and GSTF8:LUC selected.

Bioluminescence and luciferase assays
Seedling bioluminescence was captured and quantified by imaging in an EG & G Berthold mo-
lecular light imager as previously described [17, 21]. Biochemical luciferase assays were per-
formed as described by [24]. For 1 mM SA (Sigma) or temperature (45°C) treatments, 7-day
old seedlings grown on square 100-mm Petri dishes were either covered with the liquid treat-
ment at room temperature or incubated in temperature controlled cabinets for 40 min. After
this time, excess liquid was discarded from relevant plates and the plates imaged such that,
after acquiring the 0 hour bioluminescence image, 1 hour had elapsed.

Mutant screen and mapping of enhanced stress response 1
Mutagenesis of wild-type GSTF8:LUC was described by [23]. For mapping, a genetic cross be-
tween esr1-1 and Ler was generated and initial mapping conducted on 35 homozygous esr1-1
F2 plants (exhibiting constitutive GSTF8:LUC activity) with a set of 18 simple sequence-length
polymorphism (SSLP) markers to map esr1-1 to the bottom of chromosome 5, linked to mark-
er ciw9. Additional mapping was performed by screening 1040 homozygous F2 plants with
markers listed in S1 Table.

DNA isolation, Illumina sequencing, assembly and SNP annotation
DNA was extracted from backcrossed esr1-1 using the CTAB method as described previously
[32], followed by purifications using Agencourt AMPure XP beads (Beckman Coulter). Illu-
mina Truseq DNA libraries were generated using manufactures recommendations and se-
quenced on an Illumina HiSeq1000 platform. Reads were trimmed, mapped against the
TAIR10 release of the Arabidopsis genome [33] using bowtie2 v2.0.0b7 (parameters:-sensitive
—end-to-end—met-stderr) [34] and SAMtools [35]. The aligned sequences were scanned for
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SNPs relative to the TAIR10 reference using GATK (v2.1-6-g6a46042) [36]. The potential for
SNP errors occurring around insertion-deletion regions was reduced using GATK Realigner-
TargetCreator (parameters: –windowSize 20 –minReadsAtLocus 2) and IndelRealigner (pa-
rameters: consensusDeterminationModel USE_SW –LODThresholdForCleaning 2 –
maxconsensuses 100 –maxReadsForRealignment 100000 –maxReadsInMemory 300000).
Alignments were searched for SNPs using UnifiedGenotyper (parameters:—stand_call_conf
50.0 –stand_emit_conf 10.0). SNPs were considered as potentially contributing to the esr1-1
phenotype if they resided within the esr1-1mapped loci. For esr1-3 and esr1-4, pooled DNA
from 50–60 homozygous F2 plants from a Ler outcross were sequenced at 60–70x coverage by
the Australian Genome Research Facility (AGRF) using an Illumina HiSeq Platform. Between
77.9 and 80.2 million paired-end reads (100 bp in length) per sample were mapped to the Ara-
bidopsis TAIR10 genome reference sequence, SNPs called using the recommended SAMtools
mpileup script and processed through the NGM tool http://bar.utoronto.ca/ngm/ [37].

Developmental and MeJA root elongation inhibition assays
Seeds of wild-type GSTF8:LUC, esr1-1 and esr1-2 were surface sterilized and plated onto MS
media with germination rates measured as a percentage of total seeds plated (n = 60–70). For
root length and MeJA root elongation inhibition assays, seeds were sterilized as above and plat-
ed onto MS media in either the presence or absence of 25 or 50 μMMeJA. Root length was
measured on 7-day old seedlings using ImageJ [38]. Flowering time assays were conducted
under long day conditions16-h light/8-h dark cycle at 22°C (n = 10).

Pathogen assays
For F. oxysporum inoculations the isolate Fo5176 was used. Root-dip inoculations on 4-week-
old plants with a 1x106 cell/mL spore suspension were performed as described previously [39–
41]. A. brassicicola assays were performed with isolate UQ4273 as described by [23]. A 5 ul por-
tion of a 1x106 cell/mL spore suspension was applied to leaves of 3- to 4-week-old plants. Mock
treatments with potato dextrose broth (PDB) were also conducted. Lesion size was measured
with ImageJ [38]. For R. solani inoculations the strains AG2 or AG8 were used as previously
described [23, 42]. 7-day old seedlings were sown into vermiculite and inoculated with 1 mL of
1x106 cell/mL mycelium suspension.

RNA isolation
For qRT-PCR and RNAseq experiments on untreated plants, tissue was collected from 4-, 7- or
14-day old seedlings grown vertically on MS agar plates. For gene expression under MeJA or
SA treatment, 12-d-old seedlings germinated on MS plates were gently lifted into a mock medi-
um (MS broth), 100 uMMeJA medium (MS broth plus MeJA), or 1 mM SA (MS broth plus
SA) such that the roots were submerged, and left for 6 or 24 h before harvesting. Three separate
biological replicates were taken for all experiments consisting of whole seedlings pooled from
20–30 seedlings grown at the same time in the same environment, then frozen in liquid nitro-
gen, and stored at 80°C. RNA isolation was performed using the Qiagen RNeasy Plant Mini Kit
(Qiagen). DNase treatment was performed after RNA isolation using TURBO DNase followed
by treatment with the DNase Inactivation reagent (Ambion).

qRT-PCR
Following RNA isolation and DNase treatment, complementary DNA synthesis was performed
using SuperscriptIII reverse transcriptase (Invitrogen) with oligo(dT) (Invitrogen) and RNasin
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(Promega) with 1ug of input RNA. qRT-PCR was performed using SsoFast EvaGreen Super-
mix (Bio-Rad) on a CFX384 (Bio-Rad) system. Thermoycling and melt-curve conditions are
described by [43]. Absolute gene expression levels relative to the previously validated [41, 44,
45] reference gene mix β-actin2, β-actin7, and β-actin8 (At1g49240, At3g18780, and At5g09810,
respectively) were used for each complementary DNA sample using the equation: relative ratio
gene of interest/actin = (Egene-Ct gene)/(Eactin-Ct actin) where Ct is the cycle threshold value.
The β-actinmix contains reverse primers for each of the three β-actin genes and a universal
forward primer. The mean expression range of the reference gene was found to be within ±1 Ct
across all samples. Several gene-specific primer sequences are previously published [45, 46]
and are also listed in S1 Table.

RNA-seq library construction, Illuminia sequencing and identification of
differentially expressed genes
Following RNA isolation and DNase treatment of 14-day old wild-type or esr1-1 samples, Illu-
mina TruSeq libraries were generated from 1 μg of total RNA and sequenced on a HiSeq1000
platform (Illumina). RNA-seq paired-end reads were trimmed for low-quality base-calls and
Illumina adapter sequences via Cutadapt (v1.1, parameters: –quality-cutoff 30 –overlap 10
–times 3 –minimum-length 25) [47]. Reads trimmed to less than 25 bp were discarded and re-
maining reads sorted into pairs and singleton reads. RNA-seq reads were mapped to the
TAIR10 Arabidopsis genome reference [33] via Tophat (v2.0.9, parameters: –b2-very-sensitive-r
50 –mate-std-dev 100-i 20-I 4000-g 20 –report-secondary-alignments –report-discordant-pair-
alignments-m 0 –min-coverage-intron 20 –coverage-search –microexon-search –library-type fr-
unstranded) [48]. RNAseq read alignments were supplied to Cuffdiff (Cufflinks v2.1.1) [49] to
calculate normalised expression within the TAIR10 annotated genes as fragments per kilobase of
transcript per million mapped fragments (FPKM) (parameters: –frag-bias-correct –min-frags-
per-transfrag 4 –multi-read-correct). Significantly differentially expressed transcripts between
wild-type and esr1-1 were detected from 3 biological replicates using Cuffdiff with default Benja-
mini-Hochberg correction for multiple-testing, based on a False Discovery Rate�0.05. Func-
tional annotations of genes and AGI symbols were sourced from TAIR10 datasets. RNA-seq
reads have been deposited in the NCBI Sequence Read Archive under BioProject ID SRP056904.

Results

Identification of the constitutiveGSTF8:LUCmutant esr1-1
To identify negative regulators of root stress responses we screened mutants from an ethyl
methansulfonate (EMS) mutagenised GSTF8:LUC population [23] for enhanced basal lucifer-
ase expression. Over 50 mutants with constitutive GSTF8:LUC expression were identified and
termed enhanced stress response (esr) mutants. One of the mutants with the highest basal
GSTF8:LUC expression (esr1-1) was further analysed and its phenotype confirmed in the M3

generation (Fig 1a and 1b). Quantitative real-time RT-PCR (qRT-PCR) was performed to con-
firm LUCIFERASE (LUC) gene expression and determine endogenous GSTF8 expression.
While LUC expression was up-regulated (5.6-fold greater than wild-type), GSTF8 expression
was unaltered (Fig 1c and 1d), suggesting the esr1-1mutation may only affect the GSTF8:LUC
transgene and not endogenous GSTF8 expression.

