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Abstract
Monitoring adverse drug events or pharmacovigilance has been promoted by the World Health Organization to assure the 
safety of medicines through a timely and reliable information exchange regarding drug safety issues. We aim to discuss the 
application of machine learning methods as well as causal inference paradigms in pharmacovigilance. We first reviewed 
data sources for pharmacovigilance. Then, we examined traditional causal inference paradigms, their applications in phar-
macovigilance, and how machine learning methods and causal inference paradigms were integrated to enhance the perfor-
mance of traditional causal inference paradigms. Finally, we summarized issues with currently mainstream correlation-based 
machine learning models and how the machine learning community has tried to address these issues by incorporating causal 
inference paradigms. Our literature search revealed that most existing data sources and tasks for pharmacovigilance were not 
designed for causal inference. Additionally, pharmacovigilance was lagging in adopting machine learning-causal inference 
integrated models. We highlight several currently trending directions or gaps to integrate causal inference with machine 
learning in pharmacovigilance research. Finally, our literature search revealed that the adoption of causal paradigms can 
mitigate known issues with machine learning models. We foresee that the pharmacovigilance domain can benefit from the 
progress in the machine learning field.

Key Points 

Most existing data sources and tasks for pharmacovigi-
lance were not designed for causal inference.

Pharmacovigilance was lagging in adopting machine 
learning-causal inference integrated models.

Adoption of causal paradigms can mitigate known issues 
with machine learning models, which could further 
enhance the use of machine learning in pharmacovigi-
lance tasks.

1  Introduction

The World Health Organization has been promoting phar-
macovigilance programs to assure the safety of medicines 
through a timely and reliable information exchange regard-
ing drug safety issues, for example, adverse drug events 
(ADEs) [1]. An ADE is an unintended response caused by 
a medicine and is harmful [2]. For in-patient stays, 16.9% 
of the patients experienced ADEs with 6.7% categorized as 
serious and 0.3% as fatal [2, 3]. While medication errors 
(e.g., wrong/missing doses, wrong administration tech-
niques, equipment failure) and prescription of multiple 
medications were considered important risk factors of ADEs 
[4, 5], there are still many incidences of ADEs due to unde-
tected signals during clinical trials [3]. This may be due to 
limited sample sizes and stringent patient eligibility criteria 
in pre-approval studies [3]. Therefore, pharmacovigilance 
is important to the safe use of medicines. In this review, we 
focus on the tasks of ADE detection and monitoring (includ-
ing pre-clinical prediction) in the pharmacovigilance pro-
gram lifecycle because those tasks were mostly likely to be 
achieved with machine learning and causal inference. While 
we have narrowed down our scope to focus on the tasks of 
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ADE detection and monitoring in the pharmacovigilance 
program lifecycle, the methodologies and examples of causal 
inference discussed in this paper could apply to each phase 
of the pharmacovigilance program.

Currently, major data sources for pharmacovigilance 
include spontaneous reporting systems (SRS), real-world 
data (RWD) such as electronic health records (EHRs), social 
media, biomedical literature, and knowledge bases [3]. Each 
data source has unique advantages and biases, which we 
discuss in the following sections. While data mining was 
applied to those data sources to enhance the efficiency of 
pharmacovigilance, the level of evidence from identified sig-
nals depended heavily on the chosen data source as well as 
the study design. Overall, we identified the following three 
main tasks in the field of pharmacovigilance.

1.	 Drug–event pair extraction. For this task, we usually use 
either structured data from EHRs [6, 7] or the natural 
language processing (NLP)-based machine learning/
deep learning (ML/DL) method to extract drug–event 
co-occurrence pairs from the unstructured texts [8–10]. 
Note that those pairs only indicate a potential asso-
ciative “relationship” between the drug and the event 
and cannot be considered a “confirmed” ADE yet. The 
symptoms experienced might be caused by a variety of 
medical conditions other than the ADE. Thus, we still 
need further proof using other statistical analyses or data 
sources.

2.	 Adverse drug event detection. For traditional pharma-
covigilance, the most important task is to detect ADEs 
for these post-marketing drugs in time. The ADE detec-
tion task aims to identify and confirm ADEs from “real-
world” medication usage information as early as pos-
sible. We consider ADE detection as a task providing 
a higher level associative relationship compared with 
disproportionality or NLP-based drug–event co-occur-
rence pair extraction. However, ADE detection is only 
associative without further confirmation if using SRS 
owing to the limitation of the data source (no control 
group can be matched, and no causality evaluation can 
be performed). Adverse drug event detection using an 
RWD database, however, can be evaluated for causality 
if a proper study design was adopted.

3.	 Adverse drug event prediction. Adverse drug event pre-
diction, or ADE discovery, could be conducted only if 
the event data have accumulated to a certain amount. 
Thus, there was a time difference from drug launch to 
ADE prediction. Adverse drug event prediction focuses 
on discovering potential ADEs before being observed. 
The predictive power (forecast future events from data 
generated previously) of many ML/DL models made 
ADE prediction possible. Using literature and knowl-
edge bases, researchers can predict ADEs at the pre-

marketing stage. After launching and as more data 
accumulate, researchers can use RWD and social media 
data for post-marketing pharmacovigilance. While ADE 
prediction may not only depend on causal relationships, 
establishing causal relationships can facilitate feature 
selection and greatly improve model performance and 
generalizability.

Machine learning or a causal inference paradigm sepa-
rately has been adopted for many pharmacovigilance stud-
ies [11–15]. The integration of machine learning into a 
causal inference paradigm was also studied, although 
mostly theoretically [16–20]. However, the relationship 
between machine learning and a causal inference para-
digm in the context of pharmacovigilance has not been 
extensively examined. The goal of causal inference is to 
explain what factors lead (are influential) to the outcome. 
The emphasis is on investigating and explaining the role 
of individual factors in the outcome. On the contrary, most 
machine learning tasks emphasize the outcome and aim 
to predict whether an outcome will occur in the future. 
Weights in machine learning models are not equivalent to 
effect sizes in causal inference [21]. Pharmacovigilance 
involves a series of tasks: (1) predicting the outcome 
using drug exposure and a set of covariates and (2) under-
standing the causal effects between drug exposure and the 
outcome. The complicated nature of pharmacovigilance 
requires researchers to choose methods and study designs 
wisely in order to answer the proposed question (predic-
tion or explanation). However, ideally, machine learning 
and causal inference could be combined to enhance both 
the predictive and explanatory power of a single study. 
Therefore, this article aims to discuss the application 
of machine learning and a causal inference paradigm in 
pharmacovigilance. Pharmacovigilance tasks, machine 
learning, and causal inference paradigms have intertwined 
relationships (Fig. 1). In the following sections, we dis-
cuss (1) data sources for pharmacovigilance, common 
methods (traditional or machine learning) used to analyze 
data from each data source, and the advantages and biases 
of each data source; the search query for this section was 
as follows: data source name (e.g., spontaneous reporting 
system, SRS, EHRs, data registry) + “machine learning” 
+ “adverse event/adverse effect/side effect”. (2) Integra-
tion of machine learning into traditional causal inference 
paradigms (with examples of studies in the pharmaceuti-
cal industry); the search query for this section was: as 
follows: causal inference paradigm name (e.g., naranjo 
score, propensity score matching, instrumental variable) 
+ “adverse event/adverse effect/side effect” + “machine 
learning/artificial intelligence” (optional). (3) Issues with 
machine learning and how a causal paradigm can address 
those issues; search query for this section was: “machine 
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learning/artificial intelligence” + “generalizability/
generalizable/explainability/explainable/fairness/bias” 
+ “adverse event/adverse effect/side effect” (optional). 
Because of the length limit of the paper, we were not able 
to include all papers identified from the above queries. 
However, we selected the most recent papers representa-
tive of the data source/methods/combination of methods 
to reveal current trends of machine learning in causal 
inference with an application in pharmacovigilance. 

