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This review describes the properties and activities of lipopeptides and peptide hormones and how the lipidation of peptide
hormones could potentially produce therapeutic agents combating some of the most prevalent diseases and conditions. The
self-assembly of these types of molecules is outlined, and how this can impact on bioactivity. Peptide hormones specific to the
uptake of food and produced in the gastrointestinal tract are discussed in detail. The advantages of lipidated peptide hormones
over natural peptide hormones are summarised, in terms of stability and renal clearance, with potential application as therapeutic
agents. © 2017 The Authors Journal of Peptide Science published by European Peptide Society and John Wiley & Sons Ltd.
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Peptide and Lipopeptide Self-assembly

The self-assembly of peptides in solution is driven by a combination
of hydrogen bonding, electrostatic and other (e.g. π-stacking) inter-
actions that also contribute to the self-assembly of lipopeptides [1].
However, in the latter class of system, hydrophobic interactions are
important. The self-assembly of peptides and lipopeptides can be
influenced by many variables including concentration, pH, ionic
strength of solution or temperature [2].

Many self-assembling molecules are amphiphilic, meaning they
have both hydrophobic and hydrophilic character. They generally
self-assemble above a critical concentration, known as the critical ag-
gregation concentration (CAC). Amphiphilic molecules such as lipids,
peptides and proteins serve as building blocks for the construction
of functional assemblies in vivo, e.g. the cytoskeleton and extracellu-
lar matrix. Lipids are one of the simplest amphiphilic structures and
are composed of a hydrophilic polar head group and a hydrophobic
tail. Peptides and proteins, however, are distinct in the way in which
amphiphilicity is displayed becausewhen folded, they can display re-
gions that are either hydrophobic or hydrophilic. An example of this
is an α-helix, as it could contain a section of hydrophobic residues
along one face and a hydrophilic section of residues on the opposite
face. For β-sheet structures, the peptide chain can be composed of
alternating hydrophilic and hydrophobic residues, so that the side
chains of the residues are displayed on opposite faces of the sheet.

In aqueous environments, amphiphilic molecules associate
through non-covalent interactions to form ordered assemblies of
different sizes, from nanometres to microns [3]. These self-
assembled structures include spherical and worm-like micelles,
vesicles, fibrils and nanotubes (Figure 1). Micelles consist of a hydro-
phobic inner core surrounded by a hydrophilic outer shell that is
exposed to water, and they can be spheres, discs or worm-like
structures [4]. Micelles form spontaneously when the concentration
is above a critical micelle concentration [CMC] and temperature [5].
The CMC is a subcategory of CAC, which is a more general term for
the aggregation into many different structures.

Amphiphiles with an intermediate level of hydrophobicity can
assemble into bilayer vesicles. Vesicles are spherical, hollow,

lamellar structures with an aqueous core. The hydrophobic moie-
ties form the inner section of the bilayer, and the hydrophilic parts
are exposed to the aqueous environment [6].
Self-assembling peptides are peptides that undergo spontane-

ous assembly into ordered nanostructures. This is observed de-
pending on the hydrophilic/lipophilic balance of the molecules, as
well as the interactions between the peptide units [7]. In one case
of self-assembling peptides, hydrogen bonding between back-
bones plays an important role by forcing the peptide monomers
to pack longitudinally into β-sheets. The inter-sheet interactions
between the side chains of the peptides regulate lateral packing,
and the stronger these interactions, the better the lateral packing
[8]. A further type of self-assembling peptide forms coiled coil struc-
tures, formed from aggregated α-helices [9].
Among all organic building blocks, peptides are very promising

platforms because of their ease of synthesis, chemical diversity
and their similar biological properties to proteins. In addition to this,
peptides are very useful components in creating self-assembled
nanostructures because of their biocompatibility, biodegradability
and biofunctionality [10].
The number, type and sequence of amino acids determines the

self-assembly of peptides, and depending on the amino acid
sequence, the peptide can form a variety of different structures.
As a result of this, peptides provide a unique platform for the design
of nanomaterials with controllable structural features. Self-
assembled peptide nanostructures have demonstrated potential
use for many biomedical applications such as drug delivery, tissue
engineering and antimicrobial agents, to name a few, and several
of these applications are discussed in detail in the following.
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Peptide Amphiphiles

Peptide amphiphiles (PAs) may comprise sequences of hydropho-
bic and hydrophilic peptides or hydrophilic peptides attached to
lipid chains. The class of PA termed lipopeptide consists of one
or more lipid chains attached to hydrophilic peptide sequences
containing charged residues [2,7]. They are a class of molecules

that combine the structural features of amphiphilic surfactants
with the functions of bioactive peptides, and they are known to
assemble into a variety of nanostructures [11,12]. It is proposed
that PAs designed to form bioactive fibrils should be composed
of four key structural features (Figure 2): A hydrophobic domain
that is typically an alkyl chain attached to a peptide sequence,
which favours intermolecular hydrogen bonding. Then there is a
charged amino acid domain that enhances solubility in water.
The final structural feature that makes up a peptide amphiphile
is a bio-derived or bio-inspired epitope that allows interaction
with cells or proteins [13].