For cloning and heritability studies, we out-crossed esr1-1 to the Landsberg erecta ecotype
(Ler). All F1 plants showed the wild-type phenotype, and F2 plants displayed a ~3:1 segregation
(59:21, χ2 test p = 0.8) suggesting the esr1-1 phenotype is due to a recessive mutation in a single
nuclear gene.
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GSTF8:LUC activity and endogenousGSTF8 expression is up-regulated
in esr1-1 following SA treatment
To further characterise esr1-1, we monitored GSTF8:LUC expression following SA treatment,
known to rapidly induce GSTF8 promoter activity in wild-type plants [17, 24]. GSTF8:LUC ac-
tivity increased more rapidly in esr1-1 following SA treatment where it plateaued at 6–7 hours
post treatment compared to wild-type seedlings where this occurred at 8–9 hours (Fig 2a). Ex-
pression of the endogenous GSTF8 gene in esr1-1 under SA-inducing conditions was also sig-
nificantly higher in esr1-1 compared to wild-type (Fig 2b). Combined with the lack of
increased basal GSTF8 expression in esr1-1 (Fig 1d), these results suggest regulation of basal
but not stress inducible GSTF8 promoter:LUC activity differs from the context of the endoge-
nous GSTF8 gene, possibly due to regulatory components beyond the promoter fragment used
in this study.

Fig 1. esr1-1 causes hyper-expression of basalGSTF8:LUC activity. (a)GSTF8:LUC expression in 4 day
old wild-type (WT) and esr1-1 seedlings. Shown is bioluminescence (pseudocolored blue) superimposed
onto a fluorescence (white) image. Intensity of bioluminescence ranges from blue to red as depicted in the
intensity ruler. (b) Quantification of bioluminescence via in vivo light emission (relative light units/seedling;
values are averages ± SE (n = 30) from 4 day old seedlings) and in vitro biochemical assays (units/20sec/mg
protein; values are averages ± SE (n = 30) from 9 day old seedlings). (c-d) Luciferase (LUC) andGSTF8
expression in 4 day old seedlings (values are averages ± SE of 4 biological replicates consisting of pools of
20 seedlings). Gene expression levels are relative to the internal control β-actin genes. Asterisks indicate
values that are significantly different (**P<0.01, *P<0.05 Student’s t-test) fromWT.

doi:10.1371/journal.pone.0126978.g001
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ESR1 is a negative regulator of resistance to the fungal pathogen
Fusarium oxysporum
We previously identified a mutant from the same screen as esr1-1 but with loss of SA inducible
GSTF8:LUC activity. This mutant termed disrupted in stress responses 1 (dsr1) exhibits increased
susceptibility to several pathogens [23]. As esr1-1 exhibits increased root localised GSTF8:LUC
expression (Figs 1 and 2), we hypothesized esr1-1may confer increased resistance to root patho-
gens. To test this, we first inoculated wild-type and esr1-1 plants with the root-infecting fungal
pathogens Rhizoctonia solani and Fusarium oxysporum [19, 50]. While no significant difference

Fig 2. GSTF8:LUC activity and endogenousGSTF8 expression is up-regulated in esr1-1 following SA
treatment. (a) AverageGSTF8:LUC expression per wild-type (WT) and esr1-1 seedling per hour after
treatment with 1mM salicylic acid (SA) or a control treatment. Values are averages ± SE (n = 5) from 7 day old
seedlings with esr1-1 andWT values plotted on the left and right axes respectively. Similar results were
obtained in independent experiments. (b)GSTF8 expression in 12 day old seedlings 6 hours post control or
SA treatment (values are averages ± SE of 3 biological replicates consisting of pools of 20–30 seedlings).
Gene expression levels are relative to the internal control β-actin genes. Asterisks indicate values that are
significantly different (*P<0.05 Student’s t-test) fromWT.

doi:10.1371/journal.pone.0126978.g002
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in disease symptom development or survivorship was observed between wild-type or esr1-1
plants inoculated with R. solani (strains AG2 or AG8) (Fig 3a), esr1-1 did exhibit increased resis-
tance to F. oxysporum (Fig 3b–3d). This was observed through both a delay in disease symptom
development and increased survival. While jasmonate (JA)-mediated defences are required for
resistance to most fungal necrotrophic pathogens (e.g. Botrytis cinerea, Alternaria brassicicola,
[51]), JA-signalling confers susceptibility to F. oxysporum with mutants compromised in JA-de-
pendant responses exhibiting resistance to this pathogen [41, 45, 52].

The increased resistance to F. oxysporum prompted us to determine if esr1-1 conferred in-
creased susceptibility to A. brassicicola. Larger A. brassicicola induced lesions were observed on
esr1-1 leaves compared to wild-type (Fig 3e and 3f), however not a statistically significant level.
This phenotype was observed over several independent experiments suggesting ESR1 contrib-
utes a small affect to inhibition of A. brassicicola lesion development. As could be hypothesized

Fig 3. esr1-1 exhibits increased resistance to Fusarium oxysporum. (a) Percentage survivorship of wild-type (WT) and esr1-1 seedlings at 4 and 21 days
post inoculation (dpi) with Rhizoctonia solani isolates AG8 and AG2-1. Values are averages ± SE of 4 biological replicates consisting of pools of 5 seedlings.
(b-d) Disease phenotypes of F. oxysporum inoculated plants with (b) percentage and (c) representative images of diseased plants 10 days post inoculation.
(d) Survival at 21 days post inoculation. Values are averages ± SE (n = 30). (e-f) A. brassicicola induced lesions on (e) WT and esr1-1 leaves 3 days post
inoculation with (f) representative images of leaves. Values are averages ± SE of 6 biological replicates consisting of lesion diameters measured from 4
inoculated leaves per plant. Asterisks indicate values that are significantly different (*P<0.05 Student’s t-test) fromWT. Similar results were obtained in
independent experiments.

doi:10.1371/journal.pone.0126978.g003
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from the F. oxysporum results, increased A. brassicicola induced lesions may be due to reduced
JA-responses in esr1-1.

ESR1 encodes a K homology (KH) domain RNA-binding protein
To determine the causal esr1-1mutation, map based cloning was initiated using F2 seeds of
the esr1-1 and Ler cross. Genetic mapping was conducted on 1040 homozygous F2 plants.
The mutation was narrowed down to a region on Chromosome 5 spanning ~200 Kb across
three Bacterial Artificial Chromosomes (BACs); MXC20, MNB8 and MFH8 (Fig 4a). Whole
genome sequencing of the GSTF8:LUC wild-type parent and esr1-1 and alignment to the
TAIR10 genome identified five single nucleotide polymorphisms (SNPs) within the mapped
loci with three causing non-synonymous mutations in gene coding regions. Molecular com-
plementation assays were conducted by individually introducing the three candidate genes
under the control of the 35S promoter into the esr1-1 background. The 35S:At5g53060 con-
struct eliminated the esr1-1 constitutive GSTF8:LUC expression and restored the wild-type
phenotype, suggesting a G300A nucleotide change in At5g53060 and resulting stop codon
substitution of W100� causes the esr1-1 phenotype (Fig 4b, 4c and 4f). At5g53060 encodes a
heterogenous nuclear riboprotein (hnRNP) K homology (KH) domain containing RNA-
binding protein. The protein contains five KH-domains and the esr1-1mutation disrupts the
first of these domains. KH-domains are found in many RNA-binding proteins and are asso-
ciated with transcriptional and post-transcriptional processes where they can bind RNA or
single stranded DNA [11, 53, 54]. In all subsequent experiments the esr1-1 line used is a line
backcrossed twice to the wild-type parent (to remove other EMS induced mutations) and
has the same GSTF8:LUC phenotype as the M3 esr1-1 line (data not shown).

To confirm a mutation in At5g53060 is responsible for the esr1-1 increased GSTF8:LUC and
Fusarium resistance phenotypes, a T-DNA insertion line in At5g53060 (SALK_095666) was
crossed with wild-type GSTF8:LUC. We generated F3 seedlings homozygous for the T-DNA
and GSTF8:LUC (subsequently named esr1-2) which displayed both the constitutive esr1-1 lu-
ciferase phenotype and increased resistance to F. oxysporum, further supporting that the esr1-1
mutant phenotypes result from disruption of At5g53060 (Figs 4d–4f, 5a and 5b). As with esr1-
1, esr1-2 plants exhibited increased basal expression of LUCIFERASE but not GSTF8 (Fig 5c).
To rule out the possibility that increased transgene activity in the esr1mutants contributes to
Fusarium resistance, we inoculated SALK_095666 in the absence of the GSTF8:LUC transgene,
and included control Col-0 plants. As with both esr1-1 and esr1-2mutants, the SALK_09566
line also showed significantly increased resistance to Fusarium (Fig 5d and 5e). These results
therefore confer a new role for At5g53060/ESR1, in mediating responses to biotic stress.

