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Abstract

Simulations are widely used to provide expectations and predictive distributions under known conditions against which to
compare empirical data. Such simulations are also invaluable for testing and comparing the behaviour and power of infer-
ence methods. We describe SANTA-SIM, a software package to simulate the evolution of a population of gene sequences
forwards through time. It models the underlying biological processes as discrete components: replication, recombination,
point mutations, insertion–deletions, and selection under various fitness models and population size dynamics. The soft-
ware is designed to be intuitive to work with for a wide range of users and executable in a cross-platform manner.
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1. Introduction

Simulating population dynamics is a popular and effective
strategy to model the outcome of molecular genetic processes
(e.g. selection and recombination) and to verify evolutionary hy-
potheses against experimental observations. Simulations of
evolutionary histories in population genetics can be categorized
either as forward-in-time or backwards-in-time (coalescent) ge-
nealogical models. Coalescent models have been historically

the leading simulation method and are used for the inference of
genetic variation in populations through progressively coalesc-
ing lineages according to a stochastic process until only the
most recent common ancestor of the sample population is
reached (Kingman, 1982; Hudson, 1983). This process is appreci-
ated for its time and memory efficiency as it only considers a
sample of observed individuals, irrespective of how large the
population is, and is widely used to simulate changes in
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population size, recombination and sub-populations with mi-
gration (Laval and Excoffier, 2004; Mailund et al., 2005). In con-
trast, forward-in-time evolution simulations are
computationally more intensive as the evolutionary history of
the entire population is modelled through time. However, these
models allow for more complexity and scenarios can include
population processes (e.g. natural selection) that are difficult to
incorporate in the backwards-time approach (Gillespie, 2001). A
large collection of software tools for forward-time genetic data
simulation has been developed in the past decades, varying in
objectives targeted and compromising between ease of configu-
ration and model complexity. Additionally, resulting from the
software design decisions driven by the necessary trade-offs,
the tools differ significantly with respect to performance and
platform portability. Extensive comparisons of available for-
ward simulators show that a wide but incomplete range of ge-
netic and population processes are considered by these tools
(Hoban, Bertorelle, and Gaggiotti, 2012; Yuan et al., 2012; Peng
et al., 2013, 2015).

2. Approach

We present the SANTA-SIM software package, which imple-
ments an individual-based, discrete-generation, and forwards-
time simulator for molecular evolution of genetic data in a finite
population. Across the heterogeneous landscape of available
simulators, and despite recent advances in simulation models
(Zanini and Neher, 2012; Petitjean and Vanet, 2014; Haller and
Messer, 2017), SANTA-SIM offers a valuable addition as SANTA-
SIM addresses a desired balance between the complexity of the
underlying framework and the different evolutionary scenarios
that can be modelled. SANTA-SIM is directed towards haploid
organisms, and particularly useful to study rapidly evolving
pathogens such as RNA viruses that can experience diverse se-
lection pressures and recombination events. SANTA-SIM is dis-
tinguished from previous simulators (of virus evolution) by its
modularity, flexibility and extensibility of simulation compo-
nents. Discrete components reflect the different underlying bio-
logical processes, which can be configured separately and
combined to simulate complex evolutionary processes. Unlike
many of previously published tools designed to study popula-
tion genetics (Balloux, 2001; Peng and Kimmel, 2005; Guillaume
and Rougemont, 2006; Hernandez, 2008; Carvajal-Rodriguez,
2008; Ritchie and Bush, 2010), SANTA-SIM is primarily focussed
on the dynamics of selection in the face of a changing fitness
landscape. For instance, a simulation could have consecutive
epochs to model environmental changes. Moreover, rather than
only modelling selection by predefined fitness values for differ-
ent alleles, fitness of each allele could be affected by context-
dependent effects such as the population size or the duration
that the allele has been present in the population, which can be
modelled by various fitness functions included in SANTA-SIM.
Samplers can be adapted to extract statistics, sequence align-
ments, and genealogy trees from the simulation. Furthermore,
SANTA-SIM offers a novel experimental framework for simula-
tion of insertion–deletion mutations (indels) and allows chang-
ing dynamics of population size.