Molecules that contain both polar and non-polar elements often
undergo self-assembly, which allows the hydrophilic moieties to be
exposed to the aqueous environment and the hydrophobic moie-
ties to be shielded from the aqueous media. There is normally a dis-
tinct relationship between the amphiphilic character of a peptide
and its function [12]. For example, amphiphilic peptides fold into
helices or sheets to allow the non-polar residues to interact with
the lipid chains in the interior of the cell membrane and to allow
the polar residues to be exposed to the aqueous environment. This
self-assembly allows the peptide molecules to optimise their inter-
action with the surroundings.

Peptide amphiphiles have great potential in biomedical applica-
tions [1,11,13–18] and can be utilised to act as therapeutic agents to
treat diseases by delivering drugs. They can then be metabolised
into lipids and amino acids, which are then easily cleared by the
kidneys [19]. In therapeutic applications, the hydrophobic tail
assists transport across the cell membrane, and the peptide epitope
can then be used to target a specific cell via a ligand-receptor
complex [20].

Lipopeptides are able to form supramolecular nanostructures
such as fibrils, micelles and vesicles. Lipopeptide biosurfactants
(surfactants of biological origin) are produced by a wide variety of
bacteria, fungi and yeast [7,21]. They are surface active compounds
that have the ability to decrease the surface and interfacial tension,
allowing them to disrupt biological activity as part of the organism’s
host defence mechanism [21].

Applications of Self-assembled PAs and
Lipopeptides

Lipopeptides have a wide range of applications such as use as anti-
microbial agents and in immune disease therapies, cosmeceuticals
and also fungicides, all of which are explained in more detail in the
succeeding sections.

Biosurfactants with Antimicrobial and Antifungal Applications

There are many types of lipopeptides; among the most popular are
the classes of surfactins, iturins and fengycins, which are produced
by the Bacillus subtilis family [21–23]. B. subtilis strains produce a
wide range of lipopeptides that are potent biosurfactants and have
specific antimicrobial and antiviral activities [21]. The fact that
surfactins are biosurfactants means that they have diverse func-
tional properties such as low toxicity, biodegradability and a higher
tolerance towards variation of temperature and pH [21]. Iturins are
pore-forming lipopeptides with antifungal activity, and this is de-
pendent on the interaction with the cytoplasmic membrane of
the target cells [21,22,24]. Finally, fengycins are another class of
biosurfactant with antifungal properties [23,24].
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Toll-like Receptor Agonists

Lipopeptides, such as those incorporating the CSK4 peptide motif
and one, two or three palmitoyl (hexadecyl) chains [25], can also
act as toll-like receptor (TLR) agonists, which have important
applications in the treatment of disease. TLRs are transmembrane
proteins that are very important in the immune system and as a
result are therapeutic targets to treat disease.

These receptor agonists respond to invading pathogens by
recognising specific pathogen-associated microbial patterns
(PAMPs) or danger-associated molecular patterns (DAMPs), which
are primarily produced by microbial pathogens [26]. PAMPs can
contain a variety of different components including lipopolysaccha-
ride, peptidoglycan, lipopeptide and bacterial DNA. DAMPs can be
intracellular proteins or proteins from the extracellular matrix [27,28].

Toll-like receptors have a common structure being type-1 trans-
membrane proteins. This includes having an extracellular domain
formed from leucine-rich repeats (LRRs) and a cytoplasmic tail
containing an area known as the TLR domain. X-ray crystallography
reveals that the LRR domain has a horseshoe-like shape [29],
traversing the membrane. Currently, 10 TLRs have been found in
humans, each with a different role and target [30].

Toll-like receptor agonists are compounds that stimulate these
receptors to modulate the interaction with one of the
PAMPs/DAMPs described earlier. The development of synthetic or
natural agonists is an interesting avenue of research to treat a mul-
titude of conditions that includes, but is not limited to; advanced
melanoma [31], alcoholic chronic liver disease [32], asthma [33],
neuropathic pain [34] and restenosis (re-narrowing of the blood
vessels) [35].

Skincare

Peptide amphiphiles are employed in skincare products with the
claimed ability to help stimulate collagen production. A commer-
cially available lipopeptide with the trade name Matrixyl™ [C16-
Lys-Thr-Thr-Lys-Ser (KTTKS)] has been used in anti-wrinkle creams.
This lipopeptide has been shown to self-assemble into a β-sheet
tape-like superstructure (Figure 3). Small-angle X-ray scattering
further established a bilayer structure with a spacing of 5.3 nm [36].
The mechanism for this stimulation of collagen expression is not

fully understood, but it has been reported that the KTTKS polypep-
tide increases the skin’s extracellular matrix (ECM) production

Figure 1. Molecular interactions and possible self-assembled structures of typical lipopeptides.