Of the other 50 constitutive GSTF8:LUCmutants isolated from our initial screen, we identi-
fied two further recessive alleles of esr1 using the process of Next Generation Mapping (NGM)
[37]. Using the NGM tool, SNPs were called against the TAIR10 genome reference and identi-
fied a region on chromosome 5 low in heterozygosity, incidentally mapping to the ESR1/
At5g53060 loci (S1 Fig). We found both mutants conferred increased resistance to F. oxy-
sporum and through genetic complementation confirmed both mutants were indeed alleles of
esr1, subsequently designating them as esr1-3 and esr1-4 (Fig 5f–5h). esr1-3 confers a G2744A
change at the second last exon/intron boundary (TGAGCAgtaagtt>TGAGCAataagtt), while
esr1-4 confers a G690A change at the last codon of the first exon causing a synonymous change
(CAG>CAA, Q>Q) (Fig 5i). Processing of these mutated genes through the splice site predic-
tion software NetGene2 (version 2.4; [55]) revealed that both mutants would encode miss-
spliced transcripts with esr1-3 losing the last donor splice site and esr1-4 losing the first donor
splice site.
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Fig 4. Molecular cloning of esr1-1. (a) Fine mapping of esr1-1with recombination events from 1040 plants analysed for each marker shown. (b-c) Wild-type
(WT) and esr1-1 genomes were sequenced and inspected for SNP differences within the mapped loci to identify 3 candidate genes. Molecular
complementation of the esr1-1mutation by the wild-type At5g53060 gene with (b) images and (c) luciferase quantification shown (P<0.05, all pairs Student’s
t-test). (d-e) Genetic complementation between esr1-1 and a At5g53060 T-DNA knockout (SALK_095666) with (d) images and (e) luciferase quantification
shown (P<0.05, all pairs Student’s t-test). The esr1-2mutant is an F3 line from a cross betweenWT plants and the T-DNA insertion line SALK_09566 and is
homozygous for the T-DNA insertion andGSTF8:LUC transgene. (f) Structure of the At5g53060 gene with esr1-1mutation and T-DNA knockout locations
indicated. Filled boxes indicate exons, joining lines indicate introns. Positions are relative to the start codon.

doi:10.1371/journal.pone.0126978.g004
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esr1mutants confer increased tolerance to heat stress
Three other mutant alleles of At5g53060 have been independently identified through abiotic
stress screens using salt, desiccation or cold-inducible promoters and confer increased or re-
duced tolerance to specific abiotic stresses. These are Regulator of CBF gene expression 3 (rcf3-
1, [26]), Shiny1 (shi1, [27]), and High Osmotic Stress Gene Expression 5 (hos5-1, [56]). To

Fig 5. Identification and screening of other esr1 alleles/insertion lines conferring increased resistance to Fusarium oxysporum. (a-b) Disease
phenotypes of F. oxysporum inoculated wild-type (WT)GSTF8:LUC and esr1-2 plants. Values are averages ± SE (n>15). (c) At5g53060/ESR1,
LUCIFERASE (LUC) andGSTF8 expression in 12 day old WT and esr1-2 seedlings (values are averages ± SE of 3 biological replicates consisting of pools of
20 seedlings). Gene expression levels are relative to the internal control β-actin genes. (d-g) Disease phenotypes of F. oxysporum inoculated (d-e) Col-0 and
SALK_09566, and (f-g) WTGSTF8:LUC and esr1-3 and esr1-4 plants. Values are averages ± SE (n>15). (h) esr1-1, esr1-3 and esr1-4mutants were crossed
and F1 progeny screened for complementation of theGSTF8:LUC constitutive expression phenotype. Crosses to wild-type (WT)GSTF8:LUC were included
as controls. (i) Next Generation Mapping identified esr1-3 and esr1-4mutations at splice site junctions in At5g53060/ESR1. For Fusarium disease assays,
diseased leaves was measured at 14 days post inoculation and survival at 21 days post inoculation. Asterisks indicate values that are significantly different
(**P<0.01, *P<0.05 Student’s t-test) fromWT or Col-0.

doi:10.1371/journal.pone.0126978.g005
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determine if esr1-1 exhibited altered tolerance to abiotic stress we conducted heat tolerance as-
says described by [26] and found esr1-1 also conferred increased tolerance to heat stress (S2
Fig). This was also confirmed for the insertional knockout mutant esr1-2 (S2 Fig). To further
characterise the role of At5g53060/ESR1 in temperature stress, we monitored GSTF8:LUC ac-
tivity in wild-type and esr1-1 seedlings over a 12 h time-course following heat stress. As with
results following SA treatment (Fig 2), GSTF8:LUC activity increased more rapidly in esr1-1
compared to wild-type seedlings (S2 Fig) suggesting ESR1 contributes to the repression of SA
and heat induced stress responses.

Whole transcriptome sequencing of esr1-1 reveals altered expression of
genes involved in biotic and abiotic stress responses
To uncover the possible direct or indirect targets of At5g53060/ESR1, we performed whole-
transcriptome sequencing (RNA-seq) on three biological replicates of esr1-1 and wild-type
seedlings using the Illuminia HiSeq platform. We used un-treated seedlings as GSTF8:LUC is
constitutively up-regulated in esr1-1 under normal growing conditions (Fig 1a). Between 18.5
and 21.4 million paired-end reads (100 bp in length) per sample were mapped to the Arabidop-
sis TAIR10 exome reference sequence.

Using the Cuffdiff tool within Cufflinks [49] we identified 1176 significantly differentially
expressed genes between wild-type and esr1-1 (Benjamini-Hochberg correction for multiple-
testing based on a False Discovery Rate�0.05). Based on significant FPKMs (Fragments Per
Kilobase of exon model per Million mapped fragments) fold changes, more transcripts were
down-regulated in esr1-1 (873) compared to up-regulated (303) (S2 and S3 Tables). To gain in-
sight into the functions of these genes we performed Gene Ontology (GO) term enrichment
analysis using agriGO v1.2 [57] with the default False Discovery Rate (p�0.05) determined p-
value significance. Among the most significantly enriched biological processes from genes
down-regulated in esr1-1 were those involved in response to stress, biotic and abiotic stimuli,
defense responses, wounding responses, and response to other organisms (bacteria and fungi)
(S4 Table). Among the most significantly enriched biological processes from genes up-regulat-
ed in esr1-1 were those involved in response to light, abiotic and hormone stimulus, cell death,
signaling pathways and developmental processes (S5 Table). While esr1-1 displays these signifi-
cant changes in stress and defense responsive gene expression, interestingly neither esr1-1 or
esr1-2 show obvious deleterious growth or developmental defects (Fig 6a–6d) often exhibited
by Arabidopsis mutants with similar expression profiles [2, 58].

To consolidate a smaller list of differentially expressed genes for follow up qRT-PCR studies
we sorted the gene lists for those with significantly altered expression greater than 2-fold from
wild-type levels. This identified 48 genes up-regulated in esr1-1 and 174 genes down-regulated
(Tables 1 and 2). Although analysis of the 48 up-regulated genes did not reveal any specific GO
term enrichment for biological processes, there was molecular function enrichment for nucleo-
side and nucleotide binding. The gene list included C-Terminal Domain Phosphatase-Like1
(CPL1) which can physically interact with At5g53060 [27, 56, 59] and was one of the most signif-
icantly up-regulated genes in esr1-1. Other genes with strong up-regulation were At3g54160 an
uncharacterised F-box/RNI-like protein, SYNAPTOTAGMIN 2 (SYTB) a calcium-dependent
lipid-binding protein involved in protein secretion, and SUGAR TRANSPORTER 11 (STP11).
Examination of these three genes and CPL1 using qRT-PCR within a developmental time-course
comparing wild-type versus esr1-1 seedlings, including the 14-day old seedlings that were sam-
pled for the RNAseq analysis, revealed their constitutive up-regulation at all time-points (S3 Fig).

We next examined the list of 174 genes that were significantly down-regulated in esr1-1
>2-fold over wild-type (Table 2) for GO term enrichment. Amongst the most significantly
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Fig 6. Significant enrichment of stress and defense associated biological process Gene Ontology (GO) terms in esr1-1 down-regulated genes is
not associated with developmental impairment. (a-d) Neither esr1-1 nor esr1-2 differ from wild-type in (a) germination, (b) flowering time, (c) root or (d) leaf
development. (e) Genes significantly down-regulated�2-fold in esr1-1 (compared to wild-type) were analyzed for enrichment of GO terms associated with
biological processes. Shown are GO term representations in the esr1-1 dataset compared to representation in the Arabidopsis genome. GO terms are
ordered by p values adjusted by the False Discovery Rate.

doi:10.1371/journal.pone.0126978.g006
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Table 1. esr1-1�2-fold up-regulated genes.