3. Materials and methods

SANTA-SIM was written in the Java programming language and
is available as an open-source project (https://github.com/
santa-dev/santa-sim) under the Apache License Version 2.0
(APLv2). A simulation run only requires the pre-built cross-

platform executable file (available at the Releases section of the
project website) and an XML configuration file (examples are
provided at the project website), where the configurable aspects
of the simulation process are detailed. The SANTA-SIM frame-
work was developed in a modular manner so that different bio-
logical processes are implemented in separate components.
This design allows users with basic programming experience to
understand how the software functions, and to easily adapt
existing or implement new features.

An overview of the evolution simulation process is demon-
strated in Fig. 1 for a cycle of two consecutive generations. After
the calculation of fitness for the individuals within a popula-
tion, the next generation is selected from these parents accord-
ing to their fitness. Recombination can occur between two
parents to generate a progeny with a genome inherited from
two different parents. Subsequently, mutations are introduced
into the new generation and the simulation will proceed for the
following generations.

In order to enable SANTA-SIM to be easily extended, the
most fundamental simulation components are presented to the
developer as Java interfaces. An overview of the interfaces and
their default implementations within SANTA-SIM can be found
in Table 1.

Using these model components, the entire simulation can be
organized as a sequence of epochs, with each epoch having dif-
ferent selection functions, replication operators, and mutation
operators. The transition of the population to a new epoch thus
reflects a deterministic environmental change for the

Figure 1. Overview of simulation process in SANTA-SIM. A cycle of two genera-

tions in SANTA-SIM simulation, consisting of mutation, recombination, fitness

evaluation, and selection. The circles on the left and right, respectively repre-

sent the individuals from the first population (parents) and the second genera-

tion (progenies). The size of the circles represents the fitness while the colour

represents the genotype. Parents with higher fitness are more likely to be se-

lected to generate a progeny, shown by the number of arrows. Each progeny

could be generated from one parent (clonal replication) or two parents (recombi-

nant replication).
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population. The software can also be configured to report
insights into the operation of the simulation. These outputs can
either be at the population level by describing allele frequencies
through time, population fitness, diversity, and divergence or at
the individual level by providing nucleotide or amino acid se-
quence alignments at chosen loci and phylogenies.

3.1 Population, individuals, genomes, and features

The population in SANTA-SIM consists of individual organisms,
each of which contains a single genome. The genome is a linear
sequence of nucleotides organized into features. Features reflect
the genome organization into genes and open reading frames.
Each feature may be composed of one or more fragments of the
genome, read in either a forward or reverse direction, and may
overlap with each other. Different modes and degrees of selec-
tion on either nucleotides or amino acid sites can be specified
on each feature.

3.2 Evolutionary process

The evolutionary process in SANTA-SIM assumes discrete gen-
erations, and each generation consists of a concatenation of dis-
crete components. The population is subjected to mutations,
recombination, and various models for fitness assignment
based on the genotype of the genome features. The size of the
population can change depending on the overall fitness of the
population. The interaction between these components sup-
ports the configuration of complex evolutionary scenarios.

The simulation begins with an initial population of individu-
als which is seeded from a single sequence or a pool of different
sequences. At each generation, evolution is simulated in four
sequential steps of replication (with optionally recombination),
mutation, fitness, and selection.

3.2.1 Replication
Together with the mutation component, below, the replication
component is analogous to the actions of a polymerase complex
and produces the genetic material for a new individual from
one or more parents. The simplest replicator is clonal and the
descendant inherits the genome of exactly one parent. We also
provide a recombinant replicator that models a ‘template-
switching’ polymerase. For this replicator, two probabilities are

defined: a probability that a recombinant is used instead of the
clonal replicator, and a probability of the polymerase switching
between the parents’ templates as replication proceeds along
the genome.