Figure 2. The four domains in a PA molecule required for self-assembly into β-sheet fibrils with a coating of bioactive epitopes [11].
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[37,38]. ECM is the outer region of a cell that supports the cells and
those around it. The conjugation of the KTTKS peptide motif to a
palmitoyl (C16) chain has been shown to enhance skin permeability,
and the self-assembled structure (Figure 3) presents a peptide-rich
surface on the nanotapes, these features contributing towards
increased collagen production making it a highly sought after
skincare additive. This lipopeptide’s collagen-stimulating activity
occurs even at low concentration, close to its [37]. Other
lipopeptides, such as C16-GHK or C16-KT, also have been reported
to have collagen-stimulating effects, and their self-assembly has
been examined [39].

Tissue Scaffolds

Various groups have looked into the use of PAs and lipopeptides as
scaffolds for the production of tissue or for other applications in
regenerative medicine. In one study, the linear RGD amino acid
sequence was conjugated with dialkyl chains. This scaffold allowed
for spreading of melanoma and endothelial cells when it was
carboxyl-coupled, but spreading was not seen with amino-coupled
dialkyl chains [40]. Another group managed to encapsulate cells
within nanofibrils made up of PAs with the Ile-Lys-Val-Ala-Val
(IKVAV) peptide group (Figure 4). These PAs were shown to be
effective at treating spinal cord injuries in mice. This was due to
the nanofibrils inhibiting scar formation, which helped lessen the
injury [41]. This is a fascinating and broad topic that has been

reviewed in much detail elsewhere by the Stupp group and is
therefore outside the scope of the present review [42–47].

Antimicrobial Materials

There are a great number of studies on peptides with antimicro-
bial properties [48–50]. A common feature for antimicrobial activ-
ity is the presence of cationic residues such as lysine or more
especially arginine as these can interact with cell walls. Lipidation
of peptides has been shown to improve the uptake of the peptide
into the cell [51]. This was investigated with a range of Gram-neg-
ative/positive bacteria and two fungal strains. Uptake into the cell
wall and then subsequent disruption of the cell membrane was
found out to be the mode of action, which caused bacterial leak-
age and cell death [51]. A peptide containing a trans-activating
transcriptional activator (TAT) sequence along with an amphiphilic
Gly–Arg sequence conjugated to cholesterol was also found to be
an effective antimicrobial agent [52]. This peptide was shown to
work by the same process of incorporation into the cell membrane
followed by its disruption. The paper also showed that the PA can
also be transported across the blood–brain barrier [52]. One of the
most well-known lipopeptides used in treating infections is dapto-
mycin (Figure 5) [53].

Daptomycin is able to combat systemic and life-threatening in-
fections and is trademarked under the name Cubicin. It comprises
a cyclic peptide group joined by an amide linkage to a lipid chain.
The mechanism by which daptomycin acts on bacteria has been
carefully examined [54]. It works by insertion of the lipid chain into
the cell wall. Daptomycinmolecules then aggregate, deforming the
curvature of the membrane, causing holes to form and leading to
the leakage of ions from the cell. This then causes a serious depolar-
ization resulting in the inhibition of various synthesis processes
including those of DNA, protein and RNA. This combines to cause
cell death. The self-assembly of daptomycin was studied outside
of the cell and it was shown to aggregate into micelles [53]. This ag-
gregation process may be correlated to its excellent antimicrobial
activity. A recent review on the self-assembly of lipopeptides
including therapeutic lipopeptides is available [7].

Drug Delivery

Lipopeptides are interesting vehicles for drug delivery with several
modes of activity. In one, the self-assembled structure of the PA is
exploited, i.e. the hydrophobic area inside a micelle or bilayer
structure is used to house a hydrophobic drugmolecule. It is impor-
tant to distinguish between PAswith inherent therapeutic potential
and those that are merely vehicles or devices. In the former case,
many types of bioactive peptides have been lipidated to create
active pharmaceutical ingredients (APIs) (e.g. Table 1). In the latter

Figure 4. Self-assembly of IKVAV functionalized PAs into fibrils [42].

Figure 3. Confocal microscopy image of Matrixyl™ fibre superstructure.
(Labelled with the dye rhodamine B, 0.0014 w% Matrixyl™ in water) [36].

