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Abstract

Monitoring adverse drug events or pharmacovigilance has been promoted by the World Health Organization to assure the
safety of medicines through a timely and reliable information exchange regarding drug safety issues. We aim to discuss the
application of machine learning methods as well as causal inference paradigms in pharmacovigilance. We first reviewed
data sources for pharmacovigilance. Then, we examined traditional causal inference paradigms, their applications in phar-
macovigilance, and how machine learning methods and causal inference paradigms were integrated to enhance the perfor-
mance of traditional causal inference paradigms. Finally, we summarized issues with currently mainstream correlation-based
machine learning models and how the machine learning community has tried to address these issues by incorporating causal
inference paradigms. Our literature search revealed that most existing data sources and tasks for pharmacovigilance were not
designed for causal inference. Additionally, pharmacovigilance was lagging in adopting machine learning-causal inference
integrated models. We highlight several currently trending directions or gaps to integrate causal inference with machine
learning in pharmacovigilance research. Finally, our literature search revealed that the adoption of causal paradigms can
mitigate known issues with machine learning models. We foresee that the pharmacovigilance domain can benefit from the
progress in the machine learning field.

Key Points 1 Introduction
Most existing data sources and tasks for pharmacovigi- The World Health Organization has been promoting phar-
lance were not designed for causal inference. macovigilance programs to assure the safety of medicines

through a timely and reliable information exchange regard-
ing drug safety issues, for example, adverse drug events
(ADESs) [1]. An ADE is an unintended response caused by

Pharmacovigilance was lagging in adopting machine
learning-causal inference integrated models.

Adoption of causal paradigms can mitigate known issues a medicine and is harmful [2]. For in-patient stays, 16.9%
with machine learning models, which could further of the patients experienced ADEs with 6.7% categorized as
enhance the use of machine learning in pharmacovigi- serious and 0.3% as fatal [2, 3]. While medication errors
lance tasks. (e.g., wrong/missing doses, wrong administration tech-

niques, equipment failure) and prescription of multiple
medications were considered important risk factors of ADEs
[4, 5], there are still many incidences of ADEs due to unde-
tected signals during clinical trials [3]. This may be due to
limited sample sizes and stringent patient eligibility criteria
04 Yuan Luo in pre-approval studies [3]. Therefore, pharmacovigilance

yuan.luo@northwestern.edu is important to the safe use of medicines. In this review, we
focus on the tasks of ADE detection and monitoring (includ-
ing pre-clinical prediction) in the pharmacovigilance pro-
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ADE detection and monitoring in the pharmacovigilance
program lifecycle, the methodologies and examples of causal
inference discussed in this paper could apply to each phase
of the pharmacovigilance program.

Currently, major data sources for pharmacovigilance
include spontaneous reporting systems (SRS), real-world
data (RWD) such as electronic health records (EHRs), social
media, biomedical literature, and knowledge bases [3]. Each
data source has unique advantages and biases, which we
discuss in the following sections. While data mining was
applied to those data sources to enhance the efficiency of
pharmacovigilance, the level of evidence from identified sig-
nals depended heavily on the chosen data source as well as
the study design. Overall, we identified the following three
main tasks in the field of pharmacovigilance.

1. Drug—event pair extraction. For this task, we usually use
either structured data from EHRs [6, 7] or the natural
language processing (NLP)-based machine learning/
deep learning (ML/DL) method to extract drug—event
co-occurrence pairs from the unstructured texts [8—10].
Note that those pairs only indicate a potential asso-
ciative “relationship” between the drug and the event
and cannot be considered a “confirmed” ADE yet. The
symptoms experienced might be caused by a variety of
medical conditions other than the ADE. Thus, we still
need further proof using other statistical analyses or data
sources.

2. Adverse drug event detection. For traditional pharma-
covigilance, the most important task is to detect ADEs
for these post-marketing drugs in time. The ADE detec-
tion task aims to identify and confirm ADEs from “real-
world” medication usage information as early as pos-
sible. We consider ADE detection as a task providing
a higher level associative relationship compared with
disproportionality or NLP-based drug—event co-occur-
rence pair extraction. However, ADE detection is only
associative without further confirmation if using SRS
owing to the limitation of the data source (no control
group can be matched, and no causality evaluation can
be performed). Adverse drug event detection using an
RWD database, however, can be evaluated for causality
if a proper study design was adopted.

3. Adverse drug event prediction. Adverse drug event pre-
diction, or ADE discovery, could be conducted only if
the event data have accumulated to a certain amount.
Thus, there was a time difference from drug launch to
ADE prediction. Adverse drug event prediction focuses
on discovering potential ADEs before being observed.
The predictive power (forecast future events from data
generated previously) of many ML/DL models made
ADE prediction possible. Using literature and knowl-
edge bases, researchers can predict ADEs at the pre-
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marketing stage. After launching and as more data
accumulate, researchers can use RWD and social media
data for post-marketing pharmacovigilance. While ADE
prediction may not only depend on causal relationships,
establishing causal relationships can facilitate feature
selection and greatly improve model performance and
generalizability.