2 � Data Sources for Pharmacovigilance

2.1 � Spontaneous Reporting System

The most traditional dataset for ADE detection is the SRS 
database, such as the FDA Adverse Event Reporting Sys-
tem (FAERS) [22] and WHO’s VigiBase [23]. Tradition-
ally, statistically based methods such as disproportionality 
measures and multivariate analyses were used to analyze 
SRS data [24]. Recently, machine learning methods such 

as association rule mining [25, 26], clustering [11], graph 
mining [12], and the neural network [27] were also applied 
to SRS data. However, those methods were only able to 
detect ‘signals of suspected causality’ [27, 28]. Moreover, 
several studies have revealed limitations of the SRS, includ-
ing reporting bias (e.g., underreporting, stimulated report-
ing), the lack of a population denominator, poor documen-
tation quality [28, 29], and lower reporting rates for older 
products [30–32]. Important details required for a causality 
assessment may not be captured by the SRS, for example, 
comorbidities and concomitant medications. This can lead 
to background ‘noise’ or may generate false-positive signals 
[33]. Therefore, the causality of the detected signals still 
needs further validation from other data sources [34].

2.2 � Real‑World Data

Real-world data containing both structured and unstructured 
data, for example, insurance claims, EHRs, and registry 
databases offer new opportunities for pharmacovigilance as 

Fig. 1   Relationships between pharmacovigilance data sources, ana-
lytical approaches, pharmacovigilance tasks, and causal inference 
paradigms. Each data source is commonly analyzed by specific ana-
lytical approaches depending on the characteristics of data in those 
data sources. Each pharmacovigilance task is also associated with 

specific analytical approaches. Causal inference paradigms are inte-
grated with different analytical approaches and applied to pharma-
covigilance tasks. ADE adverse drug event, LSTM long short-term 
memory, NLP natural language processing, RNN recurrent neural net-
work, RWD real-world data, SVM support vector machine
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they provide a longer duration of follow-up, better ascer-
tainment of exposure and outcomes, and a more complete 
collection of confounding variables such as comorbidities 
and co-prescribed medications [35]. We could also iden-
tify comparison groups in RWD databases using matching 
techniques. However, the timeliness of the RWD collection 
has been an issue with a claim or registry database [30]. 
Electronic health records were considered a better choice in 
terms of data timeliness. However, data quality issues such 
as non-random missingness and discrepancies across data-
bases also made rapid utilization of RWD from EHRs dif-
ficult [30]. Despite the limitations, RWD databases enabled 
a transition from traditional “passive” surveillance toward 
“active” surveillance, and thus received considerable atten-
tion in the field of pharmacovigilance. Notably, RWD was 
superior as they offers longitudinal data for each subject. 
Therefore, increasing numbers of studies explored temporal 
relation extraction [36] using RWD to increase the confi-
dence level of detected signals.

There has been a progression in the better utilization 
of RWD for observational studies in pharmacovigilance 
including: (1) development of common data models [37] 
such as the Observational Medical Outcomes Partnership 
[38–40] to facilitate rapid data extraction from unstruc-
tured RWD; (2) traditional epidemiologic methods (or 
slightly modified variants) adapted for signal detection, 
including a self-controlled case series study [41], a self-
controlled cohort analysis [42], a tree-based scan statistic 
[6, 7], and a prescription symmetry analysis [43]; and (3) 
new ML/DL and approaches applied to a temporal analysis 
[36] and relational learning [44]. Patient event-level or 
code-level embedding was also calculated for downstream 
predictive modeling using RWD [45].

2.3 � Social Media and Biomedical Literature

Social media such as social networks, health forums, 
question-and-answer websites, and other types of online 
health information-sharing communities is another resource 
containing potentially useful and most timely information 
for pharmacovigilance. Biomedical literature, includ-
ing research articles, case reports, and drug labels, was 
considered a more reliable source of unstructured data 
for pharmacovigilance compared with social media data. 
Association rule mining was commonly used for extrac-
tion of drug–event pair or drug–drug interaction from social 
media and literature [46–48]. Advancement in NLP has 
enabled relation extraction of drug–event pairs from the 
above-mentioned unstructured data sources for pharma-
covigilance [49–53]. Advanced machine learning such as 
supervised learning was also applied to extract ADEs from 

social media and biomedical literature. For example, Patki 
et al. [54] used supervised machine learning algorithms to 
classify sentences into two classes: one with ADE mentions 
and another without, before inference of the experienced 
ADE. Several shared tasks based on social media and bio-
medical text data have significantly accelerated develop-
ment for ADE detection using these two data sources, for 
example, Drug–Drug Interaction Extraction 2011 challenge 
task [55] and Social Media Mining for Health (SMM4H) 
shared task [56].

2.4 � Knowledge Bases

With the development of ML/DL techniques, particularly 
on graph mining, knowledge bases have become a rising 
data source for pharmacovigilance study, especially for the 
pre-marketing phase. Drug chemical databases [57], drug 
target databases [58] (including a side effects database [59]), 
biomedical pathway databases [60], protein interaction data-
bases [61], and drug interaction databases [62] were some 
of the most used knowledge bases in pharmacovigilance 
studies. Logistic regression, Naive Bayes, k-Nearest Neigh-
bor, Decision Tree, Random Forest, and Support Vector 
Machine were commonly used algorithms for the prediction 
of unknown ADEs using knowledge bases. The algorithms 
were always compared with each other given a specific data-
set before the best-performing algorithm was selected [57, 
58]. Recent advancement in Graph Neural Network (GNN) 
has led to an increasing interest in using knowledge bases for 
ADE prediction as GNN has achieved superior performance 
compared with other machine learning algorithms. In more 
recent works, the graph structures of knowledge bases were 
integrated with RWD to enhance the causal interpretability 
of ADE detection [63].

Each of these data sources has its own advantage/bias and 
is suitable for different pharmacovigilance tasks at different 
phases (pre-marketing or post-marketing). We summarized 
this information in Table 1. Even though we discussed each 
of the data sources separately in Table 1, we observed that 
the trend in pharmacovigilance is to employ more than one 
type of data source [64–68]. We also observed a trend to 
combine multiple analytical approaches, for example, [44] 
combined sequence analysis with supervised learning, [69] 
used NLP to extract features from free text, which were later 
used in supervised learning, and [70] proposed a novel syn-
thesis of unsupervised pretraining, representational compo-
sition, and supervised machine learning to extract relational 
information from the biomedical literature. Both data source 
integration and analytical approach synthesis will facilitate 
the design of a generalizable and causally explainable ML/
DL framework.
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3 � Traditional Causal Inference Paradigm 
and Integration with Machine Learning

Most pharmacovigilance studies are observational studies 
because of the nature of the data used for analysis. However, 
observational studies have only limited ability to prove cau-
sality, i.e., probabilities under conditions (adverse events) 
that are changed and induced by treatments or external 
interventions [80]. Conducting causal inference for obser-
vational studies required either randomization or a rigorous 
study design [81, 82]. In most cases of long-term pharma-
covigilance, randomized trials are not feasible. Therefore, 
observational studies became a more favorable approach for 
this task. However, there are many challenges in both the 
design and analysis stages to draw causal conclusions from 
retrospective observational studies. The primary challenge 
is to distinguish between causal and associative relation-
ships with observational data in the presence of confounders 
(i.e., factors related to both the exposure and the outcome) 
and colliders (i.e., factors influenced by both the exposure 
and the outcome). While a multivariable regression analysis 
was often used to adjust for potential confounders, causal 
effects cannot be directly estimated. Furthermore, temporal 
relationships are to be captured and assessed in observa-
tional studies before causal relationships can be established 
[83, 84]. Hill’s criteria (i.e., 1. Strength, 2. Consistency, 3. 
Specificity, 4. Temporality, 5. Biological gradient, 6. Plau-
sibility, 7. Coherence, 8. Experiment, 9. Analogy between 
exposures and outcome) are often referenced as the standard 
definition for causality in epidemiology [85]. It has guided 
the development of many causal inference models, statistical 
tests, as well as machine learning tasks for the evaluation 
of causality.