AGI locus symbol fold change (esr1-1/
WT)

FDR-adjusted p-
value

AGI description

AT4G21670 CPL1 2.43 0 C-terminal domain phosphatase-like 1

AT1G17990 2.65 0 FMN-linked oxidoreductases superfamily protein

AT5G25280 3.15 0 serine-rich protein-related

AT5G25130 CYP71B12 2.16 3.6E-15 cytochrome P450, family 71, subfamily B, polypeptide 12

AT2G01860 EMB975 2.48 3.3E-11 Tetratricopeptide repeat (TPR)-like superfamily protein, EMBRYO
DEFECTIVE 975

AT1G03990 4.15 1.9E-09 Long-chain fatty alcohol dehydrogenase family protein

AT5G66520 2.39 1.2E-08 Tetratricopeptide repeat (TPR)-like superfamily protein

AT1G19340 2.75 2.1E-06 Methyltransferase MT-A70 family protein

AT3G54160 14.45 2.4E-05 RNI-like superfamily protein

AT5G44120 CRA1 2.07 8.3E-05 RmlC-like cupins superfamily protein, CRUCIFERINA

AT2G36790 UGT73C6 2.07 1.2E-04 UDP-glucosyl transferase 73C6

AT1G61400 2.78 1.5E-04 S-locus lectin protein kinase family protein

AT5G11470 2.35 2.5E-04 bromo-adjacent homology (BAH) domain-containing protein

AT2G42730 2.34 2.5E-04 F-box family protein

AT5G44980 3.55 3.2E-04 F-box/RNI-like/FBD-like domains-containing protein

AT1G50790 2.55 3.8E-04 Plant mobile domain protein family

AT1G61500 2.09 7.6E-04 S-locus lectin protein kinase family protein

AT1G77960 3.26 1.3E-03 Unknown

AT2G30505 2.91 1.3E-03 Late embryogenesis abundant (LEA) hydroxyproline-rich glycoprotein family

AT3G57580 2.11 2.0E-03 F-box and associated interaction domains-containing protein

AT3G53680 2.02 2.9E-03 Acyl-CoA N-acyltransferase with RING/FYVE/PHD-type zinc finger domain

AT1G52990 7.45 2.9E-03 thioredoxin family protein

AT1G75110 RRA2 2.11 4.2E-03 Nucleotide-diphospho-sugar transferase family protein, REDUCED RESIDUAL
ARABINOSE 2

AT3G26550 2.08 5.4E-03 Cysteine/Histidine-rich C1 domain family protein

AT4G03440 2.03 5.4E-03 Ankyrin repeat family protein

AT4G28520 CRU3 2.01 5.6E-03 cruciferin 3

AT3G44713 3.25 5.7E-03 Unknown

AT1G13609 2.16 6.3E-03 Defensin-like (DEFL) family protein

AT2G07732 2.05 6.5E-03 Ribulose bisphosphate carboxylase large chain, catalytic domain

AT1G12700 2.07 7.0E-03 ATP binding;nucleic acid binding;helicases

AT3G21370 BGLU19 3.89 7.6E-03 beta glucosidase 19

AT5G37750 3.70 8.8E-03 Chaperone DnaJ-domain superfamily protein

AT1G51520 2.06 9.4E-03 RNA-binding (RRM/RBD/RNP motifs) family protein

AT5G37400 2.15 9.4E-03 Family of unknown function (DUF577)

AT3G18970 MEF20 2.18 1.0E-02 mitochondrial editing factor 20

AT1G20080 SYTB 7.60 1.1E-02 Calcium-dependent lipid-binding (CaLB domain) family protein

AT5G23270 STP11 6.74 1.2E-02 sugar transporter 11

AT2G19910 2.15 1.3E-02 RNA-dependent RNA polymerase family protein

AT3G47090 2.09 1.5E-02 Leucine-rich repeat protein kinase family protein

AT5G38040 2.15 1.8E-02 UDP-Glycosyltransferase superfamily protein

AT5G23600 2.21 2.0E-02 RNA 2'-phosphotransferase, Tpt1 / KptA family

AT3G46370 2.13 2.3E-02 Leucine-rich repeat protein kinase family protein

AT4G16940 2.12 2.6E-02 Disease resistance protein (TIR-NBS-LRR class) family

AT5G43840 HSFA6A 2.74 3.2E-02 heat shock transcription factor A6A

AT5G66960 2.02 3.5E-02 Prolyl oligopeptidase family protein

(Continued)
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Table 1. (Continued)

AGI locus symbol fold change (esr1-1/
WT)

FDR-adjusted p-
value

AGI description

AT4G38010 2.59 4.0E-02 Pentatricopeptide repeat (PPR-like) superfamily protein

AT1G58320 2.14 4.0E-02 PLAC8 family protein

AT4G10600 2.66 4.1E-02 RING/FYVE/PHD zinc finger superfamily protein

Fold change based on FPKMs from 3 biological replicates. Significance based on Benjamini-Hochberg correction for multiple-testing, P�0.05 adjusted by

the False Discovery Rate. Values in bold are �3-fold changes.

doi:10.1371/journal.pone.0126978.t001

Table 2. esr1-1�2-fold down-regulated genes.

AGI locus symbol fold change (esr1-
1/WT)

FDR-adjusted p-
value

AGI description

AT3G49620 DIN11 15.9 0 2-oxoglutarate (2OG) and Fe(II)-dependent oxygenase protein, DARK
INDUCBILE 11

AT2G39030 NATA1 8.6 0 Acyl-CoA N-acyltransferases (NAT) superfamily protein

AT5G42600 MRN1 6.1 0 marneral synthase

AT3G12740 ALIS1 4.8 0 ALA-interacting subunit 1

AT4G15210 BAM5 4.5 0 beta-amylase 5

AT2G39330 JAL23 3.8 0 jacalin-related lectin 23

AT3G57260 BGL2 3.4 0 beta-1,3-glucanase 2

AT3G25830 TPS-CIN 3.3 0 terpene synthase-like sequence-1,8-cineole

AT1G33960 AIG1 3.3 0 P-loop containing nucleoside triphosphate hydrolases superfamily protein,
AVRRPT2-INDUCED GENE 1

AT2G24850 TAT3 3.1 0 tyrosine aminotransferase 3

AT1G45201 TLL1 2.9 0 triacylglycerol lipase-like 1

AT5G20150 SPX1 2.9 0 SPX domain gene 1

AT2G43510 TI1 2.6 0 trypsin inhibitor protein 1

AT2G39310 JAL22 2.5 0 jacalin-related lectin 22

AT3G04720 PR4 2.4 0 pathogenesis-related 4

AT1G19670 CLH1 2.3 0 chlorophyllase 1

AT5G24770 VSP2 2.3 0 vegetative storage protein 2

AT5G48850 ATSDI1 2.1 0 Tetratricopeptide repeat (TPR)-like superfamily protein, SULPHUR
DEFICIENCY-INDUCED 1

AT3G45140 LOX2 2.1 0 lipoxygenase 2

AT1G73260 KTI1 2.0 0 kunitz trypsin inhibitor 1

AT4G22517 3.5 3.6E-15 Bifunctional inhibitor/lipid-transfer protein/seed storage 2S albumin superfamily
protein

AT2G43530 2.8 3.6E-15 Scorpion toxin-like knottin superfamily protein

AT5G24780 VSP1 2.5 7.2E-15 vegetative storage protein 1

AT3G21500 DXPS1 6.7 1.8E-14 1-deoxy-D-xylulose 5-phosphate synthase 1

AT3G49580 LSU1 2.5 3.4E-14 response to low sulfur 1

AT5G42590 CYP71A16 2.4 5.7E-14 cytochrome P450, family 71, subfamily A, polypeptide 16

AT4G12470 AZI1 2.2 1.8E-13 azelaic acid induced 1

AT1G27020 2.4 1.9E-13 Unknown

AT2G14610 PR1 2.3 2.2E-13 pathogenesis-related gene 1

AT5G20790 2.8 1.2E-12 Unknown

AT3G02040 SRG3 2.1 1.2E-12 senescence-related gene 3

(Continued)
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Table 2. (Continued)

AGI locus symbol fold change (esr1-
1/WT)

FDR-adjusted p-
value

AGI description

AT4G22470 3.7 1.7E-12 protease inhibitor/seed storage/lipid transfer protein (LTP) family protein