Machine learning or a causal inference paradigm sepa-
rately has been adopted for many pharmacovigilance stud-
ies [11-15]. The integration of machine learning into a
causal inference paradigm was also studied, although
mostly theoretically [16-20]. However, the relationship
between machine learning and a causal inference para-
digm in the context of pharmacovigilance has not been
extensively examined. The goal of causal inference is to
explain what factors lead (are influential) to the outcome.
The emphasis is on investigating and explaining the role
of individual factors in the outcome. On the contrary, most
machine learning tasks emphasize the outcome and aim
to predict whether an outcome will occur in the future.
Weights in machine learning models are not equivalent to
effect sizes in causal inference [21]. Pharmacovigilance
involves a series of tasks: (1) predicting the outcome
using drug exposure and a set of covariates and (2) under-
standing the causal effects between drug exposure and the
outcome. The complicated nature of pharmacovigilance
requires researchers to choose methods and study designs
wisely in order to answer the proposed question (predic-
tion or explanation). However, ideally, machine learning
and causal inference could be combined to enhance both
the predictive and explanatory power of a single study.
Therefore, this article aims to discuss the application
of machine learning and a causal inference paradigm in
pharmacovigilance. Pharmacovigilance tasks, machine
learning, and causal inference paradigms have intertwined
relationships (Fig. 1). In the following sections, we dis-
cuss (1) data sources for pharmacovigilance, common
methods (traditional or machine learning) used to analyze
data from each data source, and the advantages and biases
of each data source; the search query for this section was
as follows: data source name (e.g., spontaneous reporting
system, SRS, EHRs, data registry) + “machine learning”
+ “adverse event/adverse effect/side effect”. (2) Integra-
tion of machine learning into traditional causal inference
paradigms (with examples of studies in the pharmaceuti-
cal industry); the search query for this section was: as
follows: causal inference paradigm name (e.g., naranjo
score, propensity score matching, instrumental variable)
+ “adverse event/adverse effect/side effect” + “machine
learning/artificial intelligence” (optional). (3) Issues with
machine learning and how a causal paradigm can address
those issues; search query for this section was: “machine
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Fig. 1 Relationships between pharmacovigilance data sources, ana-
lytical approaches, pharmacovigilance tasks, and causal inference
paradigms. Each data source is commonly analyzed by specific ana-
lytical approaches depending on the characteristics of data in those
data sources. Each pharmacovigilance task is also associated with

learning/artificial intelligence” + “generalizability/
generalizable/explainability/explainable/fairness/bias”
+ “adverse event/adverse effect/side effect” (optional).
Because of the length limit of the paper, we were not able
to include all papers identified from the above queries.
However, we selected the most recent papers representa-
tive of the data source/methods/combination of methods
to reveal current trends of machine learning in causal
inference with an application in pharmacovigilance.

2 Data Sources for Pharmacovigilance
2.1 Spontaneous Reporting System

The most traditional dataset for ADE detection is the SRS
database, such as the FDA Adverse Event Reporting Sys-
tem (FAERS) [22] and WHO’s VigiBase [23]. Tradition-
ally, statistically based methods such as disproportionality
measures and multivariate analyses were used to analyze
SRS data [24]. Recently, machine learning methods such

ADE Detection

\ 4
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ADE Prediction

. Drug-Event Pair Extraction

Causality assessment scales [I

- Causal Inference
M Frameworks

Propensity Score Matching
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specific analytical approaches. Causal inference paradigms are inte-
grated with different analytical approaches and applied to pharma-
covigilance tasks. ADE adverse drug event, LSTM long short-term
memory, NLP natural language processing, RNN recurrent neural net-
work, RWD real-world data, SVM support vector machine

as association rule mining [25, 26], clustering [11], graph
mining [12], and the neural network [27] were also applied
to SRS data. However, those methods were only able to
detect ‘signals of suspected causality’ [27, 28]. Moreover,
several studies have revealed limitations of the SRS, includ-
ing reporting bias (e.g., underreporting, stimulated report-
ing), the lack of a population denominator, poor documen-
tation quality [28, 29], and lower reporting rates for older
products [30-32]. Important details required for a causality
assessment may not be captured by the SRS, for example,
comorbidities and concomitant medications. This can lead
to background ‘noise’ or may generate false-positive signals
[33]. Therefore, the causality of the detected signals still
needs further validation from other data sources [34].

2.2 Real-World Data

Real-world data containing both structured and unstructured
data, for example, insurance claims, EHRs, and registry
databases offer new opportunities for pharmacovigilance as
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they provide a longer duration of follow-up, better ascer-
tainment of exposure and outcomes, and a more complete
collection of confounding variables such as comorbidities
and co-prescribed medications [35]. We could also iden-
tify comparison groups in RWD databases using matching
techniques. However, the timeliness of the RWD collection
has been an issue with a claim or registry database [30].
Electronic health records were considered a better choice in
terms of data timeliness. However, data quality issues such
as non-random missingness and discrepancies across data-
bases also made rapid utilization of RWD from EHRs dif-
ficult [30]. Despite the limitations, RWD databases enabled
a transition from traditional “passive” surveillance toward
“active” surveillance, and thus received considerable atten-
tion in the field of pharmacovigilance. Notably, RWD was
superior as they offers longitudinal data for each subject.
Therefore, increasing numbers of studies explored temporal
relation extraction [36] using RWD to increase the confi-
dence level of detected signals.

There has been a progression in the better utilization
of RWD for observational studies in pharmacovigilance
including: (1) development of common data models [37]
such as the Observational Medical Outcomes Partnership
[38—40] to facilitate rapid data extraction from unstruc-
tured RWD; (2) traditional epidemiologic methods (or
slightly modified variants) adapted for signal detection,
including a self-controlled case series study [41], a self-
controlled cohort analysis [42], a tree-based scan statistic
[6, 7], and a prescription symmetry analysis [43]; and (3)
new ML/DL and approaches applied to a temporal analysis
[36] and relational learning [44]. Patient event-level or
code-level embedding was also calculated for downstream
predictive modeling using RWD [45].