In this section, we discuss four causal inference para-
digms in the domain of pharmacovigilance: (1) causality 
assessment scales, (2) propensity score matching (PSM), 
(3) graph-based causal inference, and (4) instrumental 
variables (IVs). Our discussion focuses on how ML/
DL was integrated into the traditional causal inference 
methods. We also discuss current progress in pharma-
covigilance that has adopted causal inference-machine 
learning integration. Table 2 shows the relevant papers 
we reviewed.

3.1 � Causality Assessment Scales

Various methods are available to assess the causal rela-
tionship between a drug and an ADE, which are based on 
three main approaches: (1) expert judgment-based World 
Health Organization-Uppsala Monitoring Centre system; 
(2) algorithm-based Naranjo causality assessment method; 
and (3) probabilistic-based Bayesian Adverse Reactions 

Diagnostic Instrument (BARDI) [120]. The World Health 
Organization-Uppsala Monitoring Centre system is rela-
tively easy to implement, it is highly dependent on an indi-
vidual expert’s judgment, thus suffering from poor reproduc-
ibility. The Naranjo algorithm is also simple and has good 
reproducibility. Its disadvantages include low sensitivity for 
the ‘uncertain’ cases and therefore a low detection rate for 
certain ADEs. It is also not valid for children, critically ill 
patients, drug toxicities, and drug–drug interaction (DDI) 
detection. The Bayesian approach is regarded as the most 
reliable approach, its complex and time-consuming nature 
limits its use in clinical routine practice [120].

We found that the relationships between machine learning 
and causality assessment scales are three-fold: (1) causality 
assessment scales serve as outcome labels in machine learn-
ing models that predict causality of extracted drug–ADE 
pairs. For example, in studies [86–88], researchers have uti-
lized the World Health Organization-Uppsala Monitoring 
Centre to create gold-standard labels of causal drug–ADE 
pairs, which were later used for training supervised machine 
learning models to perform causal classifications on the 
identified drug–ADE pairs. Likewise, Rawat et al. [90] con-
structed a multi-task joint model using unstructured text in 
EHRs, using physicians’ annotation as the gold standard. 
These efforts demonstrated that machine learning algorithms 
have some ability to predict the value of a report from SRS 
or content from social media for causal inference. (2) Cau-
sality assessment scales serve as features in machine learn-
ing models that predict causality. A group of researchers 
from Roche developed a model called MONARCSi with 
nine features capturing important criteria from Naranjo’s 
scoring system, Hill’s criteria, and internal Roche safety 
practices [89]. Their model achieved a moderate sensitivity 
and high specificity with high positive and negative predic-
tive values. However, this approach cannot be fully auto-
mated, restricting its potential for future application. Thus, 
automated tools for extracting features capturing important 
criteria from Naranjo’s scoring system or Hill’s criteria are 
desirable. (3) Machine learning methods were employed to 
extract Naranjo score features and improve the efficiency 
of causality assessment score calculations. As discussed 
above, the inability to automate the extraction of Naranjo 
score features restricted the adoption of the proposed deci-
sion support system by Roche. Recent work by Rawat et al. 
[90, 91] offered solutions to this limitation. In [90], they 
formulated Naranjo questions as an end-to-end question-
answer task. They used Bidirectional Long short-term mem-
ory (BiLSTM) to predict the scores for a subset of Naranjo 
questions. Later in [91], they used Bidirectional Encoder 
Representations from Transformers (BERT) to extract rel-
evant paragraphs for each Naranjo question and then used 
a logistic regression model to predict the Naranjo score for 
each drug–ADE pair. To sum up, with the availability of 



464	 Y. Zhao et al.

Ta
bl

e 
1  

D
at

a 
so

ur
ce

s f
or

 p
ha

rm
ac

ov
ig

ila
nc

e,
 a

na
ly

tic
al

 a
pp

ro
ac

he
s, 

ad
va

nt
ag

es
, a

nd
 b

ia
se

s

A
na

ly
tic

al
 a

pp
ro

ac
he

s
Ph

ar
m

ac
ov

ig
ila

nc
e 

ta
sk

s
A

dv
an

ta
ge

s a
nd

 b
ia

se
s

Sp
on

ta
ne

ou
s r

ep
or

tin
g 

sy
st

em
A

ss
oc

ia
tio

n 
ru

le
 m

in
in

g 
[2

5,
 2

6]
D

ru
g–

ev
en

t p
ai

r e
xt

ra
ct

io
n 

[1
1]

A
D

E 
de

te
ct

io
n 

[1
2,

 2
5–

28
, 3

1,
 3

2]
A

D
E 

pr
ed

ic
tio

n 
(p

os
t-m

ar
ke

tin
g)

 [7
1,

 7
2]

A
dv

an
ta

ge
s:

1.
 L

ar
ge

 v
ol

um
e 

of
 d

at
a 

w
or

ld
w

id
e.

 C
re

at
e 

po
te

nt
ia

ls
 fo

r m
ac

hi
ne

 
le

ar
ni

ng
 m

od
el

s t
o 

be
 tr

ai
ne

d
2.

 P
ro

vi
de

 o
th

er
 re

la
te

d 
in

fo
rm

at
io

n 
su

ch
 a

s d
em

og
ra

ph
ic

 a
nd

 in
di

ca
-

tio
n 

da
ta

3.
 M

or
e 

eff
ec

tiv
e 

at
 d

et
ec

tin
g 

ra
re

 A
D

Es
4.

 P
ub

lic
ly

 a
cc

es
si

bl
e

B
ia

se
s:

1.
 N

o 
po

pu
la

tio
n 

de
no

m
in

at
or

 w
ho

 ta
ke

s t
he

 m
ed

ic
at

io
ns

. C
ou

ld
 n

ot
 

ca
lc

ul
at

e 
in

ci
de

nc
e 

ra
te

s o
f A

D
Es

. L
im

ite
d 

ab
ili

ty
 to

 p
ro

vi
de

 c
au

sa
l 

ev
al

ua
tio

n
2.

 S
uff

er
 fr

om
 u

nd
er

-r
ep

or
tin

g 
an

d 
sti

m
ul

at
ed

 re
po

rti
ng

. M
ay

 c
au

se
 

bi
as

 in
 m

ac
hi

ne
 le

ar
ni

ng
3.

 L
ow

er
 re

po
rti

ng
 ra

te
s f

or
 o

ld
er

 p
ro

du
ct

s
4.

 M
ay

 h
av

e 
du

pl
ic

at
e 

re
po

rts
5.

 R
ep

or
te

rs
 h

av
e 

di
ve

rs
e 

ba
ck

gr
ou

nd
, s

uc
h 

as
 p

ha
rm

ac
eu

tic
al

s c
om

-
pa

ni
es

, p
hy

si
ci

an
s, 

pa
tie

nt
s, 

an
d 

la
w

ye
rs

, w
hi

ch
 m

ay
 p

os
e 

ch
al

le
ng

es
 

in
 d

at
a 

st
an

da
rd

iz
at

io
n.

 M
ay

 u
nd

er
m

in
e 

m
ac

hi
ne

 le
ar

ni
ng

 m
od

el
 

tra
ns

po
rta

bi
lit

y
6.