Figure 5. Daptomycin chemical structure, redrawn from [53].
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case, the self-assembled structure allows for the transport of the
drug in highly aqueous environments to the target cells. An ex-
ample of this is a TAT48–60 fragment conjugated with one, two
or four attached octanoic acid groups [55]. These TAT PAs form
β-sheet structures. It was shown that the PA with four octanoic
acid groups could encapsulate and retain the hydrophobic drug
paclitaxel. This was deemed to be due to the high hydrophobicity
of the octanoic acid groups. This encapsulation was highly
efficient (6.8�0.4%), compared with previous nanoscale delivery
vehicles for which encapsulation rarely exceeds 5%, making it a
favoured drug delivery system [55]. Another strategy to create
PAs for drug delivery is the lipidation of receptor-specific peptide
head groups. The peptide head groups bind selectively to the
receptor, while the lipid group allows the PA to cross cell
membranes and also increases bioactivity through reducing
metabolic degradation [56,57]. A good example of this is an
amphiliphic lipopeptide comprising a palmitoyl (C16) ester linked
to Ala-Gly-Phe-Leu-Arg peptide motif, incorporating the antican-
cer drug Dalargin (Ala–Gly–Phe–Leu–Arg), which formed into
nanofibres [58].These fibres have high circulation times and also
more importantly can cross the BBB. This allows the normally
hydrophobic cancer drug to potentially be used to treat cancers
in the brain, overcoming its low circulation and high hydropho-
bicity [58].

Biomaterial Templating

The various structures formed by PAs and lipopeptides have
been exploited to template distinct inorganic materials (salts,
metal oxides and metals), sometimes allowing for unique struc-
tures to be formed. PA nanostructures have the potential, for
example, to be used to template the bone mineral hydroxyapa-
tite, which is the body’s primary storage depot for calcium and
phosphorus in bones [59,60]. A further avenue of interest is

the incorporation of other metals, such as titanium, with miner-
alizing PAs to form hybrid bone implants. In one example, a ti-
tanium alloy foam was mixed with different PAs solutions and
then further allowed to mineralise calcium phosphate. This was
shown (Figure 6) to form new, immature bone adjacent and in-
side the hybrid, after 4 weeks [61]. This field of research is highly
active and may, in the future, allow for treatment of bone
diseases such as hydroxyapatite deposition disease or dystrophic
calcification, among others.

Peptide Hormones

Peptide hormones are hormones made up of amino acid chains
that primarily have an effect on the endocrine system. Based
on the building units, hormones can be classified as either amino
acid-based or steroid-based systems. The presence of amino
acids in peptide hormones allows them to act on the surface
of target cells via secondary messengers. This differs from
steroid hormones that are lipid soluble, and so can move through
the plasma membranes of target cells and act within the
nuclei [62].
The endocrine system is composed ofmany different glands, and

it can be divided into two categories: classical and non-classical. In
the endocrine system, hormones are secreted into the circulatory
system where they are distributed throughout the body, regulating
bodily functions. The classical endocrine glands include the
pituitary gland, pancreas, thyroid gland, adrenal cortex and
medulla. The primary function of these glands is to manufacture
specific hormones. Non-classical endocrine glands include the
heart, hypothalamus, kidneys, liver and the gastrointestinal tract.
Many of the classical hormones are controlled by the hypothalamus
and pituitary, which can also be classified as being an extension
of the nervous system [63].

Table 1. Peptide therapeutics on the market

Trade name Peptide Company Molecular properties Related reference

Copaxone Glatiramer Teva Four amino acids (L-glutamic acid, L-alanine, L-lysine and L-tyrosine) in a
defined molar ratio

[105,106]

Lupron Leuprolide Abbott Synthetic nonapeptide analogue of naturally occurring gonadotropin-

releasing hormone (GnRH or LH-RH)

[107,108]

Vicoza Liraglutide Novo 97% homologous to native human GLP-1 (7–37) by substituting arginine

for lysine at position 34 and addition of a fatty acid chain

[109]

Zoladex Goserelin AZ Natural LHRH/GnRH decapeptide with two substitutions to inhibit rapid

degradation.

[110,111]

Sandostatin Octreotide Novartis Longer acting synthetic octapeptide analogue of naturally occurring

somatostatin

[112,113]

Forteo Teriparatide Lilly/Amylin Recombinant form of parathyroid hormone consisting of the first

(N-terminus) 34 amino acids, which is the bioactive portion of the

hormone

[114,115]

Byetta Exenatide Lilly/Amylin Synthetic version of exendin-4, a hormone found in the saliva of the

Gila monster

[116,117]

Cubicin Daptomycin Cubist Cyclic lipopeptide, consisting of 13 amino acids, 10 of which are arranged

in a cyclic fashion and three on an exocyclic tail

[118,119]

Integrilin Eptifibatide Merck Cyclic heptapeptide composed with S–S bridge, two unnatural building

blocks and amide

[120,121]

Angiomax/angiox Bivalirudin Medicines 20-amino acid polypeptide [122,123]

Fortical Calcitonin Upsher-Smith 32-amino acid polypeptide [124–126]

Somatuline Lanreotide Ipsen Cyclic peptide that is a long-acting analogue of somatostatin. [127,128]
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Gut–Brain Interactions