2.3 Social Media and Biomedical Literature

Social media such as social networks, health forums,
question-and-answer websites, and other types of online
health information-sharing communities is another resource
containing potentially useful and most timely information
for pharmacovigilance. Biomedical literature, includ-
ing research articles, case reports, and drug labels, was
considered a more reliable source of unstructured data
for pharmacovigilance compared with social media data.
Association rule mining was commonly used for extrac-
tion of drug—event pair or drug—drug interaction from social
media and literature [46—48]. Advancement in NLP has
enabled relation extraction of drug—event pairs from the
above-mentioned unstructured data sources for pharma-
covigilance [49-53]. Advanced machine learning such as
supervised learning was also applied to extract ADEs from
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social media and biomedical literature. For example, Patki
et al. [54] used supervised machine learning algorithms to
classify sentences into two classes: one with ADE mentions
and another without, before inference of the experienced
ADE. Several shared tasks based on social media and bio-
medical text data have significantly accelerated develop-
ment for ADE detection using these two data sources, for
example, Drug-Drug Interaction Extraction 2011 challenge
task [55] and Social Media Mining for Health (SMM4H)
shared task [56].

2.4 Knowledge Bases

With the development of ML/DL techniques, particularly
on graph mining, knowledge bases have become a rising
data source for pharmacovigilance study, especially for the
pre-marketing phase. Drug chemical databases [57], drug
target databases [58] (including a side effects database [59]),
biomedical pathway databases [60], protein interaction data-
bases [61], and drug interaction databases [62] were some
of the most used knowledge bases in pharmacovigilance
studies. Logistic regression, Naive Bayes, k-Nearest Neigh-
bor, Decision Tree, Random Forest, and Support Vector
Machine were commonly used algorithms for the prediction
of unknown ADEs using knowledge bases. The algorithms
were always compared with each other given a specific data-
set before the best-performing algorithm was selected [57,
58]. Recent advancement in Graph Neural Network (GNN)
has led to an increasing interest in using knowledge bases for
ADE prediction as GNN has achieved superior performance
compared with other machine learning algorithms. In more
recent works, the graph structures of knowledge bases were
integrated with RWD to enhance the causal interpretability
of ADE detection [63].

Each of these data sources has its own advantage/bias and
is suitable for different pharmacovigilance tasks at different
phases (pre-marketing or post-marketing). We summarized
this information in Table 1. Even though we discussed each
of the data sources separately in Table 1, we observed that
the trend in pharmacovigilance is to employ more than one
type of data source [64—68]. We also observed a trend to
combine multiple analytical approaches, for example, [44]
combined sequence analysis with supervised learning, [69]
used NLP to extract features from free text, which were later
used in supervised learning, and [70] proposed a novel syn-
thesis of unsupervised pretraining, representational compo-
sition, and supervised machine learning to extract relational
information from the biomedical literature. Both data source
integration and analytical approach synthesis will facilitate
the design of a generalizable and causally explainable ML/
DL framework.
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3 Traditional Causal Inference Paradigm
and Integration with Machine Learning

Most pharmacovigilance studies are observational studies
because of the nature of the data used for analysis. However,
observational studies have only limited ability to prove cau-
sality, i.e., probabilities under conditions (adverse events)
that are changed and induced by treatments or external
interventions [80]. Conducting causal inference for obser-
vational studies required either randomization or a rigorous
study design [81, 82]. In most cases of long-term pharma-
covigilance, randomized trials are not feasible. Therefore,
observational studies became a more favorable approach for
this task. However, there are many challenges in both the
design and analysis stages to draw causal conclusions from
retrospective observational studies. The primary challenge
is to distinguish between causal and associative relation-
ships with observational data in the presence of confounders
(i.e., factors related to both the exposure and the outcome)
and colliders (i.e., factors influenced by both the exposure
and the outcome). While a multivariable regression analysis
was often used to adjust for potential confounders, causal
effects cannot be directly estimated. Furthermore, temporal
relationships are to be captured and assessed in observa-
tional studies before causal relationships can be established
[83, 84]. Hill’s criteria (i.e., 1. Strength, 2. Consistency, 3.
Specificity, 4. Temporality, 5. Biological gradient, 6. Plau-
sibility, 7. Coherence, 8. Experiment, 9. Analogy between
exposures and outcome) are often referenced as the standard
definition for causality in epidemiology [85]. It has guided
the development of many causal inference models, statistical
tests, as well as machine learning tasks for the evaluation
of causality.

In this section, we discuss four causal inference para-
digms in the domain of pharmacovigilance: (1) causality
assessment scales, (2) propensity score matching (PSM),
(3) graph-based causal inference, and (4) instrumental
variables (IVs). Our discussion focuses on how ML/
DL was integrated into the traditional causal inference
methods. We also discuss current progress in pharma-
covigilance that has adopted causal inference-machine
learning integration. Table 2 shows the relevant papers
we reviewed.

3.1 Causality Assessment Scales

Various methods are available to assess the causal rela-
tionship between a drug and an ADE, which are based on
three main approaches: (1) expert judgment-based World
Health Organization-Uppsala Monitoring Centre system;
(2) algorithm-based Naranjo causality assessment method;
and (3) probabilistic-based Bayesian Adverse Reactions

Diagnostic Instrument (BARDI) [120]. The World Health
Organization-Uppsala Monitoring Centre system is rela-
tively easy to implement, it is highly dependent on an indi-
vidual expert’s judgment, thus suffering from poor reproduc-
ibility. The Naranjo algorithm is also simple and has good
reproducibility. Its disadvantages include low sensitivity for
the ‘uncertain’ cases and therefore a low detection rate for
certain ADEs. It is also not valid for children, critically ill
patients, drug toxicities, and drug—drug interaction (DDI)
detection. The Bayesian approach is regarded as the most
reliable approach, its complex and time-consuming nature
limits its use in clinical routine practice [120].