 It
 w

ill
 ta

ke
 a

 lo
ng

 ti
m

e 
fo

r d
at

a 
co

lle
ct

io
n,

 th
us

 th
er

e 
m

ay
 b

e 
a 

de
la

y 
in

 d
et

ec
tio

n 
of

 A
D

Es

D
is

pr
op

or
tio

na
lit

y 
[2

7,
 2

8,
 3

1,
 3

2]
N

et
w

or
k 

an
al

ys
is

 [1
2]

C
lu

ste
rin

g 
[1

1]
SV

M
, B

ay
es

ia
n 

cl
as

si
fie

r, 
de

ci
si

on
 tr

ee
 a

nd
/o

r R
an

do
m

 F
or

es
t [

71
, 

72
]

R
W

D
 (E

H
R

s a
nd

 r
eg

ist
ri

es
)

D
is

pr
op

or
tio

na
lit

y 
[6

, 7
]

D
ru

g–
ev

en
t p

ai
r e

xt
ra

ct
io

n 
[6

, 7
, 7

3]
A

D
E 

de
te

ct
io

n 
[3

6,
 4

1–
44

, 6
4,

 7
4]

A
D

E 
pr

ed
ic

tio
n 

(p
os

t-m
ar

ke
tin

g)
 [6

3,
 7

5]

A
dv

an
ta

ge
s:

1.
 P

ro
vi

de
s a

 p
op

ul
at

io
n 

de
no

m
in

at
or

 w
ho

 h
as

 ta
ke

n 
th

e 
sa

m
e 

m
ed

ic
a-

tio
ns

, w
hi

ch
 e

na
bl

es
 a

do
pt

io
n 

of
 st

ud
y 

de
si

gn
s f

or
 c

au
sa

l e
ffe

ct
 

es
tim

at
io

n
2.

 T
he

 d
at

a 
qu

al
ity

 in
 w

el
l-c

ur
at

ed
 R

W
D

 d
at

ab
as

es
 is

 b
et

te
r t

ha
n 

SR
S

3.
 L

es
s d

up
lic

at
ed

 a
nd

 m
is

si
ng

 d
at

a 
in

 w
el

l-c
ur

at
ed

 R
W

D
 d

at
ab

as
es

4.
 L

es
s a

dv
er

se
 e

ve
nt

 u
nr

ep
or

te
d 

ra
te

5.
 R

W
D

 d
at

ab
as

es
 c

ou
ld

 p
ro

vi
de

 m
or

e 
co

m
pl

et
e 

cl
in

ic
al

 in
fo

rm
a-

tio
n 

su
ch

 a
s l

ab
 te

st 
re

su
lts

. P
ro

vi
de

 b
et

te
r c

au
sa

l i
nf

er
en

ce
 a

bi
lit

y 
co

m
pa

re
d 

w
ith

 S
R

S
B

ia
se

s:
1.

 L
es

s s
am

pl
e 

si
ze

 th
an

 S
R

S.
 M

ay
 d

im
in

is
h 

pr
ed

ic
tiv

e 
po

w
er

 o
f 

m
ac

hi
ne

 le
ar

ni
ng

 m
od

el
s

2.
 E

H
R

s c
on

ta
in

 p
ro

te
ct

ed
 h

ea
lth

 in
fo

rm
at

io
n 

of
 th

e 
pa

tie
nt

s. 
Th

us
, 

it 
co

ul
d 

no
t b

e 
op

en
ed

 to
 th

e 
pu

bl
ic

, a
ls

o 
di

ffi
cu

lt 
to

 sh
ar

e 
be

tw
ee

n 
in

sti
tu

tio
ns

3.
 E

H
R

s m
ai

nl
y 

re
co

rd
 d

ru
g 

us
ag

e 
in

fo
rm

at
io

n 
in

 th
e 

ho
sp

ita
l. 

Th
us

, 
EH

R
s w

or
k 

be
tte

r i
n 

in
pa

tie
nt

 A
D

E 
de

te
ct

io
n 

th
an

 o
ut

pa
tie

nt
. M

ay
 

di
m

in
is

h 
ge

ne
ra

liz
ab

ili
ty

 o
f m

ac
hi

ne
 le

ar
ni

ng
 m

od
el

s

C
oh

or
t/c

as
e-

ba
se

d 
stu

dy
 [4

1,
 4

2,
 7

4]
Se

qu
en

ce
/te

m
po

ra
l a

na
ly

si
s [

36
, 4

3,
 4

4]
SV

M
, B

ay
es

ia
n 

cl
as

si
fie

r, 
de

ci
si

on
 tr

ee
 a

nd
/o

r R
an

do
m

 F
or

es
t [

75
, 

76
]

N
LP

 re
la

tio
n 

ex
tra

ct
io

n 
[1

0,
 7

3]
N

eu
ra

l n
et

w
or

k 
[6

3]



465Machine Learning, Causal Inference, and Pharmacovigilance

Ta
bl

e 
1  

(c
on

tin
ue

d)

A
na

ly
tic

al
 a

pp
ro

ac
he

s
Ph

ar
m

ac
ov

ig
ila

nc
e 

ta
sk

s
A

dv
an

ta
ge

s a
nd

 b
ia

se
s

So
ci

al
 m

ed
ia

A
ss

oc
ia

tio
n 

ru
le

 m
in

in
g 

[4
6]

D
ru

g–
ev

en
t p

ai
r e

xt
ra

ct
io

n 
[4

6,
 5

6,
 6

9,
 7

7,
 7

8]
A

D
E 

de
te

ct
io

n 
[5

4]
A

dv
an

ta
ge

s:
1.

 H
ug

e 
da

ta
 si

ze
 w

ith
 ra

pi
d 

gr
ow

th
. C

re
at

e 
po

te
nt

ia
ls

 fo
r m

ac
hi

ne
 

le
ar

ni
ng

 m
od

el
s t

o 
be

 tr
ai

ne
d

2.
 O

pe
n 

ac
ce

ss
3.

 T
he

 c
on

te
nt

 is
 p

at
ie

nt
 c

en
tri

c
4.

 C
ou

ld
 c

on
du

ct
 a

 “
re

al
-ti

m
e”

 A
D

E 
m

on
ito

r
B

ia
se

s:
1.

 T
he

 c
on

te
nt

s a
re

 n
ot

 fr
om

 e
xp

er
ts

, t
hu

s i
t m

ay
 a

ffe
ct

 d
at

a 
qu

al
ity

 a
nd

 
re

lia
bi

lit
y

2.
 U

si
ng

 N
LP

 to
 e

xt
ra

ct
 a

ll 
th

e 
A

D
E-

re
la

te
d 

da
ta

 fr
om

 te
xt

s i
s c

ha
l-

le
ng

in
g.

 N
LP

 te
ch

ni
qu

es
 a

re
 e

ss
en

tia
l b

ef
or

e 
ap

pl
yi

ng
 to

 a
ny

 m
ac

hi
ne

 
le

ar
ni

ng
 ta

sk
 o

r c
au

sa
l i

nf
er

en
ce

 p
ar

ad
ig

m
3.

 C
ou

ld
 n

ot
 c

al
cu

la
te

 A
D

E 
in

ci
de

nc
e 

ra
te

. L
im

ite
d 

ab
ili

ty
 to

 p
ro

vi
de

 
ca

us
al

 e
va

lu
at

io
n

4.
 S

til
l n

ee
d 

to
 b

e 
fu

rth
er

 c
on

fir
m

ed
 b

y 
ot

he
r e

vi
de

nc
e 

or
 a

na
ly

si
s

5.
 E

th
ic

al
 is

su
es

 m
ay

 e
xi

st

SV
M

, B
ay

es
ia

n 
cl

as
si

fie
r, 

de
ci

si
on

 tr
ee

 a
nd

/o
r R

an
do

m
 F

or
es

t [
54

, 
56

, 6
9,

 7
7]

N
LP

 re
la

tio
n 

ex
tra

ct
io

n 
[6

9]

N
eu

ra
l n

et
w

or
k 

[5
6,

 7
8]

Bi
om

ed
ic

al
 li

te
ra

tu
re

C
lu

ste
rin

g 
[7

0]
D

ru
g–

ev
en

t p
ai

r e
xt

ra
ct

io
n 

[4
9,

 5
0]

A
D

E 
de

te
ct

io
n 

[7
0]

A
dv

an
ta

ge
s:

1.
 D

at
a 

qu
al

ity
 a

nd
 re

lia
bi

lit
y 

ar
e 

be
tte

r
2.

