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Thermal stability, storage and 
release of proteins with tailored fit 
in silica
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Stephen A. Wells4, Karen J. Edler1, Jean van den Elsen3, Geoffrey D. Holman3, 
Kevin J. Marchbank5 & Asel Sartbaeva1

Biological substances based on proteins, including vaccines, antibodies, and enzymes, typically 
degrade at room temperature over time due to denaturation, as proteins unfold with loss of secondary 
and tertiary structure. Their storage and distribution therefore relies on a “cold chain” of continuous 
refrigeration; this is costly and not always effective, as any break in the chain leads to rapid loss of 
effectiveness and potency. Efforts have been made to make vaccines thermally stable using treatments 
including freeze-drying (lyophilisation), biomineralisation, and encapsulation in sugar glass and 
organic polymers. Here for the first time we show that proteins can be enclosed in a deposited silica 
“cage”, rendering them stable against denaturing thermal treatment and long-term ambient-
temperature storage, and subsequently released into solution with their structure and function intact. 
This “ensilication” method produces a storable solid protein-loaded material without the need for 
desiccation or freeze-drying. Ensilication offers the prospect of a solution to the “cold chain” problem 
for biological materials, in particular for vaccines.

Denaturation is a loss of structure and function in proteins through disruption of the network of noncovalent 
interactions, which maintain secondary, tertiary and quaternary structure. This affects the storage of proteins in 
solution and is particularly significant for medications such as vaccines, which must generally be stored and dis-
tributed through a continuous network of refrigeration at 2 to 8 °C, called the “cold chain”1–3. Loss and inactiva-
tion of vaccines through breaks in the cold chain are a serious issue for global public health, in particular for mass 
childhood vaccination programmes in the developing world2,4,5. Considerable efforts have been made to produce 
more thermally stable vaccines and proteins through approaches including freeze-drying, sugar glass, nanopatch, 
biomineralisation6–9, pegylation and polymer-microsphere encapsulation10–12.

Organisms such as nettles, diatoms and radiolaria make use of nanoscale silica structures for protection13–15. 
They control the deposition of silica by secreting organic molecules, such as the silicateins – positively charged 
lysine-rich polypeptides – produced by marine sponges. Preformed silica nanoparticles have been suggested as 
vehicles for drug delivery16, and porous silica/protein monoliths have been produced for use in analytic or cat-
alytic columns. Recently developed “imprinting” approaches17, using both silica and polymers to define protein 
sites with shape recognition, have shown that silica can be deposited around proteins and closely match their 
shape. A recent study of conformational change in haemoglobin made use of a silica matrix to trap structures 
in different conformational states18, and encapsulation in mesoporous silica has been shown to enhance protein 
stability against heat and denaturation19–21. We have therefore explored the storage of proteins in a silica network 
– covalently deposited by sol-gel methods to entirely surround a protein and render it thermally stable by physi-
cally preventing denaturation and unfolding – and their subsequent release back into solution. Our results show 
that ensilicated proteins not only survive conditions of heat and aging which would denature the unprotected 
protein in solution, but also can be released with their structure and function intact. As test subjects we have 
used hen egg white lysozyme (HEWL), a robust and well-characterised protein with enzymatic activity; horse 
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haemoglobin, a heterotetrameric protein with a complex tertiary and quaternary structure; and tetanus toxin 
C-fragment (TTCF)22, a vaccinogenic tetanus fragment, which is a part of the commonly used DTP vaccine.

The ensilication and release process is shown schematically in Fig. 1 and described in detail in Methods. A 
solution of silica precursor materials (pre-hydrolysed tetraethylorthosilicate (TEOS)) is added to the protein 
solution, and stirred for 20 minutes. Sol-gel precipitates are rapidly formed, as shown in Fig. 2a, and then vacuum 
filtered. Precipitates retained on the filter are washed with Milli-Q water and methanol in order to remove any 
free protein adhering to the surface. Collected ensilicated powders are left to dry in an extractor for 24 hours, 
and then weighed. We have subjected ensilicated proteins to treatments including heating to 100 °C under dry 
and wet conditions, and aging for up to six months at room temperature. Silica is specifically vulnerable to attack 
by acidic fluoride solutions23. We therefore use a release protocol involving treatment with a dilute solution of 

Figure 1. Ensilication and subsequent release methods schematic. 