Gut–brain interactions are increasingly recognised as playing an im-
portant role in determining overall food intake [63]. Many peptides
are synthesised and released from the gastrointestinal tract, and it
has been shown that they physiologically influence eating
behaviour via gut–brain signalling [64]. Ghrelin is an appetite-
stimulating peptide produced in the stomach, which acts as a meal
initiator. This differs from peptide YY, pancreatic polypeptide (PP),
glucagon-like peptide-1 (GLP-1), oxyntomodulin (OXM) and
cholecystokinin (CCK), which are all derived from the intestine
and pancreas and have been shown to produce satiety signals.
From this, it has been suggested that gut hormones can be
manipulated to regulate energy balance, and as a result, gut
hormone-based therapies could be a possible treatment for obesity
(Figure 7) [65,66].

Peptide Hormones Involved with the Gastro-
intestinal Tract and Feeding

Leptin

Leptin is a hormone made by adipose cells that affects many
biological mechanisms including reproduction, the immune and
inflammatory response, haematopoiesis, angiogenesis, bone for-
mation and wound healing. More interestingly, however, leptin
helps to regulate energy balance by inhibiting hunger. This occurs
via a feedback mechanism in which signals are sent to key regula-
tory centres in the brain to inhibit food intake [67].

After leptin is released by the adipose tissue into the blood-
stream, it crosses the BBB and binds to the hypothalamic leptin
receptors. This affects the activity of many hypothalamic neurones
and the expression of various orexigenic (appetite stimulating)
and anorexigenic neuropeptides. Orexigenic peptides include
neuropeptide Y (NPY), and anorexigenic peptides include pro-
opiomelanocortin. It has been suggested that the interaction with
both types of these neuropeptides underpins the mechanism of
action of leptin in the hypothalamus to inhibit hunger [67].

Ghrelin

Ghrelin is a 28-amino acid peptide with an octanoylated serine res-
idue at position 3 [68] and is produced and secreted by cells within
the oxyntic glands of the stomach [65]. Peripheral administration of
ghrelin has been shown to stimulate food intake and decrease fat
utilisation. This means it is involved in energy homeostasis, and it
is the serine residue that appears to give ghrelin these effects
[68]. What makes ghrelin unique is its function to increase food
intake rather than decrease it, and as a result, it is a very important
component of weight control. Evidence of this was shown when a
study was carried out on mice that were lacking in ghrelin. The
results showed that they were resistant to diet-induced obesity
when fed a high-fat diet due to them eating less, and therefore
utilising more stored fat as an energy source [66].

Cholecystokinin

Cholecystokinin is an endogenous gut hormone mainly found in
the duodenum and jejunum, which exists in several molecular
forms with differing numbers of amino acids. Examples include
CCK-8 and CCK-54 (the number indicates the number of amino acid
residues). CCK is known to act as a postprandial satiety signal, and it
acts via two receptors: CCK1 and CCK2. The CCK1 receptor is more
important in appetite control [68]. The receptors are located on
the peripheral vagal afferent terminals, which transmit signals to

Figure 6. Time-sequence photographs of a mineralising 3D PA matrix [61].

Figure 7. Interactions of gut and endocrine hormones with the brain
and how they affect food intake [66].
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the part of the brain stem that is associated with appetite, such as
the nucleus of the solitary tract [66].

Oxyntomodulin

Oxyntomodulin is a 37-amino acid peptide expressed in the central
nervous system and the L cells of the intestine and pancreas [69].
OXM seems to mediate its effects via the GLP-1 receptor as shown
in experiments carried out on rat parietal cells [70]. This has been
proven since its anorectic actions are blocked when the GLP-1
antagonist was administered [71]. Intravenous administration of
OXM in humans inhibits gastric emptying and gastric acid secre-
tion, which leads to a feeling of satiety [72]. This feeling of satiety
can cause a reduction in both food intake and overall body weight,
and this is brought about by the suppression of ghrelin.

Glucagon-like Peptide-1

Glucagon-like peptide-1 is a 30-amino acid gut-derived incretin
peptide hormone [73] meaning that it stimulates insulin secretion
in response to eating, and as a result, it suppresses glucagon
secretion. In addition to this, GLP-1 inhibits gastric emptying and
also reduces appetite and food intake [74]. GLP-1 is produced in
the intestinal epithelial endocrine L cells in the distal small bowel
and colon by differential processing of proglucagon [73,74].
Proglucagon is the gene that is expressed in the L cells and is reg-
ulated in the gut and brain [74]. Within minutes of food intake,
the plasma levels of GLP-1 rise rapidly. GLP-1 exists in two circulat-
ing molecular forms: GLP-1(7–37) and GLP-1(7–36) amide, and it is
GLP-1(7–36) amide that represents themajority of circulating active
GLP-1 in human plasma. Both forms of GLP-1 are rapidly
metabolised and inactivated by the enzyme dipeptidyl peptidase-
4 (DPP-4) to GLP-1(9–37) or GLP-1(9–36) amide following the re-
lease from gut L cells [75]. This widely expressed enzyme cleaves
both forms of GLP-1 at the position 2 alanine of the N-terminal to
make them inactive. The expression of DPP-4 in the gut and vascu-
lar endothelium explains the short half-life of GLP-1 of just several
minutes, because the majority of immunoreactive GLP-1 entering
the portal venous circulation has already been inactivated by
N-terminal cleavage [76].