3.2.2 Mutation
Mutation is implemented as an independent process after repli-
cation. The user specifies a per-site and per-generation proba-
bility of mutation and the mutator component then applies
mutations to the genome accordingly. For efficiency, the default
mutator draws the number of mutations from a Poisson distri-
bution with an expectation given by the number of nucleotides
and the mutation rate. These are then distributed uniformly
across the sites. A bias towards transition-type mutations can
be specified to reflect the action of specific polymerases.

In addition to substitution mutations, SANTA-SIM also offers
an indel mutation model that can be useful to more closely
mimic the evolutionary behaviour of retroviruses like HIV-1.
The user can specify a per-generation probability of indel, to-
gether with an independent distribution of indel length. Frame-
shifting a genome is assumed to be nearly always fatal so only
whole-codon indels are permitted. Indels not only change the
content and length of a simulated genome, but they can also af-
fect regions subject to fitness constraints. Depending on the po-
sition relative to the boundaries of fitness-constrained regions,
indels can either shrink or lengthen a feature and therefore
have an impact in fitness scores. Changes to fitness-
constrained regions will affect subsequent generations of the
lineage, but will not affect sibling lineages. No fitness value is
directly assigned to an indel at this moment, given the com-
plexity of inferring genotype–phenotype relationships in this
context, but the experimental implementation of the current
indel model provides a framework for ongoing research. Details
on the indel mutation model and illustrations of the implica-
tions for fitness calculations can be found at the project
webpage.

3.2.3 Fitness calculation
The fitness of each genome is calculated using one or more fit-
ness functions (Table 2). By shuffling selection coefficients
among states over time, non-stationary random positive selec-
tion can be implemented. Distinct fitness functions can be

Table 1. An overview of the Java interfaces that correspond to the basic simulation components.

Interface Component description

FitnessFactor Enables developers to define a custom fitness function. Default implementations of this interface implement fitness
functions that take into account genome sequence and the size of the virus population.

Mutator Enables developers to control how a molecular sequence is to be modified when a mutational event takes place.
SANTA-SIM ships with a default implementation that allows mutations to happen on the nucleotide level.

Replicator Enables developers to control how a virus can be replicated. Default implementations of this interface implement
clonal replication, recombinant replication and recombinant replication with hotspots.

Sampler Enables developers to implement different ways to sample from the virus population. Default implementations of
this interface implement an alignment sampler, an allele frequency sampler, a genome description sampler a
general statistics sampler and a tree sampler.

Selector Enables developers to implement different ways to apply evolutionary selection on individuals. SANTA-SIM ships
with a binary search selector and a roulette wheel selector for constant population size. For simulating the dy-
namics of population size under logistic growth model, a selector is implemented that takes into account the
growth rate (r), carrying population (K), and population size (P) to determine the expected number of progeny for
each individual, where population dynamics are determined by r*P*(1 � P/K), also known as the Verhulst model.

PopulationGrowth PopulationGrowth Facilitates further development of the software to specify the growth processes custom-tailored
for specific cases which are not predicted in the selector interface implementations.
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defined for the nucleotide sequence and the corresponding
amino acid translation. Furthermore, different regions of the ge-
nome can be assigned different fitness functions (e.g. most sites
under purifying selection but with a few sites under diversifying
selection). Such fitness functions are introduced in the XML
configuration file.

3.2.4 Selection
The next generation of individuals then selects their parents
from the previous generation where each parent is selected
with replacement with a probability proportional to its
genome’s fitness. The number of parents that are selected for
each new individual depends on the mode of replication, which
is described next.

3.3 Sampling sequences, phylogenies, and statistics

Given the large scale of many typical simulations with biologi-
cally relevant parameters, we have made every effort to use
memory efficiently. For example, genome sequences are stored
in a central ‘gene-pool’ so that only unique genomes are stored
with the individuals having only an index for the genome they
currently carry. Individuals that replicate without any muta-
tions thus inherit this index. This also makes calculations of the
population genetic diversity more efficient. In addition, where
applicable, fitness may be computed incrementally from the
parent’s fitness in the previous generations and incidental
mutations. We also implemented an optional framework where
genomes are stored as differences from a central ‘master’ se-
quence. This master sequence can be recalculated occasionally
to release memory.