Figure 2. Formation of ensilicated powder. (a) Illustration of the ensilication. Left beaker contains protein 
solution, right beaker – protein solution with prehydrolysed TEOS after the formation of the silica precipitate. 
(b) DLS data for native lysozyme (red), and immediately after addition of TEOS (green – in 20 s, blue - in 30 s, 
purple – in 40 s). (c) AFM image of ensilicated lysozyme. (d) FT-IR spectra for native lysozyme (red), silica 
(green) and ensilicated lysozyme (blue). The bands at 1652, 1538, 1255 cm−1 correspond to amide I, amide II 
and amide III groups in lysozyme and the bands at 1063 and 972 cm−1 correspond to Si-O-Si stretching and 
Si-O bending.
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sodium fluoride, acidified to pH 4.0 using HCl, to release the ensilicated proteins into solution. We assess protein 
concentrations in solution using the standard BCA protein assay. We assess the retention of function (enzymatic 
activity) in lysozyme using EnzCheck assay, normalising to the protein concentration to obtain specific activity, 
while for TTCF we make use of ELISA binding assay. These techniques, as well as an array of structural investi-
gations including circular dichroism (CD), Dynamic Light Scattering (DLS), atomic force microscopy (AFM), 
Fourier Transform Infrared Spectroscopy (FT-IR), Thermo-gravimetric analysis (TGA) and SDS-polyacrylamide 
gel electrophoresis (SDS-PAGE) are all described in Methods.

Ensilication of 100 mg of lysozyme produces on average 182.68 ±  7.18 mg of powder. Assessment using 
BCA protein assay indicates that 93.0% ±  2.3% of the lysozyme initially present is successfully ensilicated 
(Supplementary Table S1). The ensilicated material forms and precipitates rapidly. We were, however, able to 
obtain some Dynamic Light Scattering (DLS) data on particle size during the process, as shown in Fig. 2b. An ini-
tial solution of lysozyme shows peaks corresponding to particles 4 nm in diameter, which correspond to individ-
ual lysozyme molecules. After the addition of silica, the 4 nm signal declines and a signal corresponding to larger 
particles with diameters around 200 nm appears within tens of seconds, showing that silica precipitation on the 
protein occurs immediately after the addition. This 200 nm peak is not observed in TEOS before hydrolysation 
or in TEOS gelated without the addition of protein (Supplementary Figure S1). Further analysis of the ensilicated 
material by atomic force microscopy (AFM), confirmed the presence of globular silica nanoparticles of 200 nm 
in size (Fig. 2c). Fourier Transform Infrared Spectroscopy (FT-IR) spectra for native lysozyme, silica and the 
ensilicated material are presented in Fig. 2d. We observe both amide peaks from lysozyme24 and silica vibrational 
bands25, showing that the protein and silica exist together in the precipitated material.

Results on the retention of structure and function in lysozyme, after release using our acidic fluoride protocol, 
are shown in Fig. 3. Enzymatic activity is well retained in our released protein (between 75 to 100% of the activity 

Figure 3. Characterisation of the ensilicated and released lysozyme. (a) Specific activity of lysozyme protein 
before and after ensilication. Ensilicated lysozyme powder was treated by heating at 100 °C for 5 h, by incubating 
in 10 M HCl for 3 h, or stored at 22 °C for 6 months. At the end of the treatment, the ensilicated lysozyme was 
released and the lysozyme activity measured. Data are mean values and SEM, n =  3, *p <  0.05. (b) CD spectra 
for lysozyme (green - native lysozyme; red - native heated lysozyme; purple – ensilicated lysozyme; blue - 
ensilicated heated lysozyme). (c) SDS-PAGE analysis of lysozyme. Lanes 1–3: ensilicated lysozyme (3 individual 
preparations), Lanes 4–6: ensilicated heated lysozyme (3 individual preparations), Lane 7: heated native 
lysozyme solution, Lane 8: native lysozyme solution (a control), Lane 9: dry-heated lyophilised lysozyme, Lanes 
10–12: ensilicated acid treated lysozyme (3 individual preparations), Lane 13: supernatant after ensilication. 
(d) Ribbon diagram of the crystal structure of the released lysozyme (green) superimposed onto a published 
structure of the protein (red; PDB code 2w1x). Rmsd overall 0.09 Å. Rmsd individual amino acids 0.24 Å.
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of the native lysozyme – Fig. 3a), even when the ensilicated material was treated with acid (10 M HCl), stored for 
six months at room temperature (22 °C), or heated at 100 °C for 5 h. Native lysozyme heated to 100 °C in aqueous 
solution, by contrast, is denatured and loses function as expected. Acid treatment with 10 M HCl likewise destroys 
the activity of lysozyme in solution (Supplementary Table S2). The ensilicated material itself shows very low 
enzymatic activity before the protein is released (Supplementary Figure S2) whereas a control sample of lysozyme 
deposited on porous silica gel (see Methods) shows full activity. This confirms that in the ensilicated material the 
lysozyme is encapsulated within the silica, inaccessible for its substrate and protected from chemical or physical 
attack.