 L
ite

ra
tu

re
 is

 e
as

ily
 a

cc
es

si
bl

e.
B

ia
se

s:
1.

 D
at

a 
si

ze
 is

 sm
al

le
r t

ha
n 

so
ci

al
 m

ed
ia

. M
ay

 d
im

in
is

h 
pr

ed
ic

tiv
e 

po
w

er
 o

f m
ac

hi
ne

 le
ar

ni
ng

 m
od

el
s

2.
 T

im
el

in
es

s i
s w

or
se

 b
ec

au
se

 o
f t

he
 p

ee
r-r

ev
ie

w
 a

nd
 p

ub
lis

hi
ng

 
pr

oc
es

s
3.

 D
et

ec
te

d 
A

D
Es

 st
ill

 n
ee

d 
to

 b
e 

fu
rth

er
 c

on
fir

m
ed

 b
y 

ot
he

r e
vi

de
nc

e 
or

 a
na

ly
si

s

SV
M

, B
ay

es
ia

n 
cl

as
si

fie
r, 

de
ci

si
on

 tr
ee

 a
nd

/o
r R

an
do

m
 F

or
es

t [
70

]
N

LP
 re

la
tio

n 
ex

tra
ct

io
n 

[8
, 6

5]
N

eu
ra

l n
et

w
or

k 
[4

9,
 5

0]

K
no

w
le

dg
e 

ba
se

s
SV

M
, B

ay
es

ia
n 

cl
as

si
fie

r, 
de

ci
si

on
 tr

ee
 a

nd
/o

r R
an

do
m

 F
or

es
t 

[5
7–

59
, 7

9]
A

D
E 

pr
ed

ic
tio

n 
(p

re
-m

ar
ke

tin
g)

 [5
7–

59
, 6

6,
 7

9]
A

dv
an

ta
ge

s:
1.

 M
os

t o
f t

he
 d

at
ab

as
es

 a
re

 o
pe

n 
to

 th
e 

pu
bl

ic
2.

 B
et

te
r d

at
a 

str
uc

tu
re

 a
nd

 d
at

a 
st

an
da

rd
iz

at
io

n 
le

ve
l. 

C
re

at
e 

po
te

nt
ia

ls
 

fo
r m

ac
hi

ne
 le

ar
ni

ng
 m

od
el

s t
o 

be
 tr

ai
ne

d
B

ia
se

s:
1.

 N
ee

d 
fo

r a
 c

om
pl

ic
at

ed
 p

ar
ad

ig
m

 to
 in

te
gr

at
e 

an
d 

an
al

yz
e 

th
e 

da
ta

2.
 T

he
 g

ra
ph

 st
ru

ct
ur

es
 in

 k
no

w
le

dg
e 

ba
se

s l
ac

k 
ca

us
al

 c
om

po
ne

nt
s, 

m
ak

in
g 

ca
us

al
 in

te
rp

re
ta

tio
n 

di
ffi

cu
lt

3.
 M

an
y 

fa
ls

e-
po

si
tiv

e 
re

su
lts

 m
ay

 im
pa

ct
 th

e 
pr

ed
ic

tio
n 

ac
cu

ra
cy

4.
 A

D
E 

pr
ed

ic
tio

n 
re

su
lts

 a
re

 b
as

ed
 o

n 
th

eo
re

tic
al

 a
lg

or
ith

m
s, 

w
hi

ch
 

ne
ed

s o
th

er
 R

W
D

 o
r e

vi
de

nc
e 

to
 c

on
fir

m

N
eu

ra
l n

et
w

or
k 

[6
6]

AD
E 

ad
ve

rs
e 

dr
ug

 e
ve

nt
, E

H
R 

el
ec

tro
ni

c 
he

al
th

 re
co

rd
, N

LP
 n

at
ur

al
 la

ng
ua

ge
 p

ro
ce

ss
in

g,
 R

W
D

 re
al

-w
or

ld
 d

at
a,

 S
RS

 sp
on

ta
ne

ou
s r

ep
or

tin
g 

sy
ste

m
, S

VM
 su

pp
or

t v
ec

to
r m

ac
hi

ne



466	 Y. Zhao et al.

more data sources and the advancement of deep learning-
based NLP methods for analyzing unstructured text, future 
researchers can better utilize unstructured data for causality 
assessment score calculations.

3.2 � Propensity Score Matching

Matching has been widely used in observational or cohort 
studies for drug safety investigation [14, 121–125] through 
subsampling of the dataset strategically to balance the con-
founder distribution in the treatment and control groups 
so that both groups share a similar probability of receiv-
ing treatment [126]. It allows observational studies to be 
designed similar to randomized designs with the outcome 

being independent of confounders [127]. Matching methods 
have evolved from “exact” matching to matching on pro-
pensity scores and to algorithmic matching, where machine 
learning algorithms were used for the matching process 
[92]. Regardless of the types of matching, this approach is 
often used during data preprocessing or cohort construction. 
Matching involves two steps: (1) definition of a similarity 
metric (e.g., propensity score) and (2) matching controls to 
treatment groups based on the defined metric [128]. While 
some most recent algorithmic matching techniques such 
as Dynamic Almost-Exact Matching with Replacement 
(D-AEMR) [19] and DeepMatch [129] did not necessarily 
use a propensity score as a similarity metric, matching using 
a propensity score was still the most widely adopted method 

Table 2   Categorization of papers reviewed regarding data sources and machine learning methods used for four causal inference paradigms

RWD real-world data, SRS spontaneous reporting system, SVM support vector machine
Papers for “propensity score matching” and “instrumental variables” are not applied in the field of pharmacovigilance. Papers for “graph-based 
causal inference” still lacks a clear causal interpretation from a graph perspective

Machine learning methods Data source

Causality assessment scales
SVM, Bayesian classifier, decision tree and/or Random Forest [86–88] SRS [86, 87]

Social media [88]
RWD [89–91]

Regression [89]
Neural network [90, 91]
Propensity score matching
SVM, Bayesian classifier, decision tree and/or Random Forest [92, 93] RWD [20, 93–99]

Simulated data [92, 100]Ensemble (boosting/bagging) [20, 92, 94, 95, 99]
Regression [20, 94, 95, 97]
Neural network [96, 98, 100]
Graph-based causal inference
SVM, Bayesian classifier, decision tree and/or Random Forest
Link prediction [101] Knowledge bases [13, 102–104]

RWD [101, 105–112]Recommendation systems [109]
Classification [110]
Graph embedding
Link prediction [13, 102]
Recommendation Systems [105]
Regression
Classification [103]
Neural network
Link prediction [104]
Recommendation systems [106]
Predictive modeling [107, 108]
Ensemble (boosting/bagging)
Classification [111]
Link prediction [112]
Instrumental variables
Clustering [113] RWD [113–116]

Simulated data [16, 114, 115, 117–119]
Social network data [115]

Decision tree [16]
Neural network [114–117]
New algorithms [118, 119]
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in observational studies. Therefore, we focus our discussion 
on PSM in the following paragraphs.

