[®]Multiomic Characterization Reveals a Distinct Molecular Landscape in Young-Onset Pancreatic Cancer

Ifeanyichukwu Ogobuiro, MD, MHS¹; Yasmine Baca, MS²; Jennifer R. Ribeiro, PhD² [b]; Phillip Walker, PhD²; Gregory C. Wilson, MD³ [b]; Prateek Gulhati, MD, PhD⁴; John L. Marshall, MD⁵ [b]; Rachna T. Shroff, MD, MS⁶ [b]; David Spetzler, PhD, MBAⁿ [b]; Matthew J. Oberley, MD, PhDⁿ [b]; Daniel E. Abbott, MD³; Hong Jin Kim, MD⁰; David A. Kooby, MD¹⁰; Shishir K. Maithel, MD¹⁰ [b]; Syed A. Ahmad, MD³; Nipun B. Merchant, MD¹; Joanne Xiu, PhD²; Peter J. Hosein, MD¹¹ [b]; and Jashodeep Datta, MD¹ [b]

DOI https://doi.org/10.1200/P0.23.00152

ABSTRACT

PURPOSE Using a real-world database with matched genomic-transcriptomic molecular data, we sought to characterize the distinct molecular correlates underlying clinical differences between patients with young-onset pancreatic cancer (YOPC; younger than 50 years) and patients with average-onset pancreatic

cancer (AOPC; 70 years and older).

METHODS We analyzed matched whole-transcriptome and DNA sequencing data from 2,430 patient samples (YOPC, n=292; AOPC, n=2,138) from the Caris Life Sciences database (Phoenix, AZ). Immune deconvolution was performed using the quanTIseq pipeline. Overall survival (OS) data were obtained from insurance claims (n=4,928); Kaplan-Meier estimates were calculated for age- and molecularly defined cohorts. Significance was determined as FDR-corrected P values (Q) < .05.

RESULTS Patients with YOPC had higher proportions of mismatch repair—deficient/microsatellite instability-high, BRCA2-mutant, and PALB2-mutant tumors compared with patients with AOPC, but fewer SMAD4-, RNF43-, CDKN2A-, and SF3B1-mutant tumors. Notably, patients with YOPC demonstrated significantly lower incidence of KRAS mutations compared with patients with AOPC (81.3% v 90.9%; Q = .004). In the KRAS wild-type subset (n = 227), YOPC tumors demonstrated fewer TP53 mutations and were more likely driven by NRG1 and MET fusions, whereas BRAF fusions were exclusively observed in patients with AOPC. Immune deconvolution revealed significant enrichment of natural killer cells, $CD8^+$ T cells, monocytes, and M2 macrophages in patients with YOPC relative to patients with AOPC, which corresponded with lower rates of HLA-DPA1 homozygosity. There was an association with improved OS in patients with YOPC compared with patients with AOPC with KRAS wild-type tumors (median, 16.2 [YOPC- $KRAS^{WT}$] v 10.6 [AOPC- $KRAS^{WT}$] months; P = .008) but not KRAS-mutant tumors (P = .084).

CONCLUSION

In this large, real-world multiomic characterization of age-stratified molecular differences in pancreatic ductal adenocarcinoma, YOPC is associated with a distinct molecular landscape that has prognostic and therapeutic implications.

ACCOMPANYING CONTENT

Accepted August 25, 2023 Published November 9, 2023

JCO Precis Oncol 7:e2300152 © 2023 by American Society of Clinical Oncology

Licensed under the Creative Commons Attribution 4.0 License

INTRODUCTION

Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy with a 5-year survival rate of 12%¹ and is a leading cause of cancer-related mortality in the United States.² PDAC is typically diagnosed in the seventh decade of life, referred to as average-onset pancreatic cancer (AOPC)¹,³; however, young-onset pancreatic cancer (YOPC)—defined as diagnosis at age <50 years⁴,⁵—constitutes 6%-9% of newly detected PDAC and has

steadily increased in incidence over the past two decades.⁵⁻¹² Emerging data indicate that smoking,^{4,5} alcohol use,¹³ obesity,¹⁴ and family history^{13,15,16} are risk factors for YOPC. YOPC also skews toward male sex^{7,11} although rates in women—particularly Black women—are rising faster than in men.^{6,7,12}

The heterogeneity in the molecular landscape of PDAC that underpins its broad range of tumor phenotypes is one of the driving forces for suboptimal outcomes

CONTEXT

Key Objective

Young-onset pancreatic cancer (YOPC) represents a growing proportion of patients diagnosed with pancreatic ductal adenocarcinoma before age 50 years, with distinct clinical characteristics. Using a large real-world molecular database, we characterized the molecular features underlying these clinical differences between patients with YOPC and patients with average-onset pancreatic cancer (AOPC; 70 years and older).

Knowledge Generated

Compared with AOPC, YOPC demonstrated an increased incidence of mutations in DNA repair genes such as *BRCA2* and *PALB2* but lower rates of alterations in oncogenic driver genes, most notably *KRAS*. Among the *KRAS* wild-type cohort, YOPC was more likely driven by *NRG1* and *MET* fusions, but not *BRAF* fusions. YOPC displayed enrichment of distinct immune cell subsets and had lower rates of *HLA-DPA1* homozygosity. Strikingly, patients with YOPC demonstrated improved overall survival that was restricted to the *KRAS* wild-type cohort.

Relevance

YOPC is associated with a distinct molecular and immune landscape that could inform targeted therapies for these patients.

despite modern multimodal therapy.¹⁷ However, clinically annotated tumor profiling database studies such as the Know Your Tumor study have demonstrated that patients with PDAC experience longer survival when receiving therapies matching actionable mutations compared with nonmatched therapies.¹⁸ Moreover, The Cancer Genome Atlas analysis of PDAC revealed that, excluding KRAS and CDKN2A, 42% of patients could be candidates for molecularly informed clinical trials.¹⁹ The increasing armamentarium of precision medicine approaches for patients with PDAC emphasizes the critical need to understand tumor-level molecular differences between patients with YOPC and AOPC, which might inform personalized therapy in this subset of patients.

Efforts to describe molecular differences between YOPC and AOPC have been hampered by a lack of real-world, largescale matched genomic and transcriptomic data, leading to conflicting conclusions between studies. For instance, Raffenne et al³ found no substantial differences in the mutational landscape between patients with YOPC and AOPC, whereas others have identified higher SMAD4 mutation rates, increased activation of the TGF-β pathway,20 and differential expression of CDKN2A and FOXC2 in YOPC compared with AOPC.21 Despite these differences, some unifying signals have emerged, particularly that patients with YOPC harbor fewer oncogenic somatic KRAS mutations but more pathogenic germline mutations than patients with AOPC.16,19,20 Further complicating our understanding of this question are the conflicting survival outcomes observed in these studies, with many indicating that patients with YOPC have improved survival, 9,11,22,23 but others showing either shorter or no difference in survival compared with patients with AOPC.3,5,10,15,20,24 Together, these results illustrate gaps in our understanding of the genomic and transcriptomic

correlates underlying clinical differences between patients with YOPC and AOPC.

In the present study, we analyzed a real-world multi-institutional cohort of 2,430 sequenced tumors—including 292 YOPC—to characterize the distinct molecular landscape associated with YOPC compared with AOPC and better understand molecular correlates underlying the divergent clinical outcomes in patients with YOPC.

METHODS

Patient Samples

Two thousand four hundred thirty histologically confirmed PDAC samples were identified in the Caris Life Sciences database (Phoenix, AZ) with matched DNA sequencing, whole-transcriptome sequencing (WTS), and immunohistochemistry (IHC) data. We stratified these specimens into YOPC (younger than 50 years at diagnosis; n=292) and AOPC (70 years and older; n=2,138). Among YOPCs, 179 were metastases and 113 were primary tumors; among AOPCs, 1,167 were metastases and 967 were primary tumors.