Mass spectrometry analysis on lysozyme before and after ensilication detected a single peak at 14305 Daltons 
(Supplementary Figure S3), indicating that the protein chain remains intact during ensilication and release. 
Circular dichroism (CD) analysis confirmed that the ensilicated lysozyme displays the same CD signal as the 
starting materials, while the unprotected protein subjected to heat treatment shows dramatic changes in the CD 
signal, indicating loss of secondary structure (Fig. 3b). SDS-polyacrylamide gel electrophoresis (Fig. 3c) shows 
that native lysozyme heated to 100 °C in solution loses structural integrity (Fig. 3c, lane 7), with the presence of 
both lower molecular weight protein fragments and higher molecular weight complexes; a lysozyme dimer band is 
visible at approx. 27 kDa. The ensilicated and released protein, by contrast, appears identical to the starting mate-
rial. We were also able to crystallise lysozyme released after ensilication and obtain its three-dimensional struc-
ture using X-ray diffraction (see Methods and Supplementary Tables S1 and S2 and Supplementary Figure S4). 
Structural alignment showed that this structure is almost indistinguishable from published structures of native 
lysozyme (Fig. 3d) with an overall backbone root-mean-square deviation of 0.09 Å.

Since the ensilicated material is produced by precipitation from solution, we expect water molecules to still 
be associated with the protein. The drying process for our powder is not severe and is not intended to desic-
cate the sample entirely. Thermogravimetric analysis (TGA) confirms that an ensilicated lysozyme sample loses 
8.9% ±  0.1% of its weight in the temperature range 50–100 °C (Supplementary Figure S5), giving us an estimate 
of the water content.

Having established that ensilication, preservation and release are possible for lysozyme, we have also applied 
our protocol to horse haemoglobin (Hb) and tetanus toxin C-fragment (TTCF). Protein assay on the supernatant 
after ensilication confirmed that some Hb and TTCF remained in solution and that up to 46% of the Hb and 72% 
of the TTCF was ensilicated. The FT-IR analysis of the ensilicated Hb confirmed the co-presence of silica and pro-
tein (Fig. 4a). The lower ensilication efficiency for Hb and TTCF compared to lysozyme may be due to the differ-
ences in size and charge of the proteins. The interaction between proteins and silica is primarily noncovalent, with 
polar interactions between silanol groups and charged or polar amino acid side chains being very significant26, 
and Hb differs substantially from HEWL in both its size (Hb 64 kDa, HEWL 14.3 kDa) and its isoelectric point 
(Hb 6.5, HEWL 9.4). This suggests that the ensilication protocol will in general have to be adjusted for different 
materials, e.g. by varying concentration and pH. However, ensilication does appear effective in preserving the 
ensilicated material from heat denaturation. CD analysis confirmed that the Hb’s secondary structure is preserved 
through ensilication, heat treatment and release, whereas heat-treated Hb without protection displays an obvious 
and dramatic loss of structure (Fig. 4b).