At predefined time intervals or specific times during the
simulation, SANTA-SIM can report statistics about the cur-
rent population, including average fitness, genetic diversity
and number of unique genomes. A random sample of indi-
viduals of a specified size can also be generated and the ge-
nomic sequences recorded as a nucleotide or amino acid
alignment (FASTA or NEXUS format) for use in other software
applications.

Finally, it is possible for SANTA-SIM to keep track of the
genealogy of the entire population and then provide the tree
of the individuals sampled. A variety of events can be
recorded, such as the prevalence of different states in se-
lected sites, or shuffling events in the purifying fitness func-
tion, to be able to investigate the effect of these events on the
population.

4. Results
4.1 Simulation examples

We describe three example runs that demonstrate some of the
functionalities of SANTA-SIM and the fitness functions that can
be applied. A first example simulates the consecutive selection
of a set of deleterious mutations that each gives a fitness advan-
tage in a new environment. A second example demonstrates
how the initial frequency of a beneficial mutation during a se-
lective bottleneck impacts diversity and phylogeny, which is re-
lated to the discussion of soft and hard selective sweeps
(Hermisson and Penningsa, 2005). A third example shows the
interplay between the fitness of a mutation and its frequency,
as in the case of a host–pathogen interaction. The configuration
files and additional details of these simulations are available as
Supplementary Material.

4.1.1 Directional selection driven by changing selective advantage
of mutations
In the face of environmental changes, certain mutations which
were previously neutral or deleterious can confer a selective ad-
vantage in the new environment. Such a scenario occurs when
a viral population, for example, HIV-1, is subjected to suppres-
sive action of antiviral treatment and demonstrates adaptive
evolution. We can simulate this example using two epochs,
with no selective pressure present in the first epoch. A popula-
tion of 10,000 sequences was created by evolving an initial se-
quence (609 nucleotides in length) under mutation and
moderate level of purifying selection for a duration of 3,000 gen-
erations. A set of four mutations across this sequence were as-
sociated with a selective disadvantage, making their fixation in
the population unlikely. The second epoch started after genera-
tion 3,000, with a strong beneficial impact of these four muta-
tions in the new environment, and their subsequent selection.
Figure 2 illustrates the dynamics of population diversity and the
frequency of the beneficial alleles while Fig. 3 shows the phylog-
eny reconstructed from sequences sampled through the course
of the simulation. Genetic diversity was calculated as the mean
pairwise distance, based on percent identity, within a random
sample of 1,000 individuals from the population.

4.1.2 Fraction of viruses with beneficial alleles affects the
trajectory of a selective sweep
Directional selection, as shown in the previous section, results
in a decrease of genetic variation in the viral population, but the
extent of reduction depends on the initial frequency of the ben-
eficial mutation and the strength of selection (Smith and Haigh,
1974). When a strongly beneficial but rare mutation increases in
frequency, the genetic background of this adaptive mutation

Table 2. Overview of the fitness functions that can be implemented in the simulations by their respective specification in the XML file.

Fitness function Description

Neutral Does not lead to a selective constraint.
Empirical Manual specification of fitness values for each state (for instance amino-acid) at one or more

positions.
Purifying Assigning negative selection coefficients based on observed frequencies in an alignment, or using bio-

chemical properties compared with the most frequent state in an alignment.
Age dependent Records the age of alleles, and assigns higher penalties to older alleles.
Frequency dependent Assigns higher penalties to more frequent alleles.
Exposure dependent Penalizes the exposure of an allele, by integrating frequency over time.
Population size dependent Enables to define fitness as a function of total population size.
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will dominate the population and have a strong impact on di-
versity, known as a hard selective sweep. In contrast, rapid ad-
aptation to a novel selection force by a mutation either highly
prevalent or newly arising simultaneously in different

individuals will lead to a less drastic reduction in genetic varia-
tion of the population, known as a soft sweep (Wilson,
Pennings, and Petrov, 2017). This example investigates how a
starting mutation frequency affects a selective sweep. Two in-
dependent simulations were carried out for a starting popula-
tion of size 10,000 individuals, but where one population had 55
individuals with the beneficial mutation (here amino acid lysine