Next-Generation Sequencing

Tumor enrichment was achieved using manual microdissection of formalin-fixed, paraffin-embedded (FFPE) sections that were marked for areas with an at least 20% tumor content. Next-generation sequencing (NGS) was performed on genomic DNA using the NextSeq or NovaSeq 6000 platforms (Illumina, Inc, San Diego, CA). For NextSeq-sequenced tumors, a custom-designed SureSelect XT assay was used to enrich 592 whole-gene targets (Agilent

Technologies, Santa Clara, CA). For NovaSeq-sequenced tumors, a hybrid pull-down panel of baits designed to enrich for >700 clinically relevant genes at high coverage and read depth was used, along with a separate panel to enrich for an additional >20,000 genes at lower depth. Genetic variants were detected with >99% confidence and were categorized by board-certified molecular geneticists as previously described.²⁵ Tumor mutational burden (TMB)high was defined as ≥10 mutations/Mb.

IHC

FFPE sections on glass slides were stained for PD-L1 (clone SP142 [Spring Bioscience, Pleasanton, CA]) using automated staining techniques, per the manufacturer's instructions, and were optimized and validated per Clinical Laboratory Improvement Amendments/College American Pathologists and International Organization for Standardization requirements. Staining was identified as positive if its intensity on the membrane of the tumor cells was $\geq 2+$ (on a semiquantitative scale of 0-3: 0 no staining, 1+ weak staining, 2+ moderate staining, or 3+ strong staining) and the percentage of positively stained cells was ≥5%.

Mismatch Repair Deficiency/Microsatellite **Instability-High Status**

Multiple test platforms were used to determine mismatch repair deficiency (dMMR)/microsatellite instability-high (MSI-H) status of the tumors profiled, including fragment analysis (FA, Promega, Madison, WI), IHC (MLH1, M1 antibody; MSH2, G2191129 antibody; MSH6, 44 antibody; and PMS2, EPR3947 antibody [Ventana Medical Systems, Tucson, AZ]), and NGS. The three platforms generated highly concordant results as previously reported26; in the rare cases of discordant results, dMMR/MSI-H status was determined in the order of IHC, FA, and NGS.

WTS

mRNA was isolated from manually microdissected areas of FFPE sections with a tumor content of at least 10%. Whole-transcriptome sequencing (WTS) was performed using the Illumina NovaSeq platform (Illumina, Inc, San Diego, CA) and the Agilent SureSelect Human All Exon V7 bait panel (Agilent Technologies, Santa Clara, CA); transcripts per million were reported. Gene fusions were detected using the ArcherDX fusion assay (ArcherDX, Boulder, CO) and Illumina MiSeq platform (Illumina MiSeq, San Diego, CA) as previously described.²⁷ Immune cell fractions were calculated from transcriptomic data using quanTIseq²⁸ and xCell.²⁹ Gene set enrichment analysis (GSEA) and Metascape pathway analysis were performed on WTS data.30,31 HLA genotyping was performed using arcasHLA, an in silico tool that infers HLA genotypes from RNA sequencing data.32 If a single HLA

genotype was detected, the specimen was classified as homozygous, which can occur because of parental homozygosity or HLA loss of heterozygosity.

Statistical Analysis

Clinicodemographic features were compared using the chisquare test, with P < .05 considered statistically significant. Comparative analysis of molecular alterations in the cohorts was analyzed using chi-square or Fisher's exact tests. Tumor microenvironment cell fractions were analyzed among cohorts using nonparametric Kruskal-Wallis testing. Because these closely related cohorts are only differentiated by age, *P* values of < .05 were highlighted as relevant trends. For a more stringent analysis of the differences between AOPC and YOPC, P values were corrected for multiple hypothesis testing using the Benjamini-Hochberg method to avoid type I error and adjusted Q < .05 was considered statistically significant.

Clinical Outcomes Data

Real-world overall survival (OS) information was obtained from insurance claims data and calculated from the date of tissue collection to last contact. Kaplan-Meier estimates were calculated for YOPC and AOPC in the entire cohort of patients with clinical data in the Caris CODEai clinicogenomic database (n = 4,928) and stratified by KRAS mutation status (n = 3,116 patients with KRAS data; $KRAS^{WT}$, n = 393; $KRAS^{MUT}$, n = 2,723); these numbers differ from the molecular analysis since the database is constantly increasing in size. Significance was determined as log-rank P < .05.

Compliance Statement

This study was approved by the Institutional Review Board at the University of Miami and conducted in accordance with guidelines of the Declaration of Helsinki, Belmont report, and US Common rule. Per 45 CFR 46.101(b)(4), this study used retrospective, deidentified clinical data and no patient consent was necessary from the patients.

Data Availability

Data presented in this study are not publicly available because of data size and patient privacy but are available on reasonable request from the corresponding author.

RESULTS

Clinicodemographic Characteristics

At the time of molecular analysis, 2,430 patient samples were annotated with genomic and transcriptomic data. A total of 4,928 patients had available clinical outcomes data in the most recent query of the Caris CODEai clinicogenomic database, from which Kaplan-Meier curves were generated.

TABLE 1. Clinicodemographic Characteristics of Patients With PDAC From the Caris Life Sciences Database

Variable	YOPC, No. (%)	AOPC, No. (%)	Р
Median age (years)	46	75	
Sex			<.05
Male	190 (65)	1,116 (52)	
Female	102 (35)	1,022 (48)	
Smoking status			.023
Current	18 (95)	142 (91)	
Nonsmoker	1 (5)	14 (9)	

NOTE. Specimens were stratified by YOPC and AOPC and analyzed by sex and smoking status. P values were determined by Fisher's exact

Abbreviations: AOPC, average-onset pancreatic cancer; PDAC, pancreatic ductal adenocarcinoma; YOPC, young-onset pancreatic cancer.

Of the 2,430 patients with molecular data, 292 patients (12%) had YOPC, with the median age being 46 years (IQR, 41-48). Among 2,138 patients with AOPC (88%), the median age was 75 years (IQR, 72-79). There was a significant preponderance of male patients (65% ν 52%; P < .05) and current smokers (95% ν 91%; P = .023) in patients with YOPC compared with patients with AOPC, respectively (Table 1).

Comparative Molecular Landscape of YOPC and AOPC

Previous studies have reported differing prevalence of molecular alterations^{3,19,20,33,34} and a preponderance of germline mutations in BRCA1/2 and MMR genes in patients with YOPC compared with patients with AOPC.16 However, direct comparisons between YOPC and AOPC are scarce and have used smaller cohorts.^{3,20} We analyzed clinically relevant pathogenic/likely pathogenic mutations and copy number alterations in tumors from patients with YOPC and AOPC from this real-world cohort (Appendix Table A1).

KRAS mutations were the most prevalent somatic alterations in both YOPC and AOPC (81.3% and 90.9%), followed by TP53 (69.3% and 74.7%), CDKN2A (19.3% and 24.8%), and SMAD4 (14.7% and 20.1%; Figs 1A and 1B), respectively. Although germline mutational data were unavailable, patients with YOPC had significantly higher rates of alterations in homologous recombination repair (HRR) genes detected in their tumors, specifically BRCA2 (4.7% v 2.1%; P = .008) and PALB2 (1.4% ν 0.5%; P = .044), compared with patients with AOPC. Patients with YOPC were also noted to have higher rates of dMMR/MSI-H tumors (2.8% ν 0.8%; P = .001) compared with patients with AOPC.