TTCF is a particularly interesting case in that it is a currently used vaccine component. To test the integrity of 
the TTCF protein we assessed its antibody binding capacity using ELISA binding assays (Fig. 4c) and observed 
that heating the ensilicated powder at 80 °C for 2 h and then releasing TTCF did not damage the protein. In con-
trast, the unprotected protein was completely denatured and lost its antibody binding capacity. SDS-PAGE anal-
ysis showed that the ensilication and release procedure did not change the molecular weight of TTCF (Fig. 4d), 
whereas TTCF heated to 80 °C in solution shows evidence of protein aggregation. We note that TTCF can be 
lyophilised, rendering it more stable, and have made use of this as a comparison to the ensilication process. 
Lyophilised TTCF reconstituted after ambient storage or after dry heating (at 80 °C for 2 h) displays an antibody 
binding capacity slightly below that of native TTCF or ensilicated and released TTCF (Supplementary Figure S6). 
We may therefore say that ensilication provides a level of protection for TTCF at least equal to lyophilisation, 
without the need to remove water.

The acidic fluoride release protocol used in this study was intended to establish that the release of intact 
protein was possible. Treatment using either fluoride or acid separately did not dissolve the silica or release pro-
teins. Experiments monitoring the release of ensilicated lysozyme at different pH values (pH 6.0 to 2.0) demon-
strated that a pH of 5.0 or lower in combination with sodium fluoride was necessary for release of the proteins 
(Supplementary Table S3), while the specific activity of the released protein decreased with decreasing pH; pH 
4.0 provided the optimal combination of released quantity and activity. Since fluoride in solution is toxic at high 
concentrations, causing gastrointestinal distress at a dose of around 100–150 mg27, biological applications may 
require investigation of alternative release methods or the removal of fluoride from solution, for example by 
adding a soluble calcium salt to precipitate insoluble CaF2. We are currently investigating alternative methods 
including physical disruption of the silica matrix.

Our results demonstrate for the first time that proteins in solution can be encased in a covalently bonded silica 
network and subsequently released back into solution, intact and functional. The ensilicated protein survives 
heat treatment that denatures proteins in solution, indicating that the silica is effective in physically preventing 
protein unfolding and denaturation. The process produces a solid (particulate) protein-loaded product directly 
from solution, and may thus be suitable for use with proteins that do not tolerate lyophilisation; the product has 
substantial intrinsic water content. The ability to keep proteins intact in solid form until they are needed would 
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be valuable for the storage of industrial enzymes, vaccines and biological therapeutics, such as antibodies and 
antivenom treatments. The ensilication process we describe here has the potential to transform vaccine availabil-
ity worldwide by elimination of the cold chain.

Methods
Sources of materials. TEOS, hen egg white lysozyme, horse haemoglobin were all from Sigma-Aldrich.

Expression and purification of His-tagged TTCF. The N-terminal histidine tagged tetanus toxin C frag-
ment construct in pET16B vector was a kind gift from Dr Kevin Marchbank. The fusion protein was expressed in 
BL21(DE3) E. coli strain and purified according to the method described by Hewitt et al.28 except that the purifi-
cation was performed on an AKTA FPLC system (GE Healthcare) using a HisTrap HP column (GE Healthcare). 
Purified protein was extensively dialysed against 50 mM Tris-HCl pH 7.

Ensilication protocol. 500:500:1 of Milli-Q water, TEOS and 32% HCl were stirred for 1 hour at 20 °C 
for TEOS pre-hydrolysation. Protein solution was prepared as a 100 ml mixture of 1 mg/ml protein in 50 mM 
Tris-HCl pH 7, stirred using a 25 ×  8 mm octagonal magnetic stir bar (Fisher Scientific) at 60 rpm in a 250 ml 
beaker for 0.5 h at 20 °C. The pre-hydrolysed TEOS was then added to the protein solution with a ratio of 1:50, 
and stirred at 125 rpm for 20 min. After 20 min, the mixture was vacuum filtered using a Microfibre Filter MF 300 
with 0.7 μ m retention (Fisher Scientific). Once supernatants filtered from the protein ensilication were collected, 
gels were washed with MilliQ water and methanol thoroughly in order to remove any non-ensilicated protein left 
on the surface. Collected ensilicated protein powders were left to dry in an extractor for 24 h, and then weighed.