Figure 2. The simulation has two phases. In the first 3,000 generations, the only selective force is purifying selection. After this initial phase (vertical grey line), four par-

ticular mutations become beneficial: 50 T (yellow), 100 K (light blue), 150 A (green), and 200 G (dark blue). Mutation 100 K has been present in the initial population at

low prevalence (%). Prevalence on the y-axis is shown as log10 transformed. Diversity drops through each wave of selective sweep where a beneficial mutation appears

and takes over. The simulation starts from a population with only one sequence at the first generation. Diversity was defined as the mean pairwise identity percentage

between all sequences. For a given nucleotide position between two sequences, two non-identical bases will result in a score of one for that position while identical

bases give a zero score. The distance of the two sequences was calculated as the mean of such identity scores across all nucleotide positions. In this simulation, the

alleles reaching fixation have primarily appeared de novo or selected from standing variation (100 K), as no recombination events were simulated here.

Figure 3. Phylogenetic tree from the sampled sequences through multiple waves

of selective sweep. From the simulation run of 10,000 generations, a sample of

500 sequences was collected at every 100th generation, and a tree was made

with FastTree using default parameters (Price, Dehal, and Arkin, 2009). The tree

is coloured by increasing generations (from red to blue) and the outer band

denotes the consecutive selection of beneficial mutations (see Fig. 2 for muta-

tion colours, the red section denotes absence of a mutation).

Figure 4. Diversity trajectory through selective sweeps for different initial fre-

quencies of the beneficial alleles. Two modes of selective sweep are simulated

for a population of size 10,000: In one case a small fraction of the initial popula-

tion carries the beneficial allele (2 in 10,000; blue line), whereas in the other case

a higher fraction carries this allele (55 in 10,000; red line). The diversity is calcu-

lated as the mean pairwise distance between 1,000 sampled sequences from the

population, similar to the previous simulation. The simulation is repeated 1,000

times. The mean and standard deviation of these replicates are shown as the

thick line and shaded area, respectively.
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at position 100) before the onset of the selective sweep, while
the other population only had two individuals with the benefi-
cial mutation.

In order to carry out this simulation, initially a seed hetero-
geneous population was created by evolving a starting popula-
tion with only one genome sequence (609 nucleotides in length)
for 50,000 generation in presence of moderate purifying selec-
tion. Afterwards, the target mutation position of this seed se-
quence was edited so that in one case there are only two
individuals with the beneficial allele, while in another case
there are fifty-five individuals with the beneficial allele. These

seed populations were subjected to the second phase of simula-
tion were selective sweeps occurred, giving a selective advan-
tage to the mentioned allele.

Figure 4 illustrates that the magnitude of diversity reduction
upon a sweep is dependent on the fraction of the beneficial mu-
tation in the initial population. The scenario of only two individ-
uals with the beneficial allele being present and dominating the
population immediately upon the sweep, sequence diversity
drops significantly since the growing population originated
from the two individuals with the increased fitness advantage.
However, when fifty-five individuals carry the beneficial allele,
a smaller reduction in sequence diversity is observed due to the
more heterogeneous origin of the growing population. Diversity
remains at a quasi-constant level after the sweep since the
span of the number of generations here is rather short.

In Figure 5, phylogenetic trees were constructed after fixa-
tion of the beneficial allele in the population and demonstrate
distinguishably different branching patterns at the root of the
trees for the two modes of the selective sweep and resulting dif-
ferent levels of diversity, which resulted in the pattern in Fig. 4.
A limited number of branching patterns is associated with re-
duced genetic diversity, resulting in shorter branches within the
tree and subsequent increased collapsing of clades, compared
with a more diverse virus population, when using a fixed dis-
tance threshold for collapsing.