Conversely, patients with AOPC had significantly higher rates of oncogenic KRAS mutations compared with patients with YOPC (90.9% ν 81.3%; P = 1.10e-6; Q = .004) and

significantly higher rates of alterations in CDKN2A (24.8% v 19.25%; P = .045), SMAD4 (20.1% v 14.7%; P = .033), RNF43 (6.3% v 2.5%; P = .012), and SF3B1 (2.7% v 0.7%; P = .046;Figs 1A and 1B).

Spectrum of Alterations Within KRASWT Tumors in Patients With YOPC and AOPC

We next dissected the landscape of molecular alterations within the KRAS wild-type (KRAS^{WT}; n = 227 [10.7%]) cohort, given the significant enrichment of KRAS^{WT} tumors in patients with YOPC (Fig 2A). Previous studies have implicated the enrichment of mutations in BRAF, CTNNB1, and alternative RAS pathway genes¹⁹ in KRAS^{WT} PDAC. Accordingly, we observed trends toward increased rates of CTNNB1 mutations (17.7% v 4.0%; P = .002) and reduced rates of pathogenic TP53 mutations (21.3% v 44.4%; P = .004) in YOPC-KRAS^{WT} tumors compared with AOPC-KRASWT tumors. Moreover, YOPC-KRAS^{WT} patients demonstrated higher rates of MET $(4.1\% \ v \ 0.6\%; \ P = .12) \ \text{and} \ NRG1 \ (6.1\% \ v \ 1.1\%; \ P = .07)$ fusions compared with AOPC-KRAS^{WT} patients, whereas BRAF fusions were exclusively concentrated in AOPC-KRASWT compared with YOPC-KRAS^{WT} tumors (6.8% ν 0.0%; P = .07; Fig 2B). These results indicate distinct molecular vulnerabilities in KRASWT tumors when stratifying by age of PDAC onset.

Differentially Regulated Signaling Pathways in Tumor **Transcriptomes From Patients With YOPC Versus AOPC**

To better understand how these genomic differences between YOPC and AOPC tumors influence downstream oncogenic and tumor microenvironment signaling, we performed GSEA comparing whole-tumor transcriptomes in YOPC versus AOPC. A relatively narrow number—that is, total of 20—of genes were significantly differentially expressed (P < .05; Q < .25) between YOPC and AOPC (Fig 3A; Appendix Table A2). The top genes more highly expressed in YOPC included carboxypeptidase B (CPB2), plasminogen (PLG), prothrombin (F2), and genes for fibrinogen alpha and beta chains (FGA/FGB), whereas plasminogen activator inhibitor 2 (SERPINB2) and interferon gamma (IFNG) had significantly higher expression in AOPC. We then used a less stringent P value cutoff (P < .25) in Metascape pathway analysis to clarify the transcriptomic nuances of these agestratified PDAC cohorts. This analysis revealed that YOPC tumor transcriptomes were significantly enriched in pathways related to blood clotting cascade, extracellular matrix, cancer pathways, cytokine/inflammatory response, and angiogenesis (Fig 3B).

Intratumoral Immune Deconvolution and HLA Landscape in YOPC Versus AOPC

Because of the enrichment of select pathways and somatic alterations with diverse immunologic repercussions in YOPC, we sought to determine differences in the tumor immune microenvironment between YOPC and AOPC

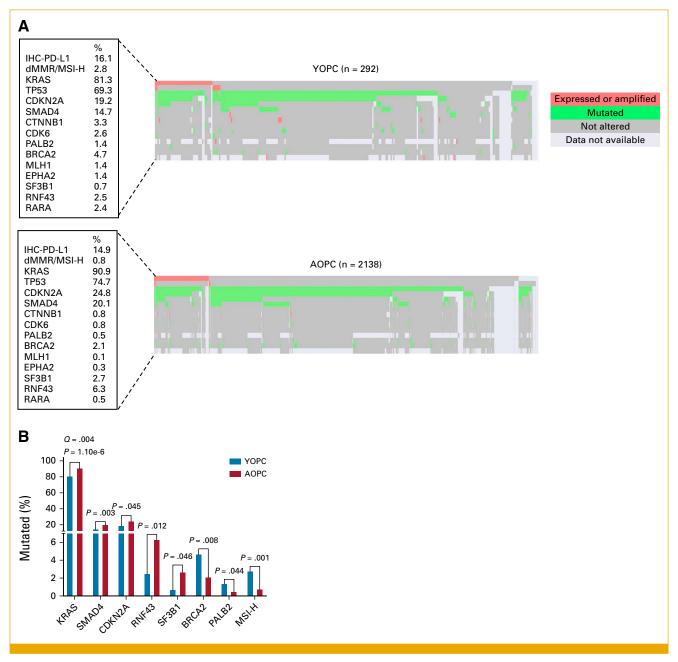
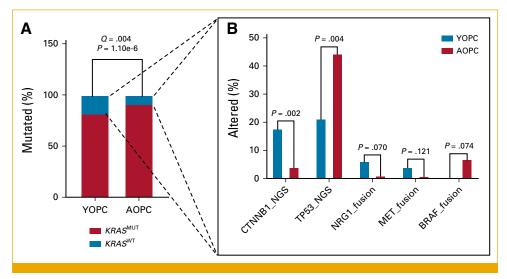
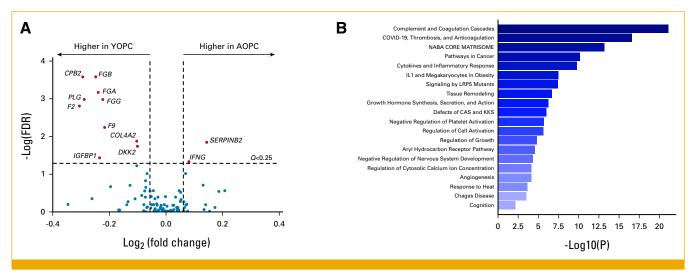
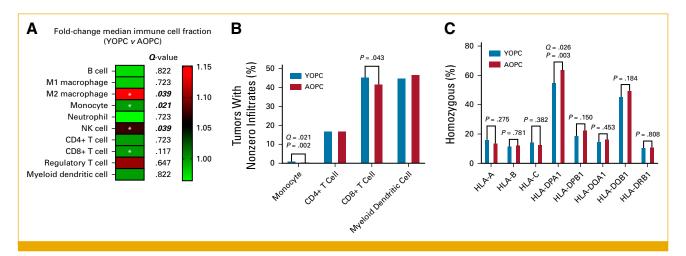



FIG 1. Molecular landscape of YOPC and AOPC. (A) Oncoprints displaying the pathogenic molecular alteration pattern of YOPC (n = 292) and AOPC (n = 2,138). Columns represent tumor samples. Rows represent individual molecular biomarkers, whose percentages in the cohort are described in the boxes to the left of oncoprints. Pink, expressed or amplified; green, mutated; gray; not altered; light gray, data not available. (B) Bar graph showing statistically significant differential molecular alterations in YOPC (blue bars, n = 292) versus AOPC (red bars, n = 2,138). P values (chi-square or Fisher's exact tests) and FDR-adjusted Q values are indicated above the compared groups for each molecular alteration. AOPC, average-onset pancreatic cancer; FDR, false discovery rate; YOPC, young-onset pancreatic cancer.

using quanTIseq immune deconvolution.28 While there were no significant differences in rates of TMB-high tumors, PD-L1 positivity (via IHC), or immune checkpoint gene expression between the cohorts (Appendix Figs A1A and A1B), there was a statistically significant enrichment in computationally inferred signatures for natural killer (NK) cells (P = .009; Q = .039), CD8⁺ T cells (P = .043; Q = .117), M2 macrophages (P = .011; Q = .039), and monocytic cells (P = .002; Q = .021) in tumors from patients with YOPC compared with AOPC (Figs 4A and 4B). We then used xCell deconvolution²⁹ to further compare CD8⁺ T-cell subsets between cohorts, which revealed no differences in effector or central memory CD8+ T cells but demonstrated enrichment of naïve CD8+ T cells in tumors from patients with YOPC (Appendix Fig A1C).