Figure 4. Structural data for ensilication of haemoglobin (Hb) and TTCF. (a) FT-IR data for Hb, silica, and 
ensilicated Hb (native Hb – red, silica – green and enslicated Hb – blue). The bands are as described in Fig. 2d. 
(b) Circular dichroism data on Hb samples: native Hb (green), native Hb after heat treatment (red), ensilicated 
Hb (purple), and Hb released from ensilication after heat treatment (blue). (c) TTCF antibody binding capacity 
before and after ensilication. ELISA binding assay was performed on native TTCF (green), native TTCF heated 
for 2 h at 80 °C (red), TTCF release from ensilication (purple) and ensilicated TTCF heated for 2 h at 80 °C and 
released (blue). Data are mean values and SEM, n =  3. Kruskal-Wallis non-parametric test comparison revealed 
no significant difference between the native TTCF and the two ensilicated and released samples (p =  0.834), but 
revealed a significant difference to the native heat-treated TTCF (p =  0.002). (d) SDS-PAGE analysis of TTCF. 
Lane 1 – native TTCF, Lane 2 – ensilicated and released TTCF, Lane 3 – ensilicated TTCF heated for 2 h at 80 °C 
and released, Lane 4 – TTCF heated in solution for 2 h at 80 °C. Representative images from 3 independent 
preparations.
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A control experiment using lysozyme absorbed onto silica was also performed. For this 100 mg silica 
(SIGMA-Aldrich, Davisil, Grade 646, pore size 150 Å, 35–60 mesh) was soaked with 100 ml 1 mg/ml lysozyme in 
50 mM Tris-HCl pH 7.0, for 20 min at 20 °C. The treated silica was then vacuum filtered and left to dry overnight 
in the fume hood. The supernatant from the filtration was collected.

Treatment protocols – heat, acid and aging. To test whether the ensilication protects against intense 
heat, ensilicated powders were heated at 100 °C between 2 and 5 h in the cases of lysozyme and Hb (whose Tm val-
ues exceed 70 °C). TTCF is rapidly inactivated above 60 °C; for TTCF we therefore used a treatment temperature 
of 80 °C. The pure lysozyme and Hb proteins were solubilized in 50 mM Tris-HCl pH 7.0 at a final concentration 
of 1 mg/ml and heated at 100 °C for the same length of time. To test the resistance to acid the powdered ensilicated 
lysozyme was incubated for 3 h in 10 M HCl. The powdered ensilicated lysozyme samples were stored at 22 °C for 
6 months to test stability against aging.

Release protocol. To release protein from silica, 5 ml of 50 mM Tris-HCl pH 7.0 and 5 ml release buffer 
(190 mM NaF in Milli-Q water and adjusted to pH 4.0 with HCl) are mixed with 5 mg of ensilicated protein pow-
der in a tube rotator at 20 °C for 1 h.

Protein concentration assay. The protein concentration was measured using a BCA protein assay kit 
(Thermo Fisher) according to the manufacturer’s instructions.

Dynamic Light Scattering (DLS)N. A Malvern Zetasizer Nano ZS was used to measure the hydrodynamic 
size by dynamic light scattering (DLS) for both lysozyme and to follow the process of lysozyme ensilication. 
The lysozyme sample had a count rate of 228.8 kcps, using a measurement position of 3 mm, attenuator 11 and 
duration 60 seconds at 25 °C. To monitor the onset of the ensilication process, we used DLS to measure particle 
size before (0 sec) and immediately after adding 4 μ l pre-hydrolysed TEOS to 200 μ l 1 mg/ml lysozyme solution at 
every 20, 30 and 40 seconds.

Lysozyme activity assay. We used an EnzChek®  Lysozyme Assay Kit from Life Technology following the 
manufacturer’s instructions.

Crystallisation, X-ray diffraction data collection and 3D structure determination of released 
lysozyme. Crystallisation of lysozyme released from silica was achieved with use of the hanging drop vapour 
diffusion technique29. Released lysozyme at a concentration of 25 mg/ml in 0.1 M sodium acetate pH 4.630 was 
crystallised in 1.5 M NaCl in 0.1 M sodium acetate pH 4.631. Crystals suitable for X-ray diffraction analysis formed 
after approximately 5 days incubation at 18 °C.