Propensity score matching enabled the estimation of 
the causal effect of treatments. However, the definition of 
similarity and selection of covariates before matching may 
sometimes hinder the causal inference power of match-
ing [130]. In other words, it could be hard to account for 
all possible confounders and an inappropriate assumption 
of similarity is likely to undermine the matched analysis. 
Machine learning has inspired new methods for propensity 
score estimation that are hypothesis-free and thus enhance 
the causal inference ability of PSM. Traditional PSM mainly 
used logistic regression for propensity score estimation. A 
more recent study showed promising performance improve-
ment by using tree-based algorithms such as Classification 
and Regression Trees (CART) and bagging algorithms such 
as Random Forest for propensity score estimation [92]. Con-
trary to statistical models that fit models with assumptions 
and estimations of parameters from the data, machine learn-
ing models tend to learn the relationship between features 
and outcomes without an a priori model, i.e., hypothesis-
free [131]. Additionally, machine learning models were also 
useful in addressing the “curse of dimensionality” when the 
number of covariates becomes too large, which has become 
very common in the era of “big data” [132]. For example, 
Zhu et al. were able to control the number of covariates and 
thus balance the trade-off between bias and variance of a 
propensity score estimator by tuning the number of optimal 
trees using a tree-based boosting algorithm [20].

Integration of PSM and machine learning techniques has 
been found frequently in observational studies [94–96, 100], 
including but not limited to treatment effect estimation and 
outcome evaluation [93, 97–99], which all showed prom-
ising performance improvement compared with traditional 
PSM. Theoretical developments of PSM and a machine 
learning combination are also booming through the develop-
ment and use of simulated datasets [133–136]. However, the 
application of such a combination has not yet been utilized/
discussed in the domain of pharmacovigilance. Propensity 
score matching is important for pharmacovigilance studies 
[14, 137]. As more data or covariates become available for 
pharmacovigilance, the combination of PSM and machine 
learning can handle large covariate sets and reduce bias and 
variance compared with traditional PSM. Therefore, we 
foresee that machine learning-integrated PSM will empower 
future studies in pharmacovigilance.

3.3 � Graph‑Based Causal Inference

The graph is a common data structure that consists of a finite 
set of vertices (concepts) and a set of edges that represents 
relationships (semantic or associative) between the vertices. 
Graph-based methods are mainstream in both exploratory 

machine learning and causal inference paradigms. Graph-
based methods also offer theoretical and systematic repre-
sentations of causality that do not require an a priori model 
[138–140]. They can be applied to analyze integrated data 
from various databases, e.g., knowledge bases, molecular 
(multi-omics) databases, and RWD databases for causal sig-
nal detection.

In pharmacovigilance, because of the complex nature of 
relationships between drugs, diseases (indication, comorbid-
ities, or adverse event), and individual characteristics (e.g., 
demographic, multi-omics), graph-based ML/DL methods 
demonstrate their strengths in modeling these complicated 
topologies. Graph-based methods can be applied in two 
separate phases of pharmacovigilance: pre-marketing and 
post-marketing. The rationale behind pre-marketing ADE 
prediction is to identify potential ADEs from a biological 
mechanism perspective: chemical structure, DDIs, and pro-
tein–protein interactions (PPIs). Traditionally, researchers 
utilized chemical structures [13, 57] or biological pheno-
types [58, 103, 141] from graph knowledge bases to predict 
potential adverse effects of a drug candidate. More recently, 
Zhang et al. predicted potential adverse effects of a drug can-
didate using a knowledge graph embedding generated from 
Drugbank [142]. Dey et al. [102] developed an attention-
based deep learning method to predict adverse drug effects 
from chemical structures using SIDER. The hidden attention 
scores were utilized to interpret and prioritize the associative 
relationships between the presence of drug substructures and 
ADEs. Zitnik et al. [104] applied graph convolutional neural 
networks to predict potential side effects induced by PPI 
networks [61] and DDI networks [60, 62]. Researchers have 
also constructed knowledge graphs through literature mining 
[101]. Most of the papers using graph-based methods were 
for pre-marketing ADE prediction because knowledge bases 
regarding biomarkers, drug targets, disease indications, and 
adverse effects are readily available.

As more clinical or observational databases become 
available, researchers have transited from using a single 
data source, for example, knowledge bases, towards com-
bining RWD in their analysis. For example, Kwak et al. [63] 
predicted ADE signals via GNNs from a graph constructed 
combining a knowledge base and EHR data. There were 
several recent studies proposed to use graphs generated 
from both knowledge bases and EHRs for safe medication 
recommendations [105, 106, 109]. In [106], graph embed-
dings were combined with a memory network recommender 
system. In [105], drug–ADE pairs were identified through 
a link prediction task. In [109], an encoder-decoder atten-
tion-based model was proposed for sequential decision mak-
ing on drug selection in a multi-morbidity polypharmacy 
situation. Additionally, the characteristics of RWD enabled 
researchers to incorporate the temporality and sparsity of the 
features into signal detection models [110, 111].
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Machine learning/deep learning frameworks demon-
strated improved performance in structure learning com-
pared with the baseline greedy search scoring strategy [18, 
143, 144] for the identification of causal graph structures 
with the highest score or probability. In the meantime, causal 
inference methods were introduced to graph-based ML/DL 
models to improve the explainability and generalizability of 
those ML/DL models. For instance, Narendra et al. adopted 
counterfactual reasoning for causal structural learning [145]. 
Lin et al. utilized a loss function based on Granger causality 
to provide generative causal explanations for GNN models 
[17]. Rebane et al. evaluated the temporal relevancy of medi-
cal events to interpret medical code-level feature importance 
[107]. In a more recent paper, Rebane et al. incorporated 
the SHAP (SHapley Additive exPlanations) framework to 
provide more clinically appropriate global explanations in 
addition to medical code-level explanations captured by 
attention mechanisms [108].

While the advancement of ML/DL has enabled a plethora 
of graph-based data mining studies in pharmacovigilance, 
causality interpretation was still not explicitly discussed 
in any of those papers. We cannot naively equate link pre-
diction to causal inference. This is not to say that exist-
ing knowledge bases are not causal graphs, thus existing 
links may only be associative and have a different level of 
confidence in terms of causality. Among all those papers 
reviewed, only [17] had a clear causality evaluation. We 
resort to the lack of causality interpretation to the shortage 
of a graph-based benchmark dataset with causal components 
in the domain of pharmacovigilance. Currently, most stud-
ies used SIDER [102, 103] or datasets integrating multiple 
knowledge bases as the benchmark. In [112] for example, the 
author used Pauwels’s dataset [57], Mizutani’s dataset [146], 
and Liu’s dataset [58] as the benchmark datasets. The bench-
mark datasets currently prevailing lacked a causal compo-
nent, for example, a level of confidence for relationships. We 
believe a benchmark dataset with causal components and/
or with integrated information from multiple sources could 
significantly benefit the development of causally explainable 
graph mining models.

3.4 � Instrumental Variables

Estimation of causal relationships through an IV can adjust 
for both observed and unobserved confounders. This is a big 
advantage over methods such as stratification, matching, and 
multiple regression methods, which only allow adjustment 
for observed confounding variables. An IV is an additional 
variable, Z, that is used in a regression analysis to evaluate 
the causal effect of an independent variable X on a depend-
ent variable Y (Fig. 2). The assumption of Z to be a valid 
IV is that (1) Z is correlated with the regressor X, (2) Z is 
uncorrelated with the error term U, and (3) Z is not a direct 

cause of outcome variable Y. Therefore, Z only influences 
Y through its effect on X. However, IV-based methods also 
suffer from criticism. First, different instruments will iden-
tify different subgroups and thus obtain different numerical 
treatment effects. Another criticism is that one cannot rule 
out “mild” violations of assumptions. Finally, an IV is con-
sistent but not unbiased.