To further understand potential major histocompatibility complex determinants that might underlie these


FIG 2. Spectrum of alterations within *KRAS* wild-type YOPC and AOPC tumors. (A) Frequency of *KRAS* wild-type (*KRAS*^{WT}; blue, n=227) and *KRAS*-mutant (*KRAS*^{MUT}; red, n=1,970) tumors in YOPC and AOPC, determined by next-generation sequencing for pathogenic alterations. (B) *KRAS*^{WT} tumors, indicated in blue in (A), were analyzed separately for differences in pathogenic molecular alterations. The spectrum of top mutations and fusions within *KRAS*^{WT} YOPC (blue bars, n=49-51 [two YOPC-*KRAS*^{WT} patients lacked WTS data for fusions]) and AOPC (red bars, n=176) is shown, with *P* values (chi-square or Fisher's exact tests) indicated. AOPC, average-onset pancreatic cancer; WTS, whole transcriptome sequencing; YOPC, young-onset pancreatic cancer.

immunologic differences between cohorts, we examined HLA-type and locus-specific expression inferred from RNA sequencing data. We observed a significantly decreased rate of homozygosity in HLA-DPA1 in tumors from patients with YOPC compared with AOPC (55.2% ν 64.1%; P=.003; Q=.026; Fig 4C). Taken together, these

associative data illustrate potential differences in immunogenicity related to cell-autonomous and/or non-autonomous mediators in tumors from patients with YOPC that might be contributory to differences in clinicopathologic outcomes between patients with YOPC and AOPC.

FIG 3. Differentially regulated signaling pathways in YOPC and AOPC. (A) The volcano plot shows DEGs between YOPC (n = 284) and AOPC (n = 2,089), with a cutoff of FDR-adjusted Q < .25. Genes to the left indicated in red are significantly higher in YOPC, whereas genes to the right indicated in red are significantly higher in AOPC. (B) Metascape pathway enrichment analysis was performed on 40 DEGs between YOPC and AOPC (P < .25). The bar graph indicates canonical signaling pathways and biologic processes differentially enriched in the tumor transcriptomes of YOPC compared with AOPC tumor samples. The x-axis indicates statistical significance ($-\log_{10} P$ value). AOPC, average-onset pancreatic cancer; CAS, contact activation system; DEGs, differentially expressed genes; FDR, false discovery rate; KKS, kallikrein/kinin system; YOPC, young-onset pancreatic cancer.

FIG 4. Intratumoral immune populations and HLA landscape in YOPC and AOPC. (A) Computationally inferred intratumoral immune population between YOPC (n = 284) and AOPC (n = 2,089). The heatmap indicates fold change (YOPC v AOPC) in median immune fraction according to quanTIseq. P values were determined using the nonparametric Kruskal-Wallis test. Asterisks indicate P < .05, with Q values shown to the right. Italicized/bolded Q values indicate Q < .05. (B) For cell types with median values of "0" (ie, monocytes, CD4⁺ T cells, CD8⁺ T cells, and myeloid dendritic cells), the percentage of tumors with nonzero immune infiltrates were compared. (C) Differences in HLA landscape inferred from WTS data in YOPC (blue bars, n = 284) compared with AOPC (red bars, n = 2,089). P values (chi-square or Fisher's exact test) and FDR-adjusted Q values are indicated above compared groups for each HLA gene. AOPC, average-onset pancreatic cancer; FDR, false discovery rate; WTS, whole-transcriptome sequencing; YOPC, young-onset pancreatic cancer.

OS of Patients With YOPC and AOPC Stratified by $KRAS^{\text{MUT}}$ and $KRAS^{\text{WT}}$

The Caris CODEai data set included 4,928 patients with insurance claims-related follow-up information, but limited clinicopathologic data precluded stagetreatment-stratified comparisons between YOPC and AOPC cohorts. Notwithstanding, we observed significantly longer OS in patients with YOPC compared with patients with AOPC (14.9 ν 10.8 months; P < .00001; Fig 5A). Given the differences in frequency of KRAS-altered tumors between cohorts, we further analyzed the effect of KRAS alteration status on OS. YOPC-KRASWT patients had significantly prolonged OS compared with AOPC-KRASWT patients (16.2 v 10.6 months; P = .008; Fig 5B). However, there was no difference in OS between patients with YOPC and AOPC with KRAS^{MUT} tumors (12.9 ν 10.0 months; P = .084; Fig 5C). These data suggest that survival differences between patients with YOPC and AOPC in the overall cohort may be driven by survival variation specifically in patients harboring KRASWT tumors.

DISCUSSION

To our knowledge, the present study represents the largest pragmatic molecular comparison of YOPC versus AOPC. Our data reinforce previously observed epidemiologic distinctions between patients with YOPC and AOPC, 4.5.7,11 specifically its male preponderance and association with active smoking behaviors in patients with YOPC, and conclusively reveal a higher incidence of *KRAS*^{WT} tumors in YOPC. Within this *KRAS*^{WT} subset, we uncovered distinct molecular

vulnerabilities when stratifying by age—that is, *MET* and *NRG1* fusions in YOPC–*KRAS*^{WT} and *BRAF* fusions in AOPC–*KRAS*^{WT}. Among the unstratified cohort, tumors from patients with YOPC demonstrated higher rates of alterations in HRR genes, higher prevalence of dMMR/MSI–H, and enrichment of NK cells and naïve CD8⁺ T cells. Finally, our data reconcile conflicting previous evidence by demonstrating improved survival in patients with YOPC compared with patients with AOPC, which may not only reflect the reduced prevalence of the virulent oncogenic drivers *KRAS*, *SMAD4*, and *CDKN2A* in tumor genomes of YOPC patients but also be driven by the significantly longer survival of YOPC–*KRAS*^{WT} versus AOPC–*KRAS*^{WT} patients.

While the success of targeted and immune-based therapies has significantly lagged in PDAC compared with other solid tumors, the Know Your Tumor study illustrated the oncologic importance of molecularly matched targeted therapies in patients with advanced PDAC.18 To that end, our data provide a biologic map of the distinct molecular vulnerabilities in patients with YOPC that might be exploited therapeutically. While KRAS mutations—with their rapidly evolving therapeutic landscape—35,36 are ubiquitous in the broader cohort, our data reveal novel age-restricted molecular alterations in KRASWT tumors that may be clinically actionable; NRG1, MET, and BRAF fusions each have associated targeted therapies (eg, afatinib, capmatinib, and encorafenib/vemurafenib, respectively).37-39 Moreover, given recent data indicating the benefit of polyADP-ribose polymerase inhibitors (PARPi) in patients with germline or somatic mutations in HRR genes,40 the enrichment of BRCA2 and PALB2 alterations in YOPC tumors suggests that a higher proportion of patients with YOPC may ultimately