Crystals were flash frozen in a loop (reservoir solution +  25% glycerol) under a continuous nitrogen cryo 
stream (Oxford Cryosystems Cobra) and full data set was collected on an in-house rotating anode X-ray source 
(Rigaku MicroMax-007HF) with a Saturn 944 +  CCD detector (Supplementary Table S1 for data collection sta-
tistics). The structure of released lysozyme was resolved using molecular replacement (using Balbes) and refined 
(using Phenix) with model building in COOT (Supplementary Table S2 for refinement statistics).

Atomic Force Microscopy (AFM). Atomic force microscopy was performed at the European Synchrotron 
Radiation Facility (ESRF) at Partnership for Soft Condensed Matter (PSCM), Grenoble, France. Samples were 
prepared by adding 400 μ l prehydrolysed TEOS into 20 ml of 1 mg/ml lysozyme solution. After 30 seconds, 10 μ l 
of the mixture was transferred onto a mica. The mixture on the mica was quenched with 0.05 M Tris-HCl pH 2.5 
to stop the ensilication process and left for a further 5 minutes before being rinsed with 0.05 M Tris-HCl pH 7 to 
remove any un-bound material. Images were acquired with an Asylum Cypher AFM, with a scan size of 30 μ m in 
X&Y and with a Numerical Aperture of 0.45.

Fourier Transform Infrared Spectroscopy (FT-IR). FT-IR spectra between wavelength 4000 cm−1 and 
600 cm−1 were accumulated from 25 scans with a resolution of 2 cm−1, data interval of 0.5 cm−1 and a scan speed 
at 0.2 cm/s on a Perkin Elmer Frontier FTIR spectroscope.

Circular dichroism. Synchrotron radiation circular dichroism spectra for lysozyme were collected at the 
Diamond Light Source, Didcot, on beamline B23 over a wavelength range of 180 to 260 nm with an integration 
time of 2 s and a data interval of 1 nm. For hemoglobin, a Chirascan™  CD Spectrometer (Applied Photophysics) 
was used with the same parameters as at the synchrotron. Proteins were dialysed into 100 mM sodium phosphate 
buffer pH 7.0 and protein concentration was adjusted to 0.1 mg/mL. The samples were run in 0.5 mm quartz 
cuvettes at 20 °C.

SDS-Polyacrylamide gel electrophoresis (SDS-PAGE). Protein samples were prepared in SDS-sample 
buffer and loaded on a 10% or a 15% tris-glycine SDS-polyacrylamide gel. Protein bands were visualised with 
Coomassie Blue stain.

ELISA binding assay. Native TTCF, or TTCF after ensilication and release, was coated at 10 μ g/ml onto 
96-well flat-bottom plates (High-binding plate, Greiner) in ELISA binding buffer (50 mM NaHCO3, pH 9.6) 
and incubated overnight at 4 °C. The plates were washed four times with PBS and blocked with 1% casein in PBS 
supplemented with 0.05% Tween 20 (PBS-T) for 1 h. A two time serial dilution of anti-TTCF (clone 10G5) mouse 
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monoclonal antibody32 (starting concentration 1 μ g/ml) was added and incubated for 1 h at room temperature. 
Plates were washed further four times with PBS, followed by incubation with HRP-conjugated rabbit anti-mouse 
IgG (1:10,000 dilution, Thermo Scientific) for 1 h at room temperature. The plates were developed using TMB 
substrate and the reaction was stopped with 1 M H2SO4. Absorbance at 450 nm was measured in Pherastar plate 
reader (BMG).

Mass Spectrometry. NanoLC coupled to Electrospray Quadrupole Time-of-Flight (ESI-QTOF, Bruker, 
Karlsruhe, Germany) was applied to identify the biomaterial before and after ensilication.

Thermogravimetric analysis. TGA on ensilicated lysozyme was carried out as follows: The sample, with 
a starting weight of 6.45 mg, was heated up to 800 °C at 10 °C/min under a 20 mL/min flow of nitrogen in a 
Thermogravimetry (Setaram Setsys Evolution 16 TGA-DTA-DSC) instrument.

Statistical analysis. Data from the lysozyme activity assays were analysed using two tailed un-paired t-tests. 
p values <  0.05 were considered statistically significant. ELISA data were analysed with non-parametric test, 
Kruskal-Wallis (IBM SPSS 22). p values <  0.05 were considered significant.
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