4.1.3 Simulation of dynamics of host–pathogen co-evolution: a
complex selection scenario
Pathogen escape from the host immune response can be tran-
sient when adaptation of the host immune system to the patho-
gen variant occurs. In this example, we simulated a scenario
where the pathogen has the capability to develop escape from
the host’s immune system and increase its fitness by acquiring
a particular beneficial mutation. At the same time, the host
gradually develops more protection against the alleles of the
pathogen exposed to the host.

SANTA-SIM can model this kind of adaptive dynamics using
an ‘exposure dependent fitness function’ which assigns fitness

Figure 5. Phylogenetic trees after fixation of the beneficial allele grouped for two levels of initial prevalence of allele. A population with two levels of initial prevalence

of a beneficial allele is subjected to selective sweeps. Phylogenetic unrooted trees are sampled (100 sequences), using tree sampling capability of SANTA-SIM, after the

fixation of the beneficial allele. The tree on the left corresponds to the case where the starting population had a lower number of individuals with the beneficial allele

(2 in 10,000), while the tree on the right corresponds to the case where the starting population had a higher number of individuals with the beneficial allele (55 in

10,000). Clades were collapsed (red dots) when average branch length distance to the taxa were below an illustrative threshold.

Figure 6. Simulation of selection dynamics in host pathogen co-evolution.

Simulation of the interplay between the appearance of an escape mutation in a

pathogen and host adaptation to the resistance. The selection coefficient of the

beneficial mutation was set to 0.05. The exposure dependent fitness function

was used to simulate the gradual decrease in fitness of the beneficial resistance

allele in a pathogen as the hosts immune system adapts. Three parameters for

exposure penalty were used. The penalty parameter for the green curves is set

to 10�7, for the orange curves it is 10�6 and for the purple curves it is 10�5. There

are two replicates shown for each simulation.
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values to pathogen variants based on the exposure of their al-
lele in the population since it last appeared. Such fitness is
assigned as e�E�p where p is the penalty parameter and E is the
integrated prevalence of the allele over time since its last ap-
pearance. Thus the variants are penalized when they have been
present for a longer period at a higher prevalence in the popula-
tion. The severity of how much the exposed alleles are punished
also depends on a penalty parameter. Overall, the fitness of
each individual is determined by two factors: presence of the
beneficial mutation and the exposure penalty which models
adaptive evolution of host’s immune system.

Figure 6 demonstrates the effect of the exposure penalty pa-
rameter. A low value (shown in green) is similar to the absence
of exposure-dependent fitness function and the beneficial mu-
tation reaches and remains a high prevalence. The minor fluc-
tuation in prevalence results from the marginal increase
relative to other alleles with selection coefficient of 0.05. For
higher values of the penalty parameter for allele exposure, it is
observed that mutations that increase in prevalence are penal-
ized for their exposure and affecting the duration of high preva-
lence. Simulation for each parameter is shown for duplicates.

4.2 Memory and runtime profiling

Multiple simulation configurations were defined with a range of
population sizes and genome lengths. A memory footprint and
elapsed wall-clock time were measured for each simulation as
shown in Fig. 7. A computer with 3.4 GHz Intel Core i7 CPU and
32 GB of RAM was used to run the simulations (Ubuntu 16.04,
Java openjdk version 1.8). All simulations are configured to run
for 10,000 generations under purifying selection and without
sampling the simulated sequences. More information on this
analysis is available at the project website. We also compared
the performance of SANTA-SIM against three established simu-
lators using a common evolutionary scenario: simuPOP
(Peng and Kimmel, 2005), SFS CODE (Hernandez, 2008), and
VIRAPOPS (Petitjean and Vanet, 2014). These benchmarking

results, together with the experiment files, are provided as
Supplementary Material and demonstrate that SANTA-SIM is
competitive in terms of memory and runtime statistics.

5. Discussion

SANTA-SIM is a forward-time discrete-generation gene se-
quence simulator, designed to scale to large population sizes
and micro-organism genome lengths while implementing com-
plex selection and recombination scenarios. SANTA-SIM is
open-source software and written in an extremely modular
fashion to facilitate a wide range of additional components be-
ing implemented to accommodate varying simulation environ-
ments and organisms.
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