We found that the relationships between machine learning
and causality assessment scales are three-fold: (1) causality
assessment scales serve as outcome labels in machine learn-
ing models that predict causality of extracted drug—ADE
pairs. For example, in studies [86—88], researchers have uti-
lized the World Health Organization-Uppsala Monitoring
Centre to create gold-standard labels of causal drug—ADE
pairs, which were later used for training supervised machine
learning models to perform causal classifications on the
identified drug—ADE pairs. Likewise, Rawat et al. [90] con-
structed a multi-task joint model using unstructured text in
EHRs, using physicians’ annotation as the gold standard.
These efforts demonstrated that machine learning algorithms
have some ability to predict the value of a report from SRS
or content from social media for causal inference. (2) Cau-
sality assessment scales serve as features in machine learn-
ing models that predict causality. A group of researchers
from Roche developed a model called MONARCSIi with
nine features capturing important criteria from Naranjo’s
scoring system, Hill’s criteria, and internal Roche safety
practices [89]. Their model achieved a moderate sensitivity
and high specificity with high positive and negative predic-
tive values. However, this approach cannot be fully auto-
mated, restricting its potential for future application. Thus,
automated tools for extracting features capturing important
criteria from Naranjo’s scoring system or Hill’s criteria are
desirable. (3) Machine learning methods were employed to
extract Naranjo score features and improve the efficiency
of causality assessment score calculations. As discussed
above, the inability to automate the extraction of Naranjo
score features restricted the adoption of the proposed deci-
sion support system by Roche. Recent work by Rawat et al.
[90, 91] offered solutions to this limitation. In [90], they
formulated Naranjo questions as an end-to-end question-
answer task. They used Bidirectional Long short-term mem-
ory (BiLSTM) to predict the scores for a subset of Naranjo
questions. Later in [91], they used Bidirectional Encoder
Representations from Transformers (BERT) to extract rel-
evant paragraphs for each Naranjo question and then used
a logistic regression model to predict the Naranjo score for
each drug—ADE pair. To sum up, with the availability of
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Table 2 Categorization of papers reviewed regarding data sources and machine learning methods used for four causal inference paradigms

Machine learning methods

Data source

Causality assessment scales

SVM, Bayesian classifier, decision tree and/or Random Forest [86—88]
Regression [89]

Neural network [90, 91]

Propensity score matching

SVM, Bayesian classifier, decision tree and/or Random Forest [92, 93]
Ensemble (boosting/bagging) [20, 92, 94, 95, 99]
Regression [20, 94, 95, 97]

Neural network [96, 98, 100]

Graph-based causal inference

SVM, Bayesian classifier, decision tree and/or Random Forest
Link prediction [101]

Recommendation systems [109]

Classification [110]

Graph embedding

Link prediction [13, 102]

Recommendation Systems [105]

Regression

Classification [103]

Neural network

Link prediction [104]

Recommendation systems [106]

Predictive modeling [107, 108]

Ensemble (boosting/bagging)

Classification [111]

Link prediction [112]

Instrumental variables

Clustering [113]

Decision tree [16]

Neural network [114-117]

New algorithms [118, 119]

SRS [86, 87]
Social media [88]
RWD [89-91]

RWD [20, 93-99]
Simulated data [92, 100]

Knowledge bases [13, 102-104]
RWD [101, 105-112]

RWD [113-116]
Simulated data [16, 114, 115, 117-119]
Social network data [115]

RWD real-world data, SRS spontaneous reporting system, SVM support vector machine

Papers for “propensity score matching” and “instrumental variables” are not applied in the field of pharmacovigilance. Papers for “graph-based
causal inference” still lacks a clear causal interpretation from a graph perspective

more data sources and the advancement of deep learning-
based NLP methods for analyzing unstructured text, future
researchers can better utilize unstructured data for causality
assessment score calculations.

3.2 Propensity Score Matching

Matching has been widely used in observational or cohort
studies for drug safety investigation [14, 121-125] through
subsampling of the dataset strategically to balance the con-
founder distribution in the treatment and control groups
so that both groups share a similar probability of receiv-
ing treatment [126]. It allows observational studies to be
designed similar to randomized designs with the outcome
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being independent of confounders [127]. Matching methods
have evolved from “exact” matching to matching on pro-
pensity scores and to algorithmic matching, where machine
learning algorithms were used for the matching process
[92]. Regardless of the types of matching, this approach is
often used during data preprocessing or cohort construction.
Matching involves two steps: (1) definition of a similarity
metric (e.g., propensity score) and (2) matching controls to
treatment groups based on the defined metric [128]. While
some most recent algorithmic matching techniques such
as Dynamic Almost-Exact Matching with Replacement
(D-AEMR) [19] and DeepMatch [129] did not necessarily
use a propensity score as a similarity metric, matching using
a propensity score was still the most widely adopted method
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in observational studies. Therefore, we focus our discussion
on PSM in the following paragraphs.