Pancreatic Polypeptide

Pancreatic polypeptide is a 36-amino acid peptide that belongs to
a family that includes NPY and peptide YY (PYY), and all of these
peptides are members of the PP-fold peptide family. The PP-fold
family binds to receptors Y1–Y6, but PP in particular has the
highest affinity for the Y4 and Y5 receptors [68]. PP is similar to
GLP-1 in that it is released into the circulation after the ingestion
of food. However, it differs in that it is produced in the endocrine
F cells, which are located in the periphery of the pancreatic islets
[77,78]. PP is responsible for a number of regulatory actions, such
as the inhibition of pancreatic exocrine secretion, and the modu-
lation of gastric acid secretion, and gastric emptying [79,80]. The
amount of PP released is affected by the digestive state, i.e. re-
lease is very low in the fasted state but is significantly increased
throughout all phases of digestion. In addition to this, PP is af-
fected by a decrease in blood glucose levels and insulin-induced
hypoglycaemia, both being stimuli for PP secretion in the brain.
As a result of this, it is thought that PP could potentially play a
significant role in the regulation of feeding behaviour to control
energy homeostasis [77].

Peptide YY

Peptide YY is a gut hormone that belongs to the PP family, along
with PP and NPY, all of which are given the term PP-fold family.
The PP-fold motif is found throughout this family and relates to
the 3D structure. The PP-fold is formed through the incorporation
of certain residues, which are predominately Pro2, Pro5, Pro8,
Gly9, Tyr20 and Tyr27. The PP-fold has been found to protect the
peptide against enzymatic attack as well as producing a hydropho-
bic pocket that is inherently overall energy-reducing. In addition to
containing the PP-fold motif, PYY and its derivative PYY3–36 also
have a high C-terminal α-helix content, which has also been
suggested to be extremely important for the structural integrity
of PYY. The sequence of the 36-amino acid peptide, PYY, is Tyr–
Pro–Ala–Lys–Pro–Glu–Ala–Pro–Gly–Glu–Asp–Ala–Ser–Pro–Glu–Glu–
Leu–Ser–Arg–Tyr–Tyr–Ala–Ser–Leu–Arg–His–Tyr–Leu–Asn–Leu–Val–
Thr–Arg–Gln–Arg–Tyr–NH2 [81].
Temperature-dependent circular dichroism (CD) studies have

been carried out on human PYY to characterise its secondary struc-
ture. The results indicated an α-helical structure due to a maximum
near 190 nm and two minima near 208 and 222 nm. A minimum
near 200 nm was also observed, which corresponds to a random-
coil structure (Figure 8) [82].
The PP-fold PP family all consists of a signal peptide, followed by

a 36-amino acid active peptide and a carboxyl-terminal [83], and
they mediate their effects through the NPY receptors Y1, Y2, Y4
and Y5 [84]. The Y-receptors belong to the G protein-coupled recep-
tor family, and they mediate a wide variety of physiological effects
such as regulation of blood pressure, anxiety, memory retention,
hormone release and food intake.
Peptide YY is released by the L cells of the gastrointestinal tract

following food intake, and there are two main endogenous
forms: PYY1–36 and PYY3–36. PYY1–36 is rapidly processed by the
enzyme DPP-4 to the 34-amino acid peptide PYY3–36 [85]. DPP-
4 hydrolyses PYY and removes the first two amino acids, tyrosine
and proline, at the N-terminal, which changes the receptor selec-
tivity. As a result of this, PYY3–36 has a high selectivity for the Y2-
receptor, compared with PYY1–36, which has selectivity for the Y1,
Y2 and Y5 receptors. It is thought that the Y1 receptor requires
both the C-terminus and N-terminus for recognition, binding
and then subsequent activation. The Y2 receptor is thought to
have a smaller receptor site and also only requires the C-
terminus for recognition (Figure 9).
This could explain the reduced affinity for PYY3–36 on any Y

receptor other than Y2 [86]. Other studies replacing the amide
bonds with ester bonds also confirm that the end section is impor-
tant in binding and activation [87]. The Y2 receptors are located in

Figure 8. Temperature dependant CD spectra of human PYY in 20 mM
acetate buffer at pH 4.6 [82].
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the hippocampus, sympathetic and parasympathetic nerve fibres,
intestines and certain blood vessels and have been implicated in
regulating food intake and gastric emptying [88]. As a result of this,
the Y2 receptor is considered a target for the treatment of obesity
and type 2 diabetes.