AT2G29900 PS2 2.4 9.0E-12 Presenilin-2

AT1G61120 TPS04 7.2 1.8E-11 terpene synthase 04

AT4G25000 AMY1 4.7 3.3E-11 alpha-amylase-like

AT3G44860 FAMT 3.8 5.6E-11 farnesoic acid carboxyl-O-methyltransferase

AT5G10380 RING1 2.7 6.8E-11 RING/U-box superfamily protein

AT1G17710 2.6 9.0E-11 Pyridoxal phosphate phosphatase-related protein

AT2G29350 SAG13 2.4 1.4E-10 senescence-associated gene 13

AT1G15520 PDR12 2.6 1.9E-10 pleiotropic drug resistance 12

AT5G10760 3.1 3.7E-10 Eukaryotic aspartyl protease family protein

AT3G26830 PAD3 2.2 1.5E-09 Cytochrome P450 superfamily protein, PHYTOALEXIN DEFICIENT 3

AT1G69880 TH8 3.1 2.5E-09 thioredoxin H-type 8

AT3G25760 AOC1 2.1 2.9E-09 allene oxide cyclase 1

AT1G14250 2.5 6.0E-09 GDA1/CD39 nucleoside phosphatase family protein

AT4G37990 ELI3-2 6.3 7.5E-09 elicitor-activated gene 3–2

AT3G55970 JRG21 4.1 1.5E-08 jasmonate-regulated gene 21

AT2G18660 PNP-A 3.8 4.2E-08 plant natriuretic peptide A

AT3G17790 PAP17 2.3 4.4E-08 purple acid phosphatase 17

AT5G23980 FRO4 2.6 5.0E-08 ferric reduction oxidase 4

AT2G16005 2.2 8.2E-08 MD-2-related lipid recognition domain-containing protein

AT3G26840 2.3 8.6E-08 Esterase/lipase/thioesterase family protein

AT3G28540 2.2 1.3E-07 P-loop containing nucleoside triphosphate hydrolases superfamily protein

AT4G21830 MSRB7 2.6 2.5E-07 methionine sulfoxide reductase B7

AT2G14560 LURP1 2.9 2.5E-07 LATE UPREGULATED IN RESPONSE TO HYALOPERONOSPORA
PARASITICA

AT1G10585 3.8 2.8E-07 basic helix-loop-helix (bHLH) DNA-binding superfamily protein

AT2G39510 2.0 3.0E-07 nodulin MtN21 /EamA-like transporter family protein

AT3G05630 PLDP2 2.3 3.0E-07 phospholipase D P2

AT3G46900 COPT2 2.6 3.9E-07 copper transporter 2

AT4G21326 SBT3.12 3.1 4.6E-07 subtilase 32

AT2G44460 BGLU28 2.4 6.7E-07 beta glucosidase 28

AT5G42580 CYP705A12 2.1 7.2E-07 cytochrome P450, family 705, subfamily A, polypeptide 12

AT5G23990 FRO5 5.6 8.1E-07 ferric reduction oxidase 5

AT4G32810 CCD8 2.9 1.4E-06 carotenoid cleavage dioxygenase 8

AT5G20710 BGAL7 2.0 1.4E-06 beta-galactosidase 7

AT4G17470 3.6 2.0E-06 alpha/beta-Hydrolases superfamily protein

AT3G05400 2.0 2.2E-06 Major facilitator superfamily protein

AT1G19380 2.8 2.3E-06 Protein of unknown function (DUF1195)

AT1G32350 AOX1D 3.1 2.9E-06 alternative oxidase 1D

AT5G04120 2.2 5.8E-06 Phosphoglycerate mutase family protein

AT2G29470 GSTU3 4.5 7.4E-06 glutathione S-transferase tau 3

AT3G22910 2.5 8.6E-06 ATPase E1–E2 type family protein / haloacid dehalogenase-like hydrolase
family protein

AT1G76960 2.1 1.2E-05 Unknown

AT4G21680 NRT1.8 3.5 1.3E-05 NITRATE TRANSPORTER 1.8

AT5G45430 2.1 1.5E-05 Protein kinase superfamily protein

(Continued)
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Table 2. (Continued)

AGI locus symbol fold change (esr1-
1/WT)

FDR-adjusted p-
value

AGI description

AT3G45130 LAS1 3.0 2.6E-05 lanosterol synthase 1

AT1G17420 LOX3 2.3 2.8E-05 lipoxygenase 3

AT2G43020 PAO2 13.7 3.4E-05 polyamine oxidase 2

AT1G61800 GPT2 2.0 4.8E-05 glucose-6-phosphate/phosphate translocator 2

AT1G12030 3.3 5.6E-05 Protein of unknown function (DUF506)

AT1G02470 3.7 5.6E-05 Polyketide cyclase/dehydrase and lipid transport superfamily protein

AT1G07620 ATOBGM 2.3 5.7E-05 GTP-binding protein Obg/CgtA

AT2G11810 MGDC 2.3 6.3E-05 monogalactosyldiacylglycerol synthase type C

AT5G08760 2.1 6.9E-05 Unknown

AT1G07400 2.1 7.4E-05 HSP20-like chaperones superfamily protein

AT1G60110 3.1 1.1E-04 Mannose-binding lectin superfamily protein

AT3G45860 CRK4 2.1 1.1E-04 cysteine-rich RLK (RECEPTOR-like protein kinase) 4

AT4G12490 2.2 1.3E-04 Bifunctional inhibitor/lipid-transfer protein/seed storage 2S albumin superfamily
protein

AT4G11890 2.6 1.8E-04 Protein kinase superfamily protein

AT4G04490 CRK36 2.5 2.3E-04 cysteine-rich RLK (RECEPTOR-like protein kinase) 36

AT5G24200 2.8 2.6E-04 alpha/beta-Hydrolases superfamily protein

AT5G44420 PDF1.2 3.6 2.6E-04 plant defensin 1.2

AT2G45130 SPX3 2.8 2.8E-04 SPX domain gene 3

AT2G04450 NUDT6 2.2 2.9E-04 nudix hydrolase homolog 6

AT4G24000 CSLG2 2.8 3.0E-04 cellulose synthase like G2

AT2G36970 2.1 4.0E-04 UDP-Glycosyltransferase superfamily protein

AT2G26400 ARD3 3.0 5.0E-04 acireductone dioxygenase 3

AT4G24340 2.5 5.1E-04 Phosphorylase superfamily protein

AT5G39520 3.2 8.4E-04 Protein of unknown function (DUF1997)

AT1G05660 2.7 8.6E-04 Pectin lyase-like superfamily protein

AT1G52100 2.5 9.6E-04 Mannose-binding lectin superfamily protein

AT2G39040 2.5 1.1E-03 Peroxidase superfamily protein

AT1G73805 2.1 1.2E-03 Calmodulin binding protein-like

AT3G52970 CYP76G1 2.3 1.3E-03 cytochrome P450, family 76, subfamily G, polypeptide 1

AT4G36700 2.8 1.4E-03 RmlC-like cupins superfamily protein

AT3G51450 2.1 1.7E-03 Calcium-dependent phosphotriesterase superfamily protein

AT3G05650 RLP32 2.0 1.7E-03 receptor like protein 32

AT2G45570 CYP76C2 2.2 1.8E-03 cytochrome P450, family 76, subfamily C, polypeptide 2

AT1G71400 RLP12 2.2 1.9E-03 receptor like protein 12

AT2G22860 PSK2 3.1 3.2E-03 phytosulfokine 2 precursor

AT4G21840 MSRB8 2.3 3.2E-03 methionine sulfoxide reductase B8

AT1G23730 BCA3 2.6 3.4E-03 beta carbonic anhydrase 3

AT5G46050 PTR3 2.4 3.5E-03 peptide transporter 3

AT3G43110 2.3 3.6E-03 Unknown

AT2G40330 PYL6 2.4 4.3E-03 PYR1-like 6

AT5G52760 2.4 4.8E-03 Copper transport protein family

AT1G15540 2.6 4.9E-03 2-oxoglutarate (2OG) and Fe(II)-dependent oxygenase superfamily protein

AT1G80160 2.1 5.6E-03 Lactoylglutathione lyase / glyoxalase I family protein

AT1G51820 2.2 5.9E-03 Leucine-rich repeat protein kinase family protein

AT3G59370 2.0 6.0E-03 Vacuolar calcium-binding protein-related

(Continued)
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Table 2. (Continued)

AGI locus symbol fold change (esr1-
1/WT)

FDR-adjusted p-
value

AGI description

AT3G09405 2.9 6.2E-03 Pectinacetylesterase family protein

AT3G46660 UGT76E12 2.1 6.2E-03 UDP-glucosyl transferase 76E12

AT3G04530 PPCK2 2.0 6.5E-03 phosphoenolpyruvate carboxylase kinase 2

AT1G08310 2.1 7.3E-03 alpha/beta-Hydrolases superfamily protein

AT2G38240 2.9 7.5E-03 2-oxoglutarate (2OG) and Fe(II)-dependent oxygenase superfamily protein