Several pharmacovigilance studies used an IV to investi-
gate the adverse impact of certain medications. For example, 
Brookhart et al. [15] used physician preference of a cycloox-
ygenase-2 inhibitor over non-selective non-steroidal anti-
inflammatory drugs as the IV to assess the adverse effect of 
cyclooxygenase-2 inhibitor use on gastrointestinal compli-
cations. Ramirez et al. [147] investigated the adverse effect 
of rosiglitazone on cardiovascular hospitalization and all-
cause mortality using the facility proportion of patients tak-
ing rosiglitazone as the IV. The study found an increased risk 
for all-cause and cardiovascular mortality among patients 
taking rosiglitazone vs those who were not. Groenwold et al. 
[148] studied the effect of the influenza vaccine on mor-
tality as reported in many observational studies. The study 
evaluated the usefulness of five IVs including a history of 
gout, a history of orthopedic morbidity, a history of antacid 
medication use, and general practitioner-specific vaccina-
tion rates in assessing the effect of influenza vaccination 
on mortality adverse events. They found that these IVs did 
not meet the necessary criteria because of their association 
with the outcome. In the field of causal inference for phar-
macovigilance, IV-based methods have been overshadowed 
by PSM and graph-based methods because of the difficulty 
of finding a valid and unbiased IV that can serve as a rand-
omization factor.

Recently, a few studies have explored using machine 
learning to improve the efficiency and fairness of IV learn-
ing from observational data. Hartford et al. [114] proposed 
the DeepIV framework, an approach that trained deep neural 
networks by leveraging IVs to minimize the counterfactual 
prediction error. DeepIV had two prediction tasks: first, it 
performed treatment prediction. In the second stage, DeepIV 

Fig. 2   Graph representations of relationships between X, Y, Z, and U 
under instrumental variable assumptions



469Machine Learning, Causal Inference, and Pharmacovigilance

calculated its loss by integrating over the conditional treat-
ment distribution. The author claimed that DeepIV estimated 
the causal effects by adopting the adapted loss function, 
which helped to minimize the counterfactual prediction 
errors. The proposed framework was also able to replicate 
the previous IV experiment with minimal feature engineer-
ing. Singh et al. [119] proposed a general framework called 
MLIV (machine-learned IVs) that allowed IV learning 
through any machine learning method and causal inference 
using IVs to be performed simultaneously. They showed 
that their method significantly improved causal inference 
performance through experiments from both simulation 
and real-world datasets. McCulloch et al. [16] proposed 
another framework for modeling the effects of IVs and other 
explanatory variables using Bayesian Additive Regression 
Trees (BARTs). Their results showed that when nonlinear 
relationships were present, the proposed method improved 
the performance dramatically compared with linear specifi-
cations. While these new advancements in IV learning have 
not yet been adopted in pharmacovigilance studies, they 
created new potentials when integrating with other causal 
inference study designs, for example, algorithmic matching 
[149], Mendelian randomization [113], and counterfactual 
prediction [118].

4 � Issues with Machine Learning and Why 
Causality Matters

Machine learning/deep learning algorithms are good at iden-
tifying correlations but not causation. In many use cases, 
correlation suffices. However, this is not the case with 
pharmacovigilance, or generally speaking, the healthcare 
domain. Without evaluation of causality, ML/DL algorithms 
suffer from a myriad of issues: generalizability, explainabil-
ity, and fairness. The ML/DL research society has directed 
increasing attention on improving generalizability, explain-
ability, and fairness in recent years. As discussed in previ-
ous paragraphs, ML/DL has been integrated with traditional 
causal inference paradigms to enhance the performance of 
traditional paradigms. The opposite is fitting ML/DL into a 
causal inference paradigm can enhance the generalizability, 
explainability, and fairness of ML/DL models. Addressing 
these issues is critical to providing high-quality evidence for 
pharmacovigilance if machine learning were to be employed 
for signal detection.

4.1 � Generalizability

Generalizability is the ability of a machine learning model 
trained on a sample dataset to perform on unseen data. Gen-
eralizability is important for the wide adoption of machine 
learning models. Recent work utilized cross-validation 

[150, 151] or eternal validation [152, 153] to examine the 
generalizability of their proposed machine learning model. 
More recently, anchor regression was proposed to deal with 
conditions when training data and test data distributions 
differed by a linear shift [154]. Anchor regression makes 
use of external variables to modify the least-squares loss. If 
anchor regression and least-squares provide the same answer 
(‘anchor stability’), the model can be considered invariant 
under certain distributional changes. Comparing different 
ML/DL methods using ensemble methods or robust feature 
selection can avoid overfitted models and thus secure model 
generalizability [155]. In recent work, we observed that the 
trend in pharmacovigilance is to employ more than one type 
of data source [64–68] and to compare/combine multiple 
analytical approaches [44, 69, 70]. We also observed that 
causal inference models were adopted for feature selection. 
For example, Rieckmann et al. presented the Causes of Out-
come Learning approach, which fitted all exposures from a 
causal model and then used ML models to identify combi-
nations of exposures responsible for an increased risk of a 
health outcome [156]. We foresee that data source integra-
tion, new analytical approaches (e.g., anchor regression to 
address the data shift issue), and causal feature selection will 
benefit the design of a generalizable ML/DL framework for 
pharmacovigilance.

4.2 � Explainability

Explainable AI (XAI) refers to ML/DL models with the results 
or analytical process understandable by humans, in contrast 
to the “black box” design where researchers cannot explain 
why a model arrives at a specific output [157]. This is espe-
cially important for domains such as healthcare that require an 
understanding of the causal relationships between features and 
outcomes for decision support. Several ML/DL algorithms are 
inherently “explainable” using feature importance, for exam-
ple, Random Forest, logistic regression, and causality explana-
tion do not equate to feature importance or regression coeffi-
cients. As in the case of [107, 108], the authors utilized feature 
weight to interpret the contribution of each medical code to 
the predicted ADE outcome. However, a causality explanation 
between medical codes and ADE incidence cannot be estab-
lished. Similarly, we cannot naively equate link prediction to 
a causality explanation although several existing graph-based 
XAI works were framed as a link prediction task, for example, 
prediction of potential PPI, DDI, or drug–ADE link given a 
medication [13, 101, 102, 104, 112]. Therefore, integration 
of causality evaluation is much needed to improve the power 
of XAI models. For example, the examples below integrated 
three different causal inference approaches to enhance the 
explainability of drug–event relationships for ADE detection: 
[17] (Granger causality), [145] (counterfactual reasoning), and 
[158] (combination of a transformer-based component with a 
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do-calculus causal inference paradigm). The three causal infer-
ence approaches discussed above have not been extensively 
used for pharmacovigilance tasks, thus we did not discuss them 
in previous sections. However, future researchers might be 
able to integrate them with ML/DL models to enhance model 
explainability. Additionally, as we have discussed earlier in 
Sect. 3.3, a benchmark dataset (e.g., PPI, DDI, or drug–ADE 
network) with causal relationships between graph features, 
for example, level of confidence, can significantly benefit the 
development of XAI models for pharmacovigilance studies.