Neuropeptide Y

Neuropeptide Y is also a 36-amino acid peptide that has a very
similar sequence homology to PYY and PP. NPY, however, differs
from the other two peptides in the fact that it acts as a neurotrans-
mitter rather than a hormone [89]. NPY is one of themost abundant
peptides found in the brain [90], and it is synthesised and released
by neurons, which in the peripheral nervous system are mostly
sympathetic neurons [89]. NPY is associated with various biological
responses, which include increased food intake, enhanced cogni-
tive function associated with learning and memory and also reduc-
tion in anxiety [91]. In addition to this, in peripheral blood vessels,
NPY has been shown to induce vasoconstriction [92]. Studies of
NPY and its receptors suggest that it could be directly related to
various pathological disorders such as obesity, depression and
epilepsy [93].

Peptide Therapeutics

There aremany peptide products on themarket at present, and this
are likely to increase because of their specificity, potency and low
toxicity [94,95]. Table 1 shows some of the leading peptide
therapeutics. Not all of these peptide therapeutics self-assemble
or are formulated as solutions, but the table shows examples
highlighting the importance of the use of peptides in drugs. The
highest selling marketed diabetic drug Liraglutide incorporates a
lipid chain to extent plasma circulation and ensures prolonged
bioavailability [96,97]. Liraglutide is a GLP-1 agonist drug that self-
assembles into an α-helical structure, and it requires once a day
administration [98]. Lipid conjugation of a palmitoyl chain to a
lysine residue at position 26 of liraglutide results in an extended
half-life (around 13–14 h) in the blood. This is due to the palmitoyl
chain allowing non-covalent binding to albumin, which delays

proteolytic attack by DPP-4 and also rapid renal clearance. Further-
more, the addition of the lipid chain could further prolong half-life
by sterically hindering the DPP-4 enzyme from degradation [99].

Another peptide known to self-assemble is the octapeptide
Lanreotide. This compound is a synthetic analogue of the peptide
hormone somatostatin, and it is used to treat acromegaly [100] (a
condition where the body produced too much growth hormone).
Inwater, lanreotide self-assembles intomonodisperse liquid crystal-
line nanotubes. The nanotubes are made up of dimers that self-
assemble into a 2D crystal, which is held together by lateral chain
interactions within antiparallel ß-sheets [100,101].

Daptomycin is a lipopeptide therapeutic agent that is used as an
antibiotic to treat infections caused by Gram-positive bacteria [102].
This drug is particularly effective against infections that are
antimicrobial resistant such as MRSA. The antimicrobial activity of
daptomycin is calcium-dependent. In the presence of a 1 : 1 ratio
of calcium ions to daptomycin, self-assembly into micelles has been
observed. The mechanism of action involves the disruption of the
negatively charged bacterial cell membrane, in the presence of
cations (for antibiotic activity, this is calcium ions) [53].

A further example of how self-assembly and bioactivity of pep-
tide hormones are related involves self-assembling amyloid struc-
tures formed by peptide hormones and neuropeptides, which are
crucial messenger molecules responsible for the function of differ-
ent cells and organs. Peptide hormones and neuropeptides form
aggregates that pack into dense-core vesicles (DCVs), which are
used to temporararily store peptide messengers in secretory cells
[103]. When DCVs are triggered, they release the stored contents
into the blood or extracellular space [104], which results in amyloid
disassembly, in order for action [103]. Therefore, for these types of
peptides, reversibility of peptide aggregation is essential for their
function.

As mentioned earlier, Table 1 shows some examples of peptide
agents that are currently on the market.

Therapeutic Applications of PYY Peptides

A significant amount of research into the effects that PYY and
PYY(3–36) have on the body has been undertaken, predominately

Figure 9. Binding sites for Y1 and Y2 with hPYY + hPYY(3–36) [86].
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in the food/biological science fields [129–131]. The application of
PYY(3–36) as an anti-obesity drug is an extremely interesting topic
of research; however, it is limited because of its short half-life
and lack of selectivity for the Y2-receptor [85]. As a result, there
is an unmet need for a treatment, and because peptide hormones
already exist, in vivo peptide-based drugs are very favourable com-
pared with synthetic molecules. This is due to them being less
toxic, more selective and also more predictable in their in vivo
behaviour [132]. In contrast, however, the use of peptides and
proteins as therapeutic agents has its drawbacks because of their
rapid degradation, excretion, and poor water solubility. In addition
to this, they may cause allergic reactions due to immune re-
sponses. However, this applies more to proteins than peptides as
peptides are generally less immunogenic. One of the main reasons
for the short half-life of peptides is due to their rapid renal excre-
tion, and this can be overcome by increasing the molecular weight
(upper limited >2000 gmol�1). A strategy to do this is to PEGylate
the peptides. Covalently attaching PEG chains to the peptide
improves enzymatic stability because of steric hindrance of
proteolytic enzymes. This suppressed the immune response
[132–134]. PEGylation has been shown to induce vacuolisation
(formation of vacuoles within/adjacent to cells), but current re-
search has focused on limiting this effect by using different
carriers or shortening chain lengths [135–137]. In addition to
extending half-life, PEGylation exhibits many properties that are
favourable in pharmaceutical applications such as high water
solubility, low toxicity and immunogenicity and ready clearance
from the body. An example to show the effectiveness of
PEGylation on half-life is the study by Lee et al., where
site-specific mono-PEGylation of GLP-1 led to a 16-fold increase
in plasma half-life time in rats [138].