AT1G35230 AGP5 2.3 7.7E-03 arabinogalactan protein 5

AT2G34655 2.3 8.8E-03 Unknown

AT3G13840 2.3 9.0E-03 GRAS family transcription factor

AT2G26010 PDF1.3 2.2 9.1E-03 plant defensin 1.3

AT5G43690 2.9 9.6E-03 P-loop containing nucleoside triphosphate hydrolases superfamily protein

AT4G37700 2.3 9.7E-03 Unknown

AT2G14210 AGL44 2.9 1.0E-02 AGAMOUS-like 44

AT3G06435 2.1 1.0E-02 Expressed protein

AT5G14180 MPL1 2.6 1.1E-02 Myzus persicae-induced lipase 1

AT1G52890 NAC019 2.7 1.1E-02 NAC domain containing protein 19

AT1G19200 2.0 1.2E-02 Protein of unknown function (DUF581)

AT3G57460 6.7 1.2E-02 catalytics;metal ion binding

AT1G01680 PUB54 2.1 1.2E-02 plant U-box 54

AT1G33950 6.6 1.3E-02 Avirulence induced gene (AIG1) family protein

AT3G24310 MYB305 2.5 1.3E-02 myb domain protein 305

AT4G24110 2.1 1.6E-02 Unknown

AT4G33560 2.0 1.6E-02 Wound-responsive family protein

AT3G12070 RGTB2 2.4 1.8E-02 RAB geranylgeranyl transferase beta subunit 2

AT1G73325 6.3 1.8E-02 Kunitz family trypsin and protease inhibitor protein

AT1G54020 5.2 1.9E-02 GDSL-like Lipase/Acylhydrolase superfamily protein

AT2G34350 2.7 2.0E-02 Nodulin-like / Major Facilitator Superfamily protein

AT3G46090 ZAT7 3.1 2.0E-02 C2H2 and C2HC zinc fingers superfamily protein

AT2G32660 RLP22 2.1 2.1E-02 receptor like protein 22

AT5G27060 RLP53 2.4 2.2E-02 receptor like protein 53

AT4G27160 SESA3 28.7 2.3E-02 seed storage albumin 3

AT1G17380 JAZ5 2.2 2.4E-02 jasmonate-zim-domain protein 5

AT1G72260 THI2.1 5.4 2.4E-02 thionin 2

AT2G37740 ZFP10 2.7 2.4E-02 zinc-finger protein 10

AT1G32960 SBT3.3 2.8 2.5E-02 Subtilase family protein

AT1G71200 2.8 2.7E-02 basic helix-loop-helix (bHLH) DNA-binding superfamily protein

AT1G65570 2.9 2.8E-02 Pectin lyase-like superfamily protein

AT2G14620 XTH10 2.1 3.1E-02 xyloglucan endotransglucosylase/hydrolase 10

AT1G36622 2.0 3.1E-02 Unknown

AT1G19610 PDF1.4 3.4 3.2E-02 Arabidopsis defensin-like protein

AT1G28370 ERF11 2.6 3.2E-02 ERF domain protein 11

AT1G63055 7.9 3.3E-02 Unknown

AT3G04510 LSH2 2.9 3.4E-02 Protein of unknown function (DUF640)

AT4G13410 ATCSLA15 2.3 3.6E-02 Nucleotide-diphospho-sugar transferases superfamily protein

AT5G44430 PDF1.2c 12.8 3.6E-02 plant defensin 1.2C

AT5G43290 WRKY49 3.5 3.9E-02 WRKY DNA-binding protein 49

(Continued)
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enriched biological process GO terms were those involved in responses to stress, defense, biotic
stimulus, other organisms, jasmonic acid (JA) including JA-biosynthesis and-signalling, fun-
gus, wounding, SA, chemical stimulus and responses to starvation and nutrient levels (Fig 6e).
As with the up-regulated esr1-1 dataset, to confirm our RNAseq data we examined the expres-
sion of several down-regulated genes over a developmental time-course. This included the
highly down-regulated genes DARK INDUCIBLE 11 (DIN11) encoding a 2-oxoglutarate
(2OG) and Fe(II)-dependent oxygenase, At2g39030/NATA1 encoding an Acyl-CoA N-acyl-
transferase (NAT) superfamily protein with roles in pathogen resistance [60], as well as
CHLOROPHYLLASE 1/CORONATINE-INDUCED PROTEIN 1 (CLH1/CORI1) which has
roles in several of the enriched biological process GO categories including defense responses,
response to fungus and JA-signalling. No significant difference in DIN11, NATA1 or CLH1 ex-
pression was observed in 4- or 7-day old seedlings however, as in the RNAseq dataset they
were highly down-regulated in 14-day old seedlings (Fig 7a).

At5g53060/ESR1 affects basal JA-mediated responses involved in
defense but not growth and development
A role for At5g53060 in JA-responses to our knowledge has not been described before, and as
the down-regulated esr1-1 gene list was enriched for genes with roles in these processes includ-
ing defense and biotic stimulus (response to fungus and wounding), we were interested to dis-
sect this further. We first examined the expression of representative JA-biosynthesis, signalling,
and JA-regulated defense genes. Using qRT-PCR, the LIPOXYGENASE 3 (LOX3) and ALLENE
OXIDE CYCLASE 1 (AOC1) genes involved in JA-biosynthesis, and JASMONATE-ZIM-DO-
MAIN PROTEIN 10 (JAZ10) involved in repression of JA-responses were down-regulated in
esr1-1 in both 7-and 14-day old seedlings (Fig 7b) and were identified in the RNAseq dataset as
down-regulated genes (Table 2). The down-regulation of these genes suggests an overall down-
regulation of JA-signalling processes in esr1-1 as their expression is in part regulated through
JA-feedback loops [61–63]. In 14-day old seedlings the JA-regulated defense and wound mark-
er genes analysed were all down-regulated in esr1-1 compared to wild-type seedlings (Fig 7c).
The expression of these marker genes in 4- or 7-day old seedlings was either lowly expressed or
not detectable by qRT-PCR. Overall expression patterns in wild-type seedlings highlighted a
trend in increasing expression from 4- to 14-days. Examination of these genes in publically

Table 2. (Continued)

AGI locus symbol fold change (esr1-
1/WT)

FDR-adjusted p-
value

AGI description

AT5G55410 3.7 4.0E-02 Bifunctional inhibitor/lipid-transfer protein/seed storage 2S albumin superfamily
protein

AT4G01630 EXPA17 2.1 4.1E-02 expansin A17

AT2G45760 BAP2 2.7 4.1E-02 BON association protein 2

AT4G04500 CRK37 2.0 4.4E-02 cysteine-rich RLK (RECEPTOR-like protein kinase) 37

AT3G03480 CHAT 3.5 4.5E-02 acetyl CoA:(Z)-3-hexen-1-ol acetyltransferase

AT4G28085 2.7 4.7E-02 Unknown

AT1G69720 HO3 3.4 4.7E-02 heme oxygenase 3

AT5G46350 WRKY8 2.1 4.8E-02 WRKY DNA-binding protein 8

AT5G13220 JAZ10 2.9 4.9E-02 jasmonate-zim-domain protein 10

Fold change based on FPKMs from 3 biological replicates. Significance based on Benjamini-Hochberg correction for multiple-testing, P�0.05 adjusted by

the False Discovery Rate. Values in bold are �3-fold changes.

doi:10.1371/journal.pone.0126978.t002
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Fig 7. Repression of JA-mediated gene expression in esr1-1 increases with age. (a-c) Expression of significantly up-regulated (a) novel RNA-seq
identified, (b) JA-biosynthesis and signalling, (c) JA-regulated defense and wound-responsive genes, and (d) SA-regulated defense genes in esr1-1
compared to wild-type (WT) seedlings as determined by qRT-PCR. Shown are values from 4, 7 and 14 day old seedlings (values are averages ± SE of 3
biological replicates consisting of pools of 20 seedlings, P<0.05, all pairs Student’s t-test). Gene expression levels are relative to the internal control β-actin
genes. (e) IncreasingGSTF8:LUC activity in esr1-1 seedlings during early development. (f) Fold changes in SA-marker genes in WT and esr1-1 seedlings 6
and 24 hours post SA treatment. Shown are values from 12 day old seedlings (values are averages ± SE of 3 biological replicates consisting of pools of 20–
30 seedlings, P<0.05, all pairs Student’s t-test). Transcript levels of each gene of interest following SA treatment were normalised against the internal control
β-actin genes and expressed relative to the normalised levels in mock-treated WT or esr1-1 seedlings.

doi:10.1371/journal.pone.0126978.g007
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available, developmental series transcriptome datasets (Genevestigator; [64]) also revealed sim-
ilar gene expression profiles in wild-type plants (data not shown). GSTF8:LUC activity also in-
creases in esr1-1 seedlings over this timeframe (Fig 7e). Together, these results suggest
At5g53060/ESR1 has a negative effect on GSTF8:LUC activity and a positive effect on the regu-
lation of JA-mediated genes during early development.