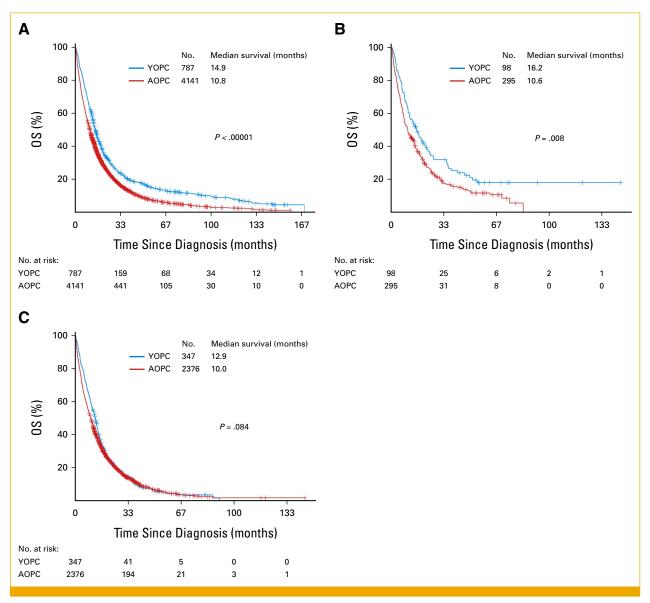


FIG 5. OS of patients with YOPC and AOPC stratified by KRAS^{MUT} and KRAS^{MUT}. (A) Kaplan-Meier curves depict the OS of patients with YOPC (blue line, n = 787) versus patients with AOPC (red line, n = 2,753) in the entire PDAC cohort with clinical outcome data (n = 4,141total). (B) and (C) All PDAC cases with KRAS mutation data available were stratified by KRAS status. Kaplan-Meier curves depict the OS of patients with YOPC (blue line, n = 98) versus patients with AOPC (red line, n = 295) with KRAS^{WT} tumors (n = 393 total; B) and patients with YOPC (blue line, n = 347) and AOPC (red line, n = 2,376) KRAS^{MUT} tumors (n = 2,723 total; C). AOPC, average-onset pancreatic cancer; OS, overall survival; PDAC, pancreatic ductal adenocarcinoma; YOPC, young-onset pancreatic cancer.

be eligible for PARPi. Taken together, these data call for heightened awareness among clinician and nonclinician stakeholders of the distinct genomic landscape in patients with YOPC and underscore the importance of routine NGS testing in younger patients presenting with newly diagnosed advanced PDAC to inform potential molecularly targeted therapeutic approaches.

Exploration of the transcriptomes differentially expressed between YOPC and AOPC revealed enrichment of pathways associated with thrombotic cascades, extracellular matrix, cancer pathways, and cytokine/inflammatory response, which suggests possible restriction of tumor immunity in YOPC.41-43 Conversely, the significant reduction in HLA-DPA1 homozygosity—which has been previously associated with dampened antigen presentation and checkpoint blockade efficacy44—and associated increases in computationally inferred adaptive immune subpopulations (ie, NK and CD8+ T cells) in YOPC suggest a less immunosuppressive and more immunostimulatory microenvironment. While the impact of greater numbers of intratumoral naïve CD8+ T cells in YOPC is unclear, higher circulating levels of these cells have been associated with improved prognosis in other solid tumors, for example, non-small-cell lung

cancer.45 These findings underscore the need for deeper investigation and functional characterization of cellautonomous and nonautonomous immunologic repercussions in YOPC tumors. The differentially expressed transcriptome we observed in patients with YOPC in the current study, however, is not strongly consistent with previous—albeit underpowered—studies that revealed enrichment in pathways predominantly related to hedgehog signaling and hypoxia in YOPC.3,20 This lack of concordance might be attributable to our substantially larger cohort size and/or the inherent heterogeneity of patients enrolled in this pragmatic real-world study capturing data with wide geographic and clinicodemographic variability, which present novel insights into the genotype-immunophenotype chasm in YOPC.46

Our study has several limitations. First, while the classification of YOPC and AOPC into age cutoffs of <50 and ≥70-year was informed in previous studies,³⁻⁵ this arbitrary distinction may underestimate subtle molecular differences in patients with YOPC. Second, while several of the reported genomic differences did not achieve significance by multiple hypothesis testing, we felt it important to report these novel signals with the recognition that our study compares molecular determinants in two closely related PDAC patient populations differentiated solely by a 20-year age gap. Further validation of the subtle molecular features distinguishing these cohorts is warranted. Third, the lack of clinical annotation (eg, performance status, resection status, stage, BMI, and multimodality treatment information) in the Caris CODEai data set precluded our ability to perform multivariable analyses to account for confounding by these clinical parameters.

Given the rise in YOPC diagnosis in recent years, 5-11 these data are a timely addition to an expanding compendium of molecular taxonomy that highlights the clinical and phenotypic heterogeneities observed in this distinct cohort of patients. 4,5,7,11,16,19-21 Furthermore, novel genomic and transcriptomic signals observed in tumors from patients with YOPC may offer a putative molecular basis for the divergent clinical outcomes observed in this population. Moving forward, these data could be incorporated into future trial design to allow more precise selection and stratification of patients with YOPC and AOPC for elements of multimodality and/or novel therapies, with the goal of improving contemporary survival outcomes in this lethal malignancy.

AFFILIATIONS

¹Department of Surgery, Sylvester Comprehensive Cancer Center, University of Miami Leonard M. Miller School of Medicine, Miami, FL ²Caris Life Sciences, Phoenix, AZ

³University of Cincinnati Medical Center, Cincinnati, OH

⁴Robert Wood Johnson Medical School, The Cancer Institute of NJ, New Brunswick, NJ

⁵Georgetown University, Washington, DC

⁶University of Arizona Cancer Center, Tucson, AZ

⁷Caris Life Sciences, Irving, TX

⁸University of Wisconsin Carbone Cancer Center, Madison, WI

⁹The University of North Carolina at Chapel Hill, Chapel Hill, NC

¹⁰Winship Cancer Institute, Emory University, Atlanta, GA

¹¹Department of Medicine, University of Miami Leonard M. Miller School of Medicine, Miami, FL

PREPRINT VERSION

Preprint version available on medRxiv (https://www.medrxiv.org/node/ 634311.full).

CORRESPONDING AUTHOR

Jashodeep Datta, MD, Division of Surgical Oncology, Department of Surgery, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, 1120 NW 14th St, Ste 410, Miami, FL 33136; e-mail: jash.datta@med.miami.edu.

PRIOR PRESENTATION

Presented in part at the ASCO Gastrointestinal Cancers Symposium Annual Meeting, San Francisco, CA, January 20-22, 2022 and the Society of Surgical Oncology Annual Meeting, Dallas, TX, March 9-12, 2022.

SUPPORT

Supported by KL2 career development grant from the Miami Clinical and Translational Science Institute under National Institutes of Health (NIH) Award UL1TR002736, American College of Surgeons Franklin H. Martin Research Fellowship, Association for Academic Surgery Joel J. Roslyn Faculty Award, Society of Surgical Oncology Young Investigator Award, and Elsa U. Pardee Foundation Award (to J.D.). I.O. was supported by NIH/National Cancer Institute (NCI) T32 (to N.B.M.). Research reported in this publication was supported by the NCI/NIH Award P30CA240139 to the Sylvester Comprehensive Cancer Center.

AUTHOR CONTRIBUTIONS

Conception and design: Ifeanyichukwu Ogobuiro, Gregory C. Wilson, John L. Marshall, Hong Jin Kim, David A. Kooby, Shishir K. Maithel, Syed A. Ahmad, Nipun B. Merchant, Joanne Xiu, Peter J. Hosein, Jashodeep Datta

Financial support: Nipun B. Merchant, Joanne Xiu, Jashodeep Datta Administrative support: Nipun B. Merchant, Joanne Xiu, Jashodeep Datta

Provision of study materials or patients: Matthew J. Oberley, Hong Jin Kim, Syed A. Ahmad, Nipun B. Merchant, Joanne Xiu, Jashodeep Datta Collection and assembly of data: Ifeanyichukwu Ogobuiro, Jennifer R. Ribeiro, Rachna T. Shroff, David Spetzler, Matthew J. Oberley, Shishir K. Maithel, Joanne Xiu, Peter J. Hosein, Jashodeep Datta

Data analysis and interpretation: Ifeanyichukwu Ogobuiro, Yasmine Baca, Phillip Walker, Gregory C. Wilson, Prateek Gulhati, John L. Marshall, Rachna T. Shroff, Matthew J. Oberley, Daniel E. Abbott, Hong Jin Kim, Shishir K. Maithel, Syed A. Ahmad, Nipun B. Merchant, Joanne Xiu, Peter J. Hosein, Jashodeep Datta

Manuscript writing: All authors

Final approval of manuscript: All authors

Accountable for all aspects of the work: All authors

AUTHORS' DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST

The following represents disclosure information provided by authors of this manuscript. All relationships are considered compensated unless otherwise noted. Relationships are self-held unless noted.