As previously mentioned, the ability of PYY and PYY3–36 to re-
duce food intake makes this peptide promising for use in anti-
obesity or chronic eating disorder medications. A few studies have
shown that even though PYY works as an appetite suppressant, it
has some drawbacks that need to be overcome. A few studies
that used high doses of PYY have reported taste aversion in ani-
mals and nausea in humans [139,140]. This was compounded by
rapid dose administration. These side effects were combated by
low doses at a steady and controlled infusion mainly through
intravenous injections [141]. The two main problems with the
administration of PYY seem to be both its concentration and
how it is given, with the optimum dose being obtained by intrave-
nous administration [142]. This is a detriment for the patient as
they have to inject themselves, potentially daily, during the
programme, and this can cause problems. Oral or nasal delivery
gets over these issues, but with potential efficacy issues due to
uptake [143,144].

A paper in 2002 commented on the potential for acute periph-
eral administration of PYY(3–36) to inhibit food intake. PYY(3–36) was
injected into fasted (for 24 h) rats’ hypothalamuses, and this led
to a significant decrease in food intake, even at doses as low as
100 μg kg�1 [145]. This effect was initially controversial with very
few other researchers being able to repeat the result [146]. A theory
behind the controversy was proposed, this being that the mice
used in the repeat tests were unaccustomed to the laboratory
environment, which increased their stress levels. Stress inherently
reduces baseline food intake so it makes any investigations in
anorectic agents difficult to assess [146]. Further research into
the use of PYY(3–36) in human studies has found that obese
subjects show normal levels of sensitivity to the appetite-reducing
effects [147].

Summary and Conclusions

Peptides have many advantages as therapeutic agents. This is due
to them being multifunctional and having a diverse range of appli-
cations; from antimicrobial agents to triggering a cellular release of
hormones. Table 1 provides a list of examples of peptide drugs
currently on the market.
Lipidation is a useful tool to reduce the degradation of a drug, or

to extend half-life, with some of these effects probably being the re-
sult of self-assembly, althoughmuchmore work is needed to inves-
tigate the possibly of many lipidated (and also non-lipidated)
peptide drugs. Lipidation also enhances interactions of peptides
with cell membranes.
As discussed earlier with appropriate examples, lipopeptides

and PAs have a lot of interesting applications including use in anti-
microbial and antifungal treatments, as skin care product ingredi-
ents, in drug delivery systems including those for hormone
diseases as highlighted herein and in material templating in tissue
engineering.
Peptide hormone therapeutics are of great interest as compo-

nents of ‘pre-built’ drugs that the human body has already created
and responds to. This significantly reduces the work needed to find
a synthetic drug that responds to the active site. One drawback is
that peptide hormones in vivo are stable for a specific time frame,
before being removed. This may be a problem if the peptide hor-
mone is of interest as a drug candidate, due to rapid clearance from
the body. This is where lipidationmay be beneficial as it can lead to
a reduction in the drug clearance rate and proteolytic degradation.
This offers great potential in the development of future
therapeutics.
The peptide hormone PYY3–36 is released by the L cells of the

gastrointestinal tract following food intake and has a high selectiv-
ity for the Y2 receptor. The Y2 receptor is associated with the regu-
lation of food intake and gastric emptying. As a result of this, the
use of PYY3–36 as a peptide hormone therapeutic to treat lifestyle
conditions such as obesity and type 2 diabetes is a very promising
area of research. As previously mentioned though, peptide hor-
mones have short half-lives and are rapidly cleared from the body,
which means that their activity as therapeutic agents will be short
lived, and lipidation and PEGylation are strategies to overcome this.
In summary, this review has covered applications of peptide-

based molecules, especially peptide amphiphiles and lipopeptides,
with a particular focus on peptide hormones and their uses as
drugs. We have highlighted the limited number of studies so far
in which it has been suggested that self-assembly may influence
bioactivity. Much more research is required into this fascinating
subject as novel peptide-based molecules emerge as future thera-
peutic agents.
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