In addition to roles in defense, JA also affects fertility, root growth and development [65–
69]. However, neither esr1-1 nor esr1-2 are impaired in these processes (Fig 6a–6d). We also
found the esr1mutants were not affected in JA-sensitivity as determined by methyl jasmonate
(MeJA) root inhibition assays (S4 Fig). This suggests At5g53060/ESR1 functions in activation
of a subset of JA-mediated responses.

It is well known that antagonistic interactions occur between some aspects of JA and SA sig-
nalling (reviewed in [6, 8, 29, 70]. We therefore analysed expression of the SA-marker genes PR1
and PR2 in wild-type and esr1-1 seedlings to determine if repression of JA-regulated genes in
esr1-1 was due to up-regulated SA-mediated signalling as is suggested by increased GSTF8:LUC
activity and GSTF8 expression in esr1-1 following SA treatment (Fig 2). There was no significant
difference in PR1 or PR2 expression between wild-type and esr1-1 at 4 and 7 days of age, but
their expression was significantly reduced in esr1-1 at 14 days as was also detected by RNAseq
(Fig 7d, Table 2). PR1, but not PR2 expression, was also down-regulated in esr1-1 following SA
treatment (Fig 7f). To determine if other aspects of SA-signalling where altered in esr1-1, we de-
termined expression of the ISOCHORISMATE SYNTHASE1 (ICS1) and PHENYLALANINE
AMMONIA LYASE (PAL1) genes involved in SA-biosynthesis (reviewed by [71]). Neither of
these genes were significantly altered in expression suggesting ESR1 functions specifically in JA-
signalling and down-regulation of PR1 expression is due to non-SA-mediated processes.

At5g53060/ESR1 is required for full activation of a subset of JA-
regulated genes
Other mutants with reduced basal JA-biosynthesis or JA-regulated defense gene expression
and exhibiting increased resistance to Fusarium oxysporum include coi1 (coronatine insens-
tive1) and pft1/med25 (phytochrome and flowering time1) [41, 45]. Expression of JA-regulated
genes in these two mutants are also reduced following MeJA treatment. To determine if
At5g53060/ESR1 affected the JA-inducibility of JA-regulated genes and other genes down-reg-
ulated in esr1-1, we examined the expression of Thi2.1, PDF1.2, JAZ10, NATA1, CLH1 and
DIN11 in esr1-1 and wild-type plants following MeJA or a mock treatment. As expected, MeJA
treatment strongly induced Thi2.1, PDF1.2 and JAZ10 expression in wild-type plants relative to
the mock-treated wild-type plants (Fig 8a). Expression of these genes was also induced by
MeJA in esr1-1 however, Thi2.1 and JAZ10 expression was 5-fold and 2-fold less respectively in
esr1-1 compared to wild-type levels at 6 and 12 hours post treatment. PDF1.2 expression was
also reduced in esr1-1 at 6 hours but increased above wild-type levels at 24 hours. We next ex-
amined NATA1, CLH1 and DIN11 expression and found esr1-1 had reduced induction of
NATA1 and CLH1, but did not affect the MeJA-induced expression of DIN11 (Fig 8b). We also
found ESR1 expression is MeJA-inducible (Fig 8c). Combined, these results suggest ESR1 af-
fects components of JA-signalling.

Discussion
In a forward genetic screen using the defense and stress responsive GSTF8 promoter, we isolat-
ed several alleles of the constitutive GSTF8:LUC expression mutant esr1 encoding the KH-do-
main containing RNA-binding protein At5g53060. We identify At5g53060 as a susceptibility
gene for F. oxysporum disease symptom development and a requirement for full-activation of
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components of JA-mediated gene expression. Four independent mutants of At5g53060 termed
esr1-1, esr1-2, esr1-3 and esr1-4 displayed increased resistance to F. oxysporum and define new
roles for plant KH-domain containing proteins, linking At5g53060 to biotic stress and JA-me-
diated defense responses.

In plants the most widely spread RNA-binding domains are the RNA Recognition Motif,
the heterogeneous nuclear ribonucleoprotein K (hnRNP K) homology (KH), and Pentatrico-
peptide Repeat (PPR) [10, 72]. Most plant RNA-binding proteins contain one or more of these

Fig 8. esr1-1 represses a subset of JA-induced gene expression. (a-c) Fold changes in relative transcript abundance of (a) JA-regulated defense and
signalling marker genes, (b) RNA-seq identified genes, and (c) ESR1 in wild-type (WT) and esr1-1 seedlings 6 and 24 hours post MeJA treatment. Shown are
values from 12 day old seedlings (values are averages ± SE of 3 biological replicates consisting of pools of 20–30 seedlings, P<0.05, all pairs Student’s t-
test). Transcript levels of each gene of interest following MeJA treatment were normalised against the internal control β-actin genes and expressed relative to
the normalised levels in mock-treated WT or esr1-1 seedlings.

doi:10.1371/journal.pone.0126978.g008
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domains, often combined with multiple auxiliary domains involved in protein-protein interac-
tions or protein targeting, or other RNA-binding domains. An InterPro Scan of At5g53060 for
known protein signatures only identified its five KH-domains (data not shown). KH-domain
proteins typically contain more than one KH-domain where they can function independently
or co-operatively to bind RNA or ssDNA [54]. The KH-domain was first identified in the
human hnRNP K protein and is characterised by a conserved VIGXXGXXI sequence in the
middle of the ~60 amino acid domain [11, 54]. In addition to At5g53060, only three other of
the 26 predicted Arabidopsis KH proteins have been functionally characterised and these have
roles in flowering, floral morphogenesis, and vegetative and reproductive development [73–
75]. Unlike mutants of these KH genes, we found neither esr1-1 nor esr1-2 exhibited observable
differences in flowering, growth or development (Fig 6a–6d).

In plants, RNA-binding proteins have been identified as regulators of floral transition, floral
patterning, circadian rhythm, chromatin modification, ABA signalling and mediators of abiotic
stress responses such as to dehydration, drought, flooding, salinity, cold and heat ([9, 10] and
references within). However, few RNA-binding proteins have been characterized for roles in
plant immunity [76, 77]. Examples include the RNA Recognition Motif containing proteins
ATBRN1/ATRBP-DR1 and GLYCINE RICH PROTEIN 7 regulators of resistance against
Pseudomonas syringae pv. tomato DC3000 [78, 79], and the double stranded RNA-binding do-
main proteins DICER LIKE2 and DICER LIKE4 involved in viral defense ([76, 80] and refer-
ences within). Some RNA-binding proteins directly target pathogen RNA to control infection.
For example PATHOGENESIS RELATED PROTEIN 10 members such as the cotton PR10
have ribonuclease activity [1, 81]. In addition to our findings on At5g53060, the only other
plant KH-domain containing protein characterised for a role in plant immunity is BINDING
TO TOMV RNA 1 (BTR1, At5g04430) [82] which functions by directly binding to Tomato
Mosaic Virus (TOMV) RNA and preventing viral multiplication.

Through non-biased whole transcriptome sequencing we found esr1-1 plants exhibited sig-
nificant down-regulation of genes involved in responses to defense, biotic stimulus, fungus,
wounding, and JA including JA-biosynthesis and-signalling (Fig 6). JA has roles in defense
against specific microbial pathogens and insect pests, wounding responses, and roles in devel-
opmental processes such as fertility and root growth [65, 67–69]. The esr1mutants were not af-
fected in latter responses but were affected in pathogen defense. Further, in addition to
repression of basal JA-mediated gene expression, the MeJA inducibility of most JA-regulated
genes tested were also repressed in esr1-1 (Fig 8). Unlike the other repressed genes, PDF1.2 ex-
pression in esr1-1 was reduced at 6 hours but increased above wild-type levels at 24 hours. This
suggests, in addition to activation of components of early JA-regulated gene expression, ESR1
may have roles in repression at later stages. We also found repression of JA-regulated genes in
esr1-1 was not due to antagonistic SA-JA crosstalk as SA-regulated marker genes in esr1-1
showed no increase in their basal or SA induced levels (Fig 7).