4.3 � Fairness

Machine learning fairness is a recently established area 
that studies how certain biases (e.g., race, gender, dis-
abilities, and sexual or political orientation) in the data and 
model affect model predictions of individuals. This issue 
has caught more attention under the current pandemic, as 
the health disparity issue was under public scrutiny [159]. 
Racial disparity is also a significant issue in ADE detec-
tion. As pointed out in a review paper, 27 out of 40 phar-
macovigilance studies reviewed demonstrated the presence 
of a racial or ethnic disparity [160]. Therefore, Du et al. 
[161] proposed to adopt a kernel re-weighting mechanism 
to achieve the global fairness of the learned model. Several 
ML/DL fairness studies have leveraged feature importance 
to understand which feature contributes more or less to the 
model disparity [162, 163]. A recent study proposed to 
decompose the disparity into the sum of contributions from 
fairness-aware causal paths linking sensitive features and 
the predictions, on a causal graph [159]. The same group of 
researchers also proposed a Federated Learning framework 
that balanced algorithmic fairness and performance consist-
ency across different data sources [164]. The work discussed 
above, however, was applied only to datasets and tasks in the 
general healthcare domain. We have not found any work on 
machine learning fairness in the pharmacovigilance domain 
that pointed to a new direction worthy of exploration in the 
future. We anticipated that the new approaches introduced 
in [159, 161–164] can be extended to pharmacovigilance 
studies as well. Furthermore, while causal inference para-
digms have not been utilized to address the machine learning 
fairness issue, we anticipated that the integration of causal 
inference paradigms with machine learning algorithms may 
also be a potential direction.

5 � Current Challenges, Trends, and Future 
Directions

To summarize the discussion from the above sections, we 
found that missing data and data quality posed significant 
issues for currently dominant pharmacovigilance data 

sources. Researchers have attempted to address these issues 
through (1) integration of multiple data sources, (2) devel-
opment of analytical approaches to impute missing data and 
mitigate other data issues (e.g., unbalanced confounder dis-
tribution, biased samples), and (3) development of novel 
estimators that allow estimation through incomplete or 
biased data. New methodology advancements in machine 
learning, causal inference, and especially, the integration of 
the two have accelerated the progress in each of the three 
directions above. On the one hand, the adoption of machine 
learning has facilitated the efficient implementation of tra-
ditional causal inference paradigms. On the other hand, 
the adoption of causal inference paradigms has facilitated 
our understanding and thus addresses current issues with 
machine learning models.

High rates of underreporting and missing covariate 
information in SRS have undermined the power of SRS 
for pharmacovigilance [165]. While regulatory approaches 
were previously proposed to improve reporting, current 
approaches to address the under-reporting issue were from 
two directions:

1.	 Incorporating multiple data sources or data types to mine 
under-reported cases from additional data sources. As 
RWD becomes more available for pharmacovigilance, 
signals from RWD can complement under-estimated 
signals using SRS alone. Zhan et al. imputed the ADE 
cases using specific medicines for treating the ADE as 
indicators [166]. McMaster et al. developed a machine 
learning model to detect ADE signals using the Inter-
national Classification of Diseases, 10th Revision codes 
[76]. However, their proposed approach only accounted 
for 44.5% of all ADE cases. Therefore, addressing the 
missing value in RWD is also unavoidable and opens 
new research opportunities. As quantitative clinical 
measurements can be indicative of ADEs, new progress 
in missing values imputation for quantitative clinical 
measurements [167–169] could potentially address 
ADE under-reporting issue in RWD. However, instead 
of imputing missing values, the author in [168] revealed 
that when clinical measurements have a high missing 
rate, the number of times they were taken by one patient 
is ranked as more informative than looking at their 
actual values.

2.	 Using machine learning to estimate under-reporting or 
predict and impute under-reported cases. Recent pro-
gress in machine learning has enabled the estimation of 
AE under-reporting rates for data quality management 
[170, 171]. Traditionally, missing data imputation was 
conducted statistically via unconditional mean imputa-
tion, k-Nearest Neighbor imputation, multiple imputa-
tion, or regression-based imputation [172, 173]. Here, 
we only highlighted a few more recent studies incor-
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porating machine learning approaches. Nestsiarovich 
et al. [174] proposed to use supervised machine learning 
(classification) to impute self-harm cases that were sig-
nificantly under-reported in EHRs. They demonstrated 
that using the combined coded and imputed cohort, the 
power of their analysis could be enhanced. Another 
work by Sechidis et al. [175] presented solutions using 
the m-graph, a graphical representation of missingness 
that incorporated a prior belief of under-reporting. They 
demonstrated an approach to correct mutual information 
for under-reporting by examining independence proper-
ties observed through the m-graph. Their work repre-
sented a recent interest in the field of machine learning 
towards PU learning [176], i.e., learning from positive 
and unlabeled data. The assumption of PU learning is 
that each unlabeled data point could belong to either the 
positive or negative class. Therefore, potential under-
reported cases could be estimated from unlabeled data. 
Alternatively, the anchor variable framework may be 
adopted to reduce dependency on gold-standard labels 
for unlabeled cases [177–179]. These new directions in 
machine learning could provide potential solutions to 
alleviate the under-reporting issue.

In terms of machine learning for traditional causal infer-
ence paradigms, we observed that new advancements in 
PSM and IV learning through machine learning-causal 
inference integration have not yet been adopted in pharma-
covigilance studies. However, theoretical advancements or 
successful adoptions in other domains demonstrated new 
potentials for future adoption of the integrated paradigm 
in the pharmacovigilance domain. For graph-based causal 
inference, while both graph databases and graph mining 
methods for pharmacovigilance are booming, causal inter-
pretations from the graphs as well as the algorithm outputs 
are much needed, yet currently missing, for most of the 
studies. Even the currently prevailing benchmark datasets 
were mostly association-based. Relationships in knowledge 

bases may represent a certain level of causality but the level 
of confidence for a causal relationship was not represented 
explicitly. Therefore, we also recommend future researchers 
be very careful about the level of causality represented by 
graph edges when constructing graph databases.

Incorporating causal inference paradigms to address 
currently prominent machine learning issues in pharma-
covigilance is also considered a promising future direction. 
It is especially worth exploration for those less utilized (in 
pharmacovigilance tasks) causal study designs, for exam-
ple, Granger causality, counterfactual reasoning, and do-
calculus. In addition, there is a scarcity of exploration of 
addressing the machine learning fairness issue through the 
incorporation of causal paradigms, and thus may be a new 
direction for future pharmacovigilance studies.

Finally, to examine the distribution and trend in this 
research area, we considered 19 publications to fall into 
the intersection of machine learning, causal inference, and 
pharmacovigilance [86–91, 101–112, 158]. The breakdown 
of the 19 papers by year and country is shown in Fig. 3. The 
earliest paper was published in 2014 and utilized knowledge 
bases to predict potential ADEs. We observed a trend that 
older papers mostly use databases such as knowledge bases 
or social media to predict or monitor, while more recent 
papers utilized RWD, SRS, or a combination of multiple 
databases. North America was dominant in this research area 
followed by Europe. This may be owing to the availability 
of datasets for analysis.

6 � Conclusions

In this paper, we reviewed (1) data sources and tasks for 
pharmacovigilance, (2) traditional causal inference para-
digms and integration of machine learning into traditional 
paradigms, and (3) issues with machine learning, and 
how causal designs could mitigate current issues. First, 
we found that most existing data sources and tasks for 

Fig. 3   Year and continent 
distribution of 19 papers most 
relevant to the intersection of 
machine learning, causal infer-
ence, and pharmacovigilance
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pharmacovigilance were not designed for causal inference. 
In the meantime, low data quality undermined the ability 
to evaluate causal relationships. As establishing a causal 
relationship is important in pharmacovigilance, research on 
enhancing data quality and data representation will be an 
imperative step towards high-quality study for pharmacovig-
ilance. Second, we observed that pharmacovigilance was 
lagging in adopting machine learning-causal inference inte-
grated models, which pointed to some missed opportunities. 
For example, machine learning-based PSM and IV learning 
can be further developed and refined for pharmacovigilance 
tasks. Finally, we recognized that attempts have been made 
to address currently prominent issues with correlation-based 
ML/DL models, especially through the incorporation of 
causal paradigms. Therefore, we anticipated that the phar-
macovigilance domain can benefit from the progress in the 
ML/DL field, especially through the integration of machine 
learning and the causal inference paradigm.
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