I = Immediate Family Member, Inst = My Institution. Relationships may not relate to the subject matter of this manuscript. For more information about ASCO's conflict of interest policy, please refer to www.asco.org/ rwc or ascopubs.org/po/author-center.

Open Payments is a public database containing information reported by companies about payments made to US-licensed physicians (Open Payments).

Yasmine Baca

Employment: Caris Life Sciences

Jennifer R. Ribeiro

Employment: Caris Life Sciences

Stock and Other Ownership Interests: Caris Life Sciences

Phillip Walker

Employment: Caris Life Sciences

John L. Marshall

Employment: Caris Life Sciences. Indivumed

Leadership: 2curex

Honoraria: Bayer/Onyx, Taiho Pharmaceutical, Caris Life Sciences, Merck,

Pfizer, Daiichi Sankyo/Lilly, AstraZeneca/MedImmune, Seagan

Consulting or Advisory Role: Genentech/Roche, Taiho Pharmaceutical, Caris

Life Sciences, Pfizer, Seagen, Merck, AstraZeneca

Speakers' Bureau: Taiho Pharmaceutical, Merck, Pfizer, Seagan, Caris Life

Sciences

Research Funding: Genentech, Natera

Rachna T. Shroff

Consulting or Advisory Role: Exelixis, Merck, Incyte, AstraZeneca, Taiho Pharmaceutical, Boehringer Ingelheim, Genentech, Jazz Pharmaceuticals, Merus

Research Funding: Merck, Exelixis, QED Therapeutics, Rafael Pharmaceuticals, Bristol Myers Squibb, Bayer, Immunovaccine, Seagen,

Novocure, Nucana, Loxo/Lilly, Faeth Therapeutics, NGM

Biopharmaceuticals, Actuate Therapeutics

David Spetzler

Employment: Caris Life Sciences

Stock and Other Ownership Interests: Caris Life Sciences

Honoraria: Caris Life Sciences Research Funding: Caris Life Sciences

Patents, Royalties, Other Intellectual Property: Caris Life Sciences holds and has pending patents with intellectual property interests relating to

health and medicine

Travel, Accommodations, Expenses: Caris Life Sciences

Matthew J. Oberley

Employment: Caris Life Sciences Leadership: Caris Life Sciences

Stock and Other Ownership Interests: Caris Life Sciences Travel, Accommodations, Expenses: Caris Life Sciences

Daniel E. Abbott

Honoraria: Castle Biosciences

Consulting or Advisory Role: PatientPoint

Hong Jin Kim

Consulting or Advisory Role: Ethicon

David A. Kooby

Consulting or Advisory Role: Medtronic

Shishir K. Maithel

Consulting or Advisory Role: AstraZeneca

Research Funding: Celgene

Syed A. Ahmad

Speakers' Bureau: AbbVie

Nipun B. Merchant

Stock and Other Ownership Interests: Singh Molecular Medicine, LLC

Research Funding: Swedish Orphan Biovitrum AG

Joanne Xiu

Employment: Caris Life Sciences

Peter J. Hosein

Honoraria: AngioDynamics Research Funding: Eisai (Inst)

Open Payments Link: https://openpaymentsdata.cms.gov/physician/

No other potential conflicts of interest were reported.

REFERENCES

- Siegel RL, Miller KD, Fuchs HE, et al: Cancer statistics, 2022, CA Cancer J Clin 72:7-33, 2022
- Rahib L, Smith BD, Aizenberg R, et al: Projecting cancer incidence and deaths to 2030: The unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res 74: 2913-2921, 2014
- 3. Raffenne J, Martin FA, Nicolle R, et al: Pancreatic ductal adenocarcinoma arising in young and old patients displays similar molecular features. Cancers (Basel) 13:1234, 2021
- Raimondi S, Maisonneuve P, Löhr JM, et al. Early onset pancreatic cancer: Evidence of a major role for smoking and genetic factors. Cancer Epidemiol Biomarkers Prev 16:1894-1897, 2007
- 5 Piciucchi M, Capurso G, Valente R, et al: Early onset pancreatic cancer: Risk factors, presentation and outcome. Pancreatology 15:151-155, 2015
- Tavakkoli A, Singal AG, Waljee AK, et al: Racial disparities and trends in pancreatic cancer incidence and mortality in the United States. Clin Gastroenterol Hepatol 18:171-178.e10, 2020
- LaPelusa M, Shen C, Arhin ND, et al: Trends in the incidence and treatment of early-onset pancreatic cancer. Cancers (Basel) 14:283, 2022 7.
- 8 Tingstedt B, Weitkämper C, Andersson R: Early onset pancreatic cancer: A controlled trial. Ann Gastroenterol 24:206-212, 2011
- Beeghly-Fadiel A, Luu HN, Du L, et al: Early onset pancreatic malignancies: Clinical characteristics and survival associations. Int J Cancer 139:2169-2177, 2016
- Ansari D, Althini C, Ohlsson H, et al: Early-onset pancreatic cancer: A population-based study using the SEER registry. Langenbecks Arch Surg 404:565-571, 2019 11. Saadat LV, Chou JF, Gonen M, et al: Treatment patterns and survival in patients with early-onset pancreatic cancer. Cancer 127:3566-3578, 2021
- 12. The Lancet Gastroenterology Hepatology: Cause for concern: The rising incidence of early-onset pancreatic cancer. Lancet Gastroenterol Hepatol 8:287, 2023
- 13. Bunduc S, Iacob R, Costache R, et al: Very early onset pancreatic adenocarcinoma—Clinical presentation, risk factors and therapeutic options. Chirurgia (Bucur) 113:405-411, 2018
- 14. Saeed U, Myklebust T, Robsahm TE, et al: Body mass index and pancreatic adenocarcinoma: A nationwide registry-based cohort study. Scand J Surg 112:11-21, 2023 15. Ulanja MB, Moody AE, Beutler BD, et al: Early-onset pancreatic cancer: A review of molecular mechanisms, management, and survival. Oncotarget 13:828-841, 2022
- 16. Bannon SA, Montiel MF, Goldsein JB, et al: High prevalence of hereditary cancer syndromes and outcomes in adults with early-onset pancreatic cancer. Cancer Prev Res (Phila) 11:679-686, 2018
- 17. DeSantis CE, Lin CC, Mariotto AB, et al: Cancer treatment and survivorship statistics, 2014. CA Cancer J Clin 64:252-271, 2014
- 18. Pishvaian MJ, Blais EM, Brody JR, et al: Overall survival in patients with pancreatic cancer receiving matched therapies following molecular profiling: A retrospective analysis of the Know Your Tumor registry trial. Lancet Oncol 21:508-518, 2020
- 19. Raphael BJ, Hruban RH, Aguirre AJ, et al: Integrated genomic characterization of pancreatic ductal adenocarcinoma. Cancer Cell 32:185-203.e13, 2017
- 20. Ben-Aharon I, Elkabets M, Pelossof R, et al: Genomic landscape of pancreatic adenocarcinoma in younger versus older patients: Does age matter? Clin Cancer Res 25:2185-2193, 2019
- 21. Lou E: Age is in the eye of the beholder: Distinguishing molecular signatures in early-onset pancreatic adenocarcinomas. Clin Cancer Res 27:8-10, 2021
- 22. Luo J, Xiao L, Wu C, et al: The incidence and survival rate of population-based pancreatic cancer patients: Shanghai Cancer Registry 2004-2009. PloS One 8:e76052, 2013
- 23. He J, Edil BH, Cameron JL, et al: Young patients undergoing resection of pancreatic cancer fare better than their older counterparts. J Gastrointest Surg 17:339-344, 2013