Propensity score matching enabled the estimation of
the causal effect of treatments. However, the definition of
similarity and selection of covariates before matching may
sometimes hinder the causal inference power of match-
ing [130]. In other words, it could be hard to account for
all possible confounders and an inappropriate assumption
of similarity is likely to undermine the matched analysis.
Machine learning has inspired new methods for propensity
score estimation that are hypothesis-free and thus enhance
the causal inference ability of PSM. Traditional PSM mainly
used logistic regression for propensity score estimation. A
more recent study showed promising performance improve-
ment by using tree-based algorithms such as Classification
and Regression Trees (CART) and bagging algorithms such
as Random Forest for propensity score estimation [92]. Con-
trary to statistical models that fit models with assumptions
and estimations of parameters from the data, machine learn-
ing models tend to learn the relationship between features
and outcomes without an a priori model, i.e., hypothesis-
free [131]. Additionally, machine learning models were also
useful in addressing the “curse of dimensionality” when the
number of covariates becomes too large, which has become
very common in the era of “big data” [132]. For example,
Zhu et al. were able to control the number of covariates and
thus balance the trade-off between bias and variance of a
propensity score estimator by tuning the number of optimal
trees using a tree-based boosting algorithm [20].

Integration of PSM and machine learning techniques has
been found frequently in observational studies [94-96, 100],
including but not limited to treatment effect estimation and
outcome evaluation [93, 97-99], which all showed prom-
ising performance improvement compared with traditional
PSM. Theoretical developments of PSM and a machine
learning combination are also booming through the develop-
ment and use of simulated datasets [133—-136]. However, the
application of such a combination has not yet been utilized/
discussed in the domain of pharmacovigilance. Propensity
score matching is important for pharmacovigilance studies
[14, 137]. As more data or covariates become available for
pharmacovigilance, the combination of PSM and machine
learning can handle large covariate sets and reduce bias and
variance compared with traditional PSM. Therefore, we
foresee that machine learning-integrated PSM will empower
future studies in pharmacovigilance.

3.3 Graph-Based Causal Inference

The graph is a common data structure that consists of a finite
set of vertices (concepts) and a set of edges that represents
relationships (semantic or associative) between the vertices.
Graph-based methods are mainstream in both exploratory

machine learning and causal inference paradigms. Graph-
based methods also offer theoretical and systematic repre-
sentations of causality that do not require an a priori model
[138-140]. They can be applied to analyze integrated data
from various databases, e.g., knowledge bases, molecular
(multi-omics) databases, and RWD databases for causal sig-
nal detection.

In pharmacovigilance, because of the complex nature of
relationships between drugs, diseases (indication, comorbid-
ities, or adverse event), and individual characteristics (e.g.,
demographic, multi-omics), graph-based ML/DL methods
demonstrate their strengths in modeling these complicated
topologies. Graph-based methods can be applied in two
separate phases of pharmacovigilance: pre-marketing and
post-marketing. The rationale behind pre-marketing ADE
prediction is to identify potential ADEs from a biological
mechanism perspective: chemical structure, DDIs, and pro-
tein—protein interactions (PPIs). Traditionally, researchers
utilized chemical structures [13, 57] or biological pheno-
types [58, 103, 141] from graph knowledge bases to predict
potential adverse effects of a drug candidate. More recently,
Zhang et al. predicted potential adverse effects of a drug can-
didate using a knowledge graph embedding generated from
Drugbank [142]. Dey et al. [102] developed an attention-
based deep learning method to predict adverse drug effects
from chemical structures using SIDER. The hidden attention
scores were utilized to interpret and prioritize the associative
relationships between the presence of drug substructures and
ADE:s. Zitnik et al. [104] applied graph convolutional neural
networks to predict potential side effects induced by PPI
networks [61] and DDI networks [60, 62]. Researchers have
also constructed knowledge graphs through literature mining
[101]. Most of the papers using graph-based methods were
for pre-marketing ADE prediction because knowledge bases
regarding biomarkers, drug targets, disease indications, and
adverse effects are readily available.

As more clinical or observational databases become
available, researchers have transited from using a single
data source, for example, knowledge bases, towards com-
bining RWD in their analysis. For example, Kwak et al. [63]
predicted ADE signals via GNNs from a graph constructed
combining a knowledge base and EHR data. There were
several recent studies proposed to use graphs generated
from both knowledge bases and EHRs for safe medication
recommendations [105, 106, 109]. In [106], graph embed-
dings were combined with a memory network recommender
system. In [105], drug—ADE pairs were identified through
a link prediction task. In [109], an encoder-decoder atten-
tion-based model was proposed for sequential decision mak-
ing on drug selection in a multi-morbidity polypharmacy
situation. Additionally, the characteristics of RWD enabled
researchers to incorporate the temporality and sparsity of the
features into signal detection models [110, 111].
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Machine learning/deep learning frameworks demon-
strated improved performance in structure learning com-
pared with the baseline greedy search scoring strategy [18,
143, 144] for the identification of causal graph structures
with the highest score or probability. In the meantime, causal
inference methods were introduced to graph-based ML/DL
models to improve the explainability and generalizability of
those ML/DL models. For instance, Narendra et al. adopted
counterfactual reasoning for causal structural learning [145].
Lin et al. utilized a loss function based on Granger causality
to provide generative causal explanations for GNN models
[17]. Rebane et al. evaluated the temporal relevancy of medi-
cal events to interpret medical code-level feature importance
[107]. In a more recent paper, Rebane et al. incorporated
the SHAP (SHapley Additive exPlanations) framework to
provide more clinically appropriate global explanations in
addition to medical code-level explanations captured by
attention mechanisms [108].