The down-regulation of JA-signalling in esr1-1 likely contributes to its enhanced resistance
to F. oxysporum and increased susceptibility to A. brassicicola as this pathway confers suscepti-
bility and resistance to these pathogens respectively. For example, the coi1 and pft1/med25mu-
tants, which are highly resistant to F. oxysporum and susceptible to A. brassicicola, also exhibit
reduced expression of JA-biosynthesis (e.g. LOX3, OPR), JA-signalling (e.g. JAZ9, JASMONIC
ACID CARBOXYL METHYLTRANSFERASE) and JA-regulated defense/senescence associated
genes (e.g. Thi2.1, PDF1.2, CLH1) under mock, F. oxysporum or MeJA induced conditions [41,
45, 51]. While defensive components of JA-signalling do contribute positively to F. oxysporum
resistance (e.g. increased PDF1.2, Thi2.1 expression), global up-regulation of JA-signalling in-
cluding its non-defensive components promote susceptibility [31, 44, 46, 83]. For example, se-
nescence is proposed to strongly contribute to F. oxysporum disease symptom development
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[41]. Unlike the coi1 and pft1mutants which have impairments in growth or development
(coi1 is male sterile with insensitivity to MeJA inhibition of root growth, while pft1 is delayed
in flowering [45, 84]), esr1-1 is indistinguishable from wild-type plants (Fig 6a–6d and S4 Fig).
We also inoculated esr1-1 with another root-infecting necrotrophic fungal pathogen, R. solani
(isolates AG8 or AG2-1) but found no difference in disease phenotypes compared to wild-type
plants (Fig 3a). It is suggested that neither JA or SA signalling pathways contribute to R. solani
resistance or susceptibility in Arabidopsis [42].

Through independent forward genetic screens utilizing abiotic stress inducible promoters,
At5g53060 was shown to be nuclear localised and have roles in diverse transcriptional process-
es including mRNA capping efficiency, polyadenylation site selection, mRNA export, and in
the regulation of expression and alternate splicing of some stress inducible genes ([26, 27, 56]
this work). Some of these processes, including its nuclear localisation, are mediated through
At5g53060 interactions with the RNA PolII CTD interacting phosphatase protein CPL1 [25,
27, 56, 59] whose expression is up-regulated in esr1-1 (Table 1, S3 Fig). We also tested the ex-
pression of CPL1 and other genes up-regulated in esr1-1 (SYTB, STP11, At3g54160) for respon-
siveness to SA or MeJA and found little change (S5 Fig) suggesting they may be regulated at the
post transcriptional level by ESR1 or through other signalling pathways.

We characterised four mutants of At5g53060. The esr1-1mutant confers a Tryptophan to
STOP codon substitution (W100�) in the first of five At5g53060 KH-domains, esr1-2 is a null
T-DNA insertional inactivation line, while esr1-3 and esr1-4 harbour mutations at splice site
junctions (Figs 4 and 5). Three other independently identified At5g53060 alleles confer other
mutations. The rcf3-1 (regulator of CBF gene expression 1) mutant isolated through a cold re-
sponsive CBF2 promoter screen confers a Glycine to STOP codon substitution (G344�) within
the third At5g53060 KH-domain and displays increased heat tolerance [26]. The shi1 (shiny1)
mutant isolated through the salt inducible sulfotransferase AtSOT12 promoter confers a Glu-
tamic Acid to Lysine substitution (E389K) also within the third KH-domain [27]. The shi1mu-
tant is more resistant to ABA during germination and has increased sensitivity to cold stress
[27]. Unlike these mutants of At5g53060, the hos5-1mutant has increased sensitivity to ABA
and salt stress, although tolerance/sensitivity to other abiotic stresses has not yet been tested
for this At5g53060 mutant allele [56]. The hos5-1 (high osmotic stress gene expression 5) muta-
tion confers a Glycine to Serine change (G233S) within the second At5g53060 KH-domain. In-
terestingly, esr1-1, rcf3-1 and shi1mutations (Fig 9) disrupt either the first or third KH-
domains, both of which along with the fourth domain can interact with CPL1 ([27, 56, 59] this
work). Although the shi1mutant confers only an amino acid substitution, this change disrupts
the CPL1 interaction [27]. The second KH-domain and location of the hos5-1mutation (Fig 9)
does not interact with CPL1 but may affect RNA binding [56]. This may explain why hos5-1 is
more sensitive to ABA while shi1 is more tolerant. As with our esr1-1 and esr1-2 findings, rcf3-
1 and shi1 exhibit increased expression of their Promoter:LUC transgenes but not of their

Fig 9. Location and effect of At5g53060/ESR1/RCF3/SHI1/HOS5mutations. At5g53060 domain structure with the position and predicted nature of
published mutations indicated relative to the first methionine.

doi:10.1371/journal.pone.0126978.g009

ESR1 Functions in Biotic Stress Responses

PLOS ONE | DOI:10.1371/journal.pone.0126978 May 18, 2015 24 / 31



endogenous stress-inducible genes under basal conditions [26, 27]. We did however find
GSTF8 expression was significantly higher than wild-type in esr1-1 following SA treatment
(Fig 2b) suggesting regulation of GSTF8:LUC promoter and endogenous GSTF8 differ under
basal conditions. Indeed, [27] suggest under basal conditions the ESR1/SHI1-CPL1 complex
may associate with other repressors on general transcriptional machinery targeting stress re-
sponsive promoters and upon stress inducing conditions this complex is modified.

In summary, we identified roles for the KH-domain RNA-binding protein At5g53060 in
JA- and biotic induced stress responses, and define new functions for KH-domain proteins in
plants. Further research of interest will be determining At5g53060/ESR1 direct RNA targets,
which are yet to be identified, and other proteins it interacts with under specific biotic stresses,
in particular those with JA-involvement.

Supporting Information
S1 Fig. Next Generation Mapping locates the esr1-3 and esr1-4 loci. (a-b) Whole-genome se-
quencing of homozygous (a) esr1-3 or (b) esr1-4 F2s from esr1 and Ler outcrosses coupled with
the Next Generation Mapping tool identifies SNP desserts (underlined region) corresponding
to linkage to the esr1mutations.
(TIF)

S2 Fig. esr1mutants have altered thermo-tolerance. (a) esr1mutants are more tolerant of
heat stress as measured by the proportion of leaf area non-bleached. Seedlings were grown on
MS agar plates for 7 days at 21°C, treated at 21°C (control) or 45°C (heat) for 90 minutes, then
returned to 21°C for 4 days followed by measurement of bleached area. Values are averages ± SE
(n = 10). Asterisks indicate values that are significantly different (��P<0.01 Student’s t-test)
from wild-type (WT). Similar results were obtained in independent experiments. (b) Average
GSTF8:LUC expression per WT and esr1-1 seedling per hour after treatment with heat (45°C) or
control treatment (21°C). Values are averages ± SE (n = 5) from 7 day old seedlings.
(TIF)

S3 Fig. Confirmation of esr1-1 up-regulated genes by qRT-PCR. Expression confirmation of
subset of significantly up-regulated genes in esr1-1 compared to wild-type (WT) seedlings.
Shown are values from 4, 7 and 14 day old seedlings (values are averages ± SE of 3 biological
replicates consisting of pools of 20 seedlings, P<0.05, all pairs Student’s t-test). Gene expres-
sion levels are relative to the internal control β-actin genes.
(TIF)

S4 Fig. esr1mutants do not have altered root sensitivity to JA. Sensitivity of wild-type (WT),
esr1-1 and esr1-2 seedlings to JA was determined by MeJA inhibition of root growth on control
media or media containing 25 uM or 50 uMMeJA. Root elongation of each line when grown
on MeJA media was calculated as a percentage relative to their root length on the control. Val-
ues are average ± SE for 5 biological replicates consisting of pools of 10 seedlings; P<0.05, all
pairs Student’s t-test). Similar results were obtained in an independent experiment.
(TIF)

S5 Fig. Basal esr1-1 up-regulated genes are similarly expressed in wild-type and esr1-1
when treated with MeJA or SA. Fold changes in relative transcript abundance of RNA-seq
identified genes in wild-type (WT) and esr1-1 seedlings 6 and 24 hours post MeJA or SA treat-
ment. Shown are values from 12 day old seedlings (values are averages ± SE of 3 biological repli-
cates consisting of pools of 20–30 seedlings). Transcript levels of each gene of interest following
MeJA or SA treatment were normalised against the internal control β-actin genes and expressed
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relative to the normalised levels in mock-treatedWT or esr1-1 seedlings. The numbers on each
bar show fold increase or fold decrease caused by each treatment relative to mock-treated plants.
PDF1.2 and PR1 were used as marker genes for MeJA and SA treatment respectively.
(TIF)

S1 Table. Primers used for construct generation, mapping and qRT-PCR.
(XLSX)

S2 Table. esr1-1 significantly down-regulated genes.
(XLSX)

S3 Table. esr1-1 significantly up-regulated genes.
(XLSX)

S4 Table. Gene Ontology (GO) terms significantly over-represented in genes down-regulat-
ed in esr1-1 versus wild-type.
(XLSX)

S5 Table. Gene Ontology (GO) terms significantly over-represented in genes up-regulated
in esr1-1 versus wild-type.
(XLSX)
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