Molecular Landscape of Young-Onset Pancreatic Cancer

- 24. Ntala C, Debernardi S, Feakins RM, et al: Demographic, clinical, and pathological features of early onset pancreatic cancer patients. BMC Gastroenterol 18:139, 2018
- Shaikh H, McGrath JE, Hughes B, et al: Genomic and molecular profiling of human papillomavirus associated head and neck squamous cell carcinoma treated with immune checkpoint blockade compared to survival outcomes. Cancers (Basel) 13:6309, 2021
- 26. Vanderwalde A, Spetzler D, Xiao N, et al: Microsatellite instability status determined by next-generation sequencing and compared with PD-L1 and tumor mutational burden in 11,348 patients. Cancer Med 7:746-756, 2018
- 27. Ferguson SD, Zhou S, Huse JT, et al: Targetable gene fusions associate with the IDH wild-type astrocytic lineage in adult gliomas. J Neuropathol Exp Neurol 77:437-442, 2018
- 28. Finotello F, Mayer C, Plattner C, et al: Molecular and pharmacological modulators of the tumor immune contexture revealed by deconvolution of RNA-seq data. Genome Med 11:34, 2019
- 29. Aran D, Hu Z, Butte AJ: xCell: digitally portraying the tissue cellular heterogeneity landscape. Genome Biol 18:220, 2017
- 30. Zhou Y, Zhou B, Pache L, et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun 10:1523, 2019
- 31. Subramanian A, Tamayo P, Mootha VK, et al: Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci 102:15545-15550, 2005
- 32. Orenbuch R, Filip I, Comito D, et al: arcasHLA: High-resolution HLA typing from RNAseq. Bioinformatics 36:33-40, 2020
- 33. Varghese AM, Singh I, Singh R, et al: Early-onset pancreas cancer: Clinical descriptors, genomics, and outcomes. J Natl Cancer Inst 113:1194-1202, 2021
- 34. Lowery MA, Jordan EJ, Basturk O, et al: Real-time genomic profiling of pancreatic ductal adenocarcinoma: Potential actionability and correlation with clinical phenotype. Clin Cancer Res 23: 6094-6100. 2017
- 35. Luo J: KRAS mutation in pancreatic cancer. Semin Oncol 48:10-18, 2021
- 36. Hallin J, Bowcut V, Calinisan A, et al: Anti-tumor efficacy of a potent and selective non-covalent KRAS(G12D) inhibitor. Nat Med 28:2171-2182, 2022
- 37. Guo R, Luo J, Chang J, et al: MET-dependent solid tumours—Molecular diagnosis and targeted therapy. Nat Rev Clin Oncol 17:569-587, 2020
- 38. Laskin J, Liu SV, Tolba K, et al: NRG1 fusion-driven tumors: Biology, detection, and the therapeutic role of afatinib and other ErbB-targeting agents. Ann Oncol 31:1693-1703, 2020
- 39. Proietti I, Skroza N, Michelini S, et al: BRAF inhibitors: Molecular targeting and immunomodulatory actions. Cancers (Basel) 12:1823, 2020
- 40. Chi J, Chung SY, Parakrama R, et al: The role of PARP inhibitors in BRCA mutated pancreatic cancer. Therap Adv Gastroenterol 14:175628482110148, 2021
- 41. Feng L, Qi Q, Wang P, et al: Serum levels of IL-6, IL-8, and IL-10 are indicators of prognosis in pancreatic cancer. J Int Med Res 46:5228-5236, 2018
- 42. Yu JH, Kim H: Role of janus kinase/signal transducers and activators of transcription in the pathogenesis of pancreatitis and pancreatic cancer. Gut Liver 6:417-422, 2012
- 43. Yang J, Yan J, Liu B: Targeting VEGF/VEGFR to modulate antitumor immunity. Front Immunol 9:978, 2018
- 44. Pagliuca S, Gurnari C, Rubio MT, et al: Individual HLA heterogeneity and its implications for cellular immune evasion in cancer and beyond. Front Immunol 13:944872, 2022
- 45. Zhao X, Zhang Y, Gao Z, et al: Prognostic value of peripheral © CD8(+) T cells in oligometastatic non-small-cell lung cancer. Future Óncol 18:55-65, 2022
- 46. Datta J, Bianchi A, De Castro Silva I, et al: Distinct mechanisms of innate and adaptive immune regulation underlie poor oncologic outcomes associated with KRAS-TP53 co-alteration in pancreatic cancer. Oncogene 41:3640-3654, 2022

JCO Precision Oncology ascopubs.org/journal/po | 11

APPENDIX

TABLE A1. Molecular Alterations in YOPC and AOPC

Pathway	Biomarker (mutation, CNA, or fusion)	Positive (AOPC)	Negative (AOPC)	Percentage (AOPC), %	Positive (YOPC)	Negative (YOPC)	Percentage (YOPC), %	Р	Q
RTK/RAS	NGS-KRAS	1,749	176	90.9	221	51	81.3	1.10E-06	.004
	CNA-EGFR	1	1,914	0.1	2	268	0.7	.004	1
	NGS-RET	0	1,951	0.0	1	276	0.4	.008	1
TGF-β	CNA-SMAD2	0	1,893	0.0	1	266	0.4	.008	1
	NGS-SMAD4	391	1,553	20.1	40	233	14.7	.033	1
WNT	NGS-CTNNB1	16	1,934	0.8	9	267	3.3	.0003	.704
	NGS-RNF43	123	1,832	6.3	7	270	2.5	.012	1
Cell cycle	CNA-CDK6	16	1,881	0.8	7	261	2.6	.008	1
	NGS-CDKN2A	472	1,435	24.8	52	219	19.2	.045	1
Chromatin remodeling	NGS-SMARCB1	2	1,953	0.1	3	275	1.1	.001	.992
	CNA-SMARCB1	1	1,916	0.1	2	269	0.7	.004	1
Hedgehog	NGS-SMO	0	1,952	0.0	1	276	0.4	.008	1
Homologous recombination	NGS-BRCA2	41	1,894	2.1	13	262	4.7	.008	1
	NGS-PALB2	9	1,943	0.5	4	272	1.4	.044	1
MMR	NGS-MLH1	2	1,949	0.1	4	272	1.4	5.34E-05	.185
mRNA splicing	NGS-SF3B1	53	1,885	2.7	2	272	0.7	.046	1
PI3K	NGS-TSC1	0	1,952	0.0	2	275	0.7	.0002	.484
	NGS-MTOR	0	1,947	0.0	1	275	0.4	.008	1
	CNA-PIK3R2	0	791	0.0	1	126	0.8	.013	1
Others	CNA-KIF5B	0	1,827	0.0	2	258	0.8	.0002	.492
	NGS-JAK1	2	1,925	0.1	3	271	1.1	.001	.992
	NGS-TMEM127	0	1,133	0.0	1	143	0.7	.005	1
	CNA-TRIM27	0	1,912	0.0	1	268	0.4	.008	1
	CNA-EPHA3	0	1,870	0.0	1	263	0.4	.008	1
	CNA-IL7R	0	1,908	0.0	1	269	0.4	.008	1
	CNA-RALGDS	0	679	0.0	1	101	1.0	.010	1
	CNA-MLLT1	0	773	0.0	1	124	0.8	.013	1
	CNA-ELL	0	763	0.0	1	123	0.8	.013	1
	NGS-PRKAR1A	2	1,938	0.1	2	272	0.7	.022	1
	CNA-RARA	4	794	0.5	3	124	2.4	.025	1
	CNA-PRDM16	2	736	0.3	2	112	1.8	.031	1
	NGS-EPHA2	3	1,098	0.3	2	136	1.4	.040	1

NOTE. Numbers of positive and negative cases and overall percentages for top pathogenic gene mutations, fusions, and CNA are shown. All genes shown displayed differences with P < .05 (chi-square or Fisher's exact test). FDR-corrected Q < .05 is given in bold.