While the advancement of ML/DL has enabled a plethora
of graph-based data mining studies in pharmacovigilance,
causality interpretation was still not explicitly discussed
in any of those papers. We cannot naively equate link pre-
diction to causal inference. This is not to say that exist-
ing knowledge bases are not causal graphs, thus existing
links may only be associative and have a different level of
confidence in terms of causality. Among all those papers
reviewed, only [17] had a clear causality evaluation. We
resort to the lack of causality interpretation to the shortage
of a graph-based benchmark dataset with causal components
in the domain of pharmacovigilance. Currently, most stud-
ies used SIDER [102, 103] or datasets integrating multiple
knowledge bases as the benchmark. In [112] for example, the
author used Pauwels’s dataset [57], Mizutani’s dataset [146],
and Liu’s dataset [58] as the benchmark datasets. The bench-
mark datasets currently prevailing lacked a causal compo-
nent, for example, a level of confidence for relationships. We
believe a benchmark dataset with causal components and/
or with integrated information from multiple sources could
significantly benefit the development of causally explainable
graph mining models.

3.4 Instrumental Variables

Estimation of causal relationships through an IV can adjust
for both observed and unobserved confounders. This is a big
advantage over methods such as stratification, matching, and
multiple regression methods, which only allow adjustment
for observed confounding variables. An IV is an additional
variable, Z, that is used in a regression analysis to evaluate
the causal effect of an independent variable X on a depend-
ent variable Y (Fig. 2). The assumption of Z to be a valid
IV is that (1) Z is correlated with the regressor X, (2) Z is
uncorrelated with the error term U, and (3) Z is not a direct
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Fig.2 Graph representations of relationships between X, Y, Z, and U
under instrumental variable assumptions

cause of outcome variable Y. Therefore, Z only influences
Y through its effect on X. However, IV-based methods also
suffer from criticism. First, different instruments will iden-
tify different subgroups and thus obtain different numerical
treatment effects. Another criticism is that one cannot rule
out “mild” violations of assumptions. Finally, an IV is con-
sistent but not unbiased.

Several pharmacovigilance studies used an IV to investi-
gate the adverse impact of certain medications. For example,
Brookhart et al. [15] used physician preference of a cycloox-
ygenase-2 inhibitor over non-selective non-steroidal anti-
inflammatory drugs as the I'V to assess the adverse effect of
cyclooxygenase-2 inhibitor use on gastrointestinal compli-
cations. Ramirez et al. [147] investigated the adverse effect
of rosiglitazone on cardiovascular hospitalization and all-
cause mortality using the facility proportion of patients tak-
ing rosiglitazone as the I'V. The study found an increased risk
for all-cause and cardiovascular mortality among patients
taking rosiglitazone vs those who were not. Groenwold et al.
[148] studied the effect of the influenza vaccine on mor-
tality as reported in many observational studies. The study
evaluated the usefulness of five IVs including a history of
gout, a history of orthopedic morbidity, a history of antacid
medication use, and general practitioner-specific vaccina-
tion rates in assessing the effect of influenza vaccination
on mortality adverse events. They found that these IVs did
not meet the necessary criteria because of their association
with the outcome. In the field of causal inference for phar-
macovigilance, IV-based methods have been overshadowed
by PSM and graph-based methods because of the difficulty
of finding a valid and unbiased IV that can serve as a rand-
omization factor.

Recently, a few studies have explored using machine
learning to improve the efficiency and fairness of IV learn-
ing from observational data. Hartford et al. [114] proposed
the DeeplV framework, an approach that trained deep neural
networks by leveraging IVs to minimize the counterfactual
prediction error. DeepIV had two prediction tasks: first, it
performed treatment prediction. In the second stage, DeeplV
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calculated its loss by integrating over the conditional treat-
ment distribution. The author claimed that DeeplV estimated
the causal effects by adopting the adapted loss function,
which helped to minimize the counterfactual prediction
errors. The proposed framework was also able to replicate
the previous IV experiment with minimal feature engineer-
ing. Singh et al. [119] proposed a general framework called
MLIV (machine-learned IVs) that allowed IV learning
through any machine learning method and causal inference
using IVs to be performed simultaneously. They showed
that their method significantly improved causal inference
performance through experiments from both simulation
and real-world datasets. McCulloch et al. [16] proposed
another framework for modeling the effects of IVs and other
explanatory variables using Bayesian Additive Regression
Trees (BARTS). Their results showed that when nonlinear
relationships were present, the proposed method improved
the performance dramatically compared with linear specifi-
cations. While these new advancements in [V learning have
not yet been adopted in pharmacovigilance studies, they
created new potentials when integrating with other causal
inference study designs, for example, algorithmic matching
[149], Mendelian randomization [113], and counterfactual
prediction [118].

4 Issues with Machine Learning and Why
Causality Matters

Machine learning/deep learning algorithms are good at iden-
tifying correlations but not causation. In many use cases,
correlation suffices. However, this is not the case with
pharmacovigilance, or generally speaking, the healthcare
domain. Without evaluation of causality, ML/DL algorithms
suffer from a myriad of issues: generalizability, explainabil-
ity, and fairness. The ML/DL research society has directed
increasing attention on improving generalizability, explain-
ability, and fairness in recent years. As discussed in previ-
ous paragraphs, ML/DL has been integrated with traditional
causal inference paradigms to enhance the performance of
traditional paradigms. The opposite is fitting ML/DL into a
causal inference paradigm can enhance the generalizability,
explainability, and fairness of ML/DL models. Addressing
these issues is critical to providing high-quality evidence for
pharmacovigilance if machine learning were to be employed
for signal detection.

4.1 Generalizability

Generalizability is the ability of a machine learning model
trained on a sample dataset to perform on unseen data. Gen-
eralizability is important for the wide adoption of machine
learning models. Recent work utilized cross-validation

[150, 151] or eternal validation [152, 153] to examine the
generalizability of their proposed machine learning model.
More recently, anchor regression was proposed to deal with
conditions when training data and test data distributions
differed by a linear shift [154]. Anchor regression makes
use of external variables to modify the least-squares loss. If
anchor regression and least-squares provide the same answer
(“anchor stability’), the model can be considered invariant
under certain distributional changes. Comparing different
ML/DL methods using ensemble methods or robust feature
selection can avoid overfitted models and thus secure model
generalizability [155]. In recent work, we observed that the
trend in pharmacovigilance is to employ more than one type
of data source [64—68] and to compare/combine multiple
analytical approaches [44, 69, 70]. We also observed that
causal inference models were adopted for feature selection.
For example, Rieckmann et al. presented the Causes of Out-
come Learning approach, which fitted all exposures from a
causal model and then used ML models to identify combi-
nations of exposures responsible for an increased risk of a
health outcome [156]. We foresee that data source integra-
tion, new analytical approaches (e.g., anchor regression to
address the data shift issue), and causal feature selection will
benefit the design of a generalizable ML/DL framework for
pharmacovigilance.

4.2 Explainability

Explainable Al (XAI) refers to ML/DL models with the results
or analytical process understandable by humans, in contrast
to the “black box” design where researchers cannot explain
why a model arrives at a specific output [157]. This is espe-
cially important for domains such as healthcare that require an
understanding of the causal relationships between features and
outcomes for decision support. Several ML/DL algorithms are
inherently “explainable” using feature importance, for exam-
ple, Random Forest, logistic regression, and causality explana-
tion do not equate to feature importance or regression coeffi-
cients. As in the case of [107, 108], the authors utilized feature
weight to interpret the contribution of each medical code to
the predicted ADE outcome. However, a causality explanation
between medical codes and ADE incidence cannot be estab-
lished. Similarly, we cannot naively equate link prediction to
a causality explanation although several existing graph-based
XAI works were framed as a link prediction task, for example,
prediction of potential PPI, DDI, or drug—ADE link given a
medication [13, 101, 102, 104, 112]. Therefore, integration
of causality evaluation is much needed to improve the power
of XAI models. For example, the examples below integrated
three different causal inference approaches to enhance the
explainability of drug—event relationships for ADE detection:
[17] (Granger causality), [145] (counterfactual reasoning), and
[158] (combination of a transformer-based component with a
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do-calculus causal inference paradigm). The three causal infer-
ence approaches discussed above have not been extensively
used for pharmacovigilance tasks, thus we did not discuss them
in previous sections. However, future researchers might be
able to integrate them with ML/DL models to enhance model
explainability. Additionally, as we have discussed earlier in
Sect. 3.3, a benchmark dataset (e.g., PPI, DDI, or drug—ADE
network) with causal relationships between graph features,
for example, level of confidence, can significantly benefit the
development of XAI models for pharmacovigilance studies.

4.3 Fairness

Machine learning fairness is a recently established area
that studies how certain biases (e.g., race, gender, dis-
abilities, and sexual or political orientation) in the data and
model affect model predictions of individuals. This issue
has caught more attention under the current pandemic, as
the health disparity issue was under public scrutiny [159].
Racial disparity is also a significant issue in ADE detec-
tion. As pointed out in a review paper, 27 out of 40 phar-
macovigilance studies reviewed demonstrated the presence
of a racial or ethnic disparity [160]. Therefore, Du et al.
[161] proposed to adopt a kernel re-weighting mechanism
to achieve the global fairness of the learned model. Several
ML/DL fairness studies have leveraged feature importance
to understand which feature contributes more or less to the
model disparity [162, 163]. A recent study proposed to
decompose the disparity into the sum of contributions from
fairness-aware causal paths linking sensitive features and
the predictions, on a causal graph [159]. The same group of
researchers also proposed a Federated Learning framework
that balanced algorithmic fairness and performance consist-
ency across different data sources [164]. The work discussed
above, however, was applied only to datasets and tasks in the
general healthcare domain. We have not found any work on
machine learning fairness in the pharmacovigilance domain
that pointed to a new direction worthy of exploration in the
future. We anticipated that the new approaches introduced
in [159, 161-164] can be extended to pharmacovigilance
studies as well. Furthermore, while causal inference para-
digms have not been utilized to address the machine learning
fairness issue, we anticipated that the integration of causal
inference paradigms with machine learning algorithms may
also be a potential direction.

5 Current Challenges, Trends, and Future
Directions

To summarize the discussion from the above sections, we

found that missing data and data quality posed significant
issues for currently dominant pharmacovigilance data
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sources. Researchers have attempted to address these issues
through (1) integration of multiple data sources, (2) devel-
opment of analytical approaches to impute missing data and
mitigate other data issues (e.g., unbalanced confounder dis-
tribution, biased samples), and (3) development of novel
estimators that allow estimation through incomplete or
biased data. New methodology advancements in machine
learning, causal inference, and especially, the integration of
the two have accelerated the progress in each of the three
directions above. On the one hand, the adoption of machine
learning has facilitated the efficient implementation of tra-
ditional causal inference paradigms. On the other hand,
the adoption of causal inference paradigms has facilitated
our understanding and thus addresses current issues with
machine learning models.

High rates of underreporting and missing covariate
information in SRS have undermined the power of SRS
for pharmacovigilance [165]. While regulatory approaches
were previously proposed to improve reporting, current
approaches to address the under-reporting issue were from
two directions:

1. Incorporating multiple data sources or data types to mine
under-reported cases from additional data sources. As
RWD becomes more available for pharmacovigilance,
signals from RWD can complement under-estimated
signals using SRS alone. Zhan et al. imputed the ADE
cases using specific medicines for treating the ADE as
indicators [166]. McMaster et al. developed a machine
learning model to detect ADE signals using the Inter-
national Classification of Diseases, 10th Revision codes
[76]. However, their proposed approach only accounted
for 44.5% of all ADE cases. Therefore, addressing the
missing value in RWD is also unavoidable and opens
new research opportunities. As quantitative clinical
measurements can be indicative of ADEs, new progress
in missing values imputation for quantitative clinical
measurements [167-169] could potentially address
ADE under-reporting issue in RWD. However, instead
of imputing missing values, the author in [168] revealed
that when clinical measurements have a high missing
rate, the number of times they were taken by one patient
is ranked as more informative than looking at their
actual values.

2. Using machine learning to estimate under-reporting or
predict and impute under-reported cases. Recent pro-
gress in machine learning has enabled the estimation of
AE under-reporting rates for data quality management
[170, 171]. Traditionally, missing data imputation was
conducted statistically via unconditional mean imputa-
tion, k-Nearest Neighbor imputation, multiple imputa-
tion, or regression-based imputation [172, 173]. Here,
we only highlighted a few more recent studies incor-
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porating machine learning approaches. Nestsiarovich
et al. [174] proposed to use supervised machine learning
(classification) to impute self-harm cases that were sig-
nificantly under-reported in EHRs. They demonstrated
that using the combined coded and imputed cohort, the
power of their analysis could be enhanced. Another
work by Sechidis et al. [175] presented solutions using
the m-graph, a graphical representation of missingness
that incorporated a prior belief of under-reporting. They
demonstrated an approach to correct mutual information
for under-reporting by examining independence proper-
ties observed through the m-graph. Their work repre-
sented a recent interest in the field of machine learning
towards PU learning [176], i.e., learning from positive
and unlabeled data. The assumption of PU learning is
that each unlabeled data point could belong to either the
positive or negative class. Therefore, potential under-
reported cases could be estimated from unlabeled data.
Alternatively, the anchor variable framework may be
adopted to reduce dependency on gold-standard labels
for unlabeled cases [177—179]. These new directions in
machine learning could provide potential solutions to
alleviate the under-reporting issue.

In terms of machine learning for traditional causal infer-
ence paradigms, we observed that new advancements in
PSM and IV learning through machine learning-causal
inference integration have not yet been adopted in pharma-
covigilance studies. However, theoretical advancements or
successful adoptions in other domains demonstrated new
potentials for future adoption of the integrated paradigm
in the pharmacovigilance domain. For graph-based causal
inference, while both graph databases and graph mining
methods for pharmacovigilance are booming, causal inter-
pretations from the graphs as well as the algorithm outputs
are much needed, yet currently missing, for most of the
studies. Even the currently prevailing benchmark datasets
were mostly association-based. Relationships in knowledge

Fig.3 Year and continent
distribution of 19 papers most
relevant to the intersection of
machine learning, causal infer-
ence, and pharmacovigilance 4
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bases may represent a certain level of causality but the level
of confidence for a causal relationship was not represented
explicitly. Therefore, we also recommend future researchers
be very careful about the level of causality represented by
graph edges when constructing graph databases.

Incorporating causal inference paradigms to address
currently prominent machine learning issues in pharma-
covigilance is also considered a promising future direction.
It is especially worth exploration for those less utilized (in
pharmacovigilance tasks) causal study designs, for exam-
ple, Granger causality, counterfactual reasoning, and do-
calculus. In addition, there is a scarcity of exploration of
addressing the machine learning fairness issue through the
incorporation of causal paradigms, and thus may be a new
direction for future pharmacovigilance studies.

Finally, to examine the distribution and trend in this
research area, we considered 19 publications to fall into
the intersection of machine learning, causal inference, and
pharmacovigilance [86-91, 101-112, 158]. The breakdown
of the 19 papers by year and country is shown in Fig. 3. The
earliest paper was published in 2014 and utilized knowledge
bases to predict potential ADEs. We observed a trend that
older papers mostly use databases such as knowledge bases
or social media to predict or monitor, while more recent
papers utilized RWD, SRS, or a combination of multiple
databases. North America was dominant in this research area
followed by Europe. This may be owing to the availability
of datasets for analysis.

6 Conclusions

In this paper, we reviewed (1) data sources and tasks for
pharmacovigilance, (2) traditional causal inference para-
digms and integration of machine learning into traditional
paradigms, and (3) issues with machine learning, and
how causal designs could mitigate current issues. First,
we found that most existing data sources and tasks for
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pharmacovigilance were not designed for causal inference.
In the meantime, low data quality undermined the ability
to evaluate causal relationships. As establishing a causal
relationship is important in pharmacovigilance, research on
enhancing data quality and data representation will be an
imperative step towards high-quality study for pharmacovig-
ilance. Second, we observed that pharmacovigilance was
lagging in adopting machine learning-causal inference inte-
grated models, which pointed to some missed opportunities.
For example, machine learning-based PSM and IV learning
can be further developed and refined for pharmacovigilance
tasks. Finally, we recognized that attempts have been made
to address currently prominent issues with correlation-based
ML/DL models, especially through the incorporation of
causal paradigms. Therefore, we anticipated that the phar-
macovigilance domain can benefit from the progress in the
ML/DL field, especially through the integration of machine
learning and the causal inference paradigm.
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