Abbreviations: AOPC, average-onset pancreatic cancer; CNA, copy number alterations; FDR, false discovery rate; MMR, mismatch repair; PI3K, phosphatidylinositol 3-kinase; YOPC, young-onset pancreatic cancer.

TABLE A2. List of Differentially Expressed Genes Between YOPC and AOPC

CPEP 10.73488 13.10.06 4.15-06 0.815566 -0.9415 0.00 FG4 180.0931 213.223 2.08-08 0.847206 -0.29922 0.00 PG6 31.45159 98.41064 5.787-05 0.818697 -0.2334 0.01 FG8 241.0049 282.0757 14.475-05 0.856579 -0.23344 0.01 F2 9.887575 11.4422 9.46-16 0.360640 -0.21682 0.05 FP 5.103183 5.980764 0.0000 0.860401 -0.21682 0.05 SEPPM2 6.340134 6.738664 0.01279 1.104804 0.143711 0.04 SEPPM2 3.450166 3.71024 0.0107 0.09463 -0.10475 0.04 SEPPM2 3.450166 3.71024 0.01472 0.04963 -0.10475 0.04 PSPM2 3.450166 0.48023 0.05881 1.05783 0.081112 0.04 PSPM2 3.450166 0.480253 0.05881 1.06783	Gene	Age ≥70 Years	Age <70 Years	Р	Fold Change	Log ₂ Fold Change	Q
FER 185.0931 218.5233 2.086.08 0.947205 -0.29222 .900 PLG 31.45159 38.41564 5.286.06 0.0118697 -0.2085 .0011 FG 241.0643 280.0574 4.476.06 0.086871 -0.30584 .0011 FP 3.103183 5.93774 .000000 0.808071 -0.30584 .0011 FP 5.103183 5.93774 .000000 .000001 -0.20862 .005 SFRANKP2 G.540134 5.738694 .001779 1.104804 .0.143791 .014 COLA42 1261337 1358197 .001305 .0388883 -0.10674 .0.14 COLA2 3.42206 3.712334 .00197 .0.93983 -0.10674 .0.04 CORA2 3.423332 .526762 .004129 .0.94997 .0.23447 .0.6 COLA47 1.207089 .129.6466 .0.07841 .0.931061 .0.10608 .0.9 F1341 .331,3304 .31.84888 .0.04427	FGB	213.0639	253.103	5.35E-06	0.841807	-0.24844	.000262
PLG 31.45190 38.41664 5.28E-05 0.818907 -0.22834 0.011 FGB 241.04043 222.0574 4.47E-05 0.856579 -0.22334 0.011 F2 9.28E775 11.4822 9.46E-05 0.856971 -0.23394 0.011 FP 8.103188 8.980764 0.01279 1.104604 1.01476 0.014 COVAAD 126.1337 155197 0.01305 0.97868 -0.11674 0.04 COVAAD 1.461337 155197 0.01305 0.97868 -0.11674 0.04 DKK 3.450566 3.770044 0.01479 0.99663 -0.11675 0.04 IFNG 0.450028 0.48263 0.05881 1.057833 0.081112 0.46 IFNG 1.250028 0.48263 0.05881 1.057833 0.081112 0.46 IFNA 3.313304 3.15868 0.14677 0.956619 -0.067 0.95 IETT 0.351676 0.358994 0.1427 0.956126	CPB2	10.73488	13.16266	4.15E-06	0.815556	-0.29415	.000262
FGG 241 5043 282 0574 4.475-05 0.856579 -0.23244 0.01 F2 9.98775 11.4872 9.467-05 0.808971 -0.36584 0.01 F9 5.103183 5.900754 0.0009 0.860461 -0.21682 0.05 SERPINIDE 6.540134 5.738694 0.01279 1.104884 -0.11674 0.14 DKK2 3.452056 3.712034 0.0197 0.929663 -0.10475 0.14 DKK2 3.452056 3.712034 0.0197 0.92963 -0.10475 0.19 IGFIEP1 4.473932 5.262762 0.04129 0.849997 -0.23447 0.05 IFWA 0.509028 0.40293 0.05981 1.058939 0.04112 0.94619 0.04172 IFWA 0.50909 1.29.8066 0.07441 0.931081 -0.13305 0.99 IFT3A1 33.13044 31.58468 0.10427 0.956419 -0.067 0.65 GUCYAZ 5.88866 0.169325 0.0	FGA	180.9031	213.5293	2.06E-05	0.847205	-0.23922	.000673
P2	PLG	31.45159	38.41664	5.28E-05	0.818697	-0.2886	.001035
F9	FGG	241.6043	282.0574	4.47E-05	0.856579	-0.22334	.001035
SERPIND2 6.340134 5.738694 .001279 1.104004 0.143791 .0147 COL4A2 16.1837 135.8197 .001305 0.926685 -0.10674 .014 DRK2 3.457056 3.717034 .00197 .0299685 -0.10674 .014 DRK2 3.457056 3.717034 .00197 .089997 -0.23447 .036 IFWG 0.500028 0.460253 .005681 1.057833 .0081112 .046 COL4A1 1.207098 1.29,4646 .007681 1.037833 .0081112 .046 COL4A1 1.207098 1.29,4646 .007681 .033001 -0.10305 .055 F13A7 3.313304 31.58408 .014657 1.049023 .0069046 .095 EF11 0.551676 0.356834 .01427 .0554619 .000708 .056 GEVLV1A2 5.88866 1.69325 .02413 .095163 .0131146 .194 GF7LS 1.746769 1.54988 .023801 <	F2	9.288775	11.4822	9.46E-05	0.808971	-0.30584	.001545
COLLAR2 126.1337 135.8197 001305 0.928685 -0.10674 0.14, 004 DRC2 3.450966 3.712034 0.0197 0.29903 -0.10475 0.018 DRC2 3.450966 3.712034 0.0197 0.29903 -0.10475 0.018 DRC2 0.508028 0.480283 0.05681 1.057833 0.081112 0.456 DCOLALI 1.707089 1.79.6466 0.07441 0.931061 -0.10806 0.057 RJ1 0.351676 0.038394 0.1427 0.954619 -0.057 0.055 BLT1 0.351676 0.038394 0.1427 0.954619 -0.057 0.055 BUCYLAZ 6.66666 6.169325 0.2413 0.951266 -0.0720 1.447 SSFT 17.46769 15.94985 0.33801 1.096183 0.131146 1.944 IGFALS 1.412191 1.514907 0.95002 0.918837 -0.1284 1.95 FF11 5.20928 5.96697 0.41148 <	F9	5.103183	5.930754	.000409	0.860461	-0.21682	.005722
DKK2 3.450666 3.712034 .00197 0.029963 -0.10475 .0105 IGFBP1 4.473337 5.760762 .004179 0.849997 -0.23447 .006 IFNO 0.508028 0.480253 .005681 1.057333 .0081112 .046 COL4A1 120.7089 129.6466 .007641 0.931061 -0.10305 .099 F13A1 33.13074 31.58488 .014657 1.049023 .0060046 .095 BL71 0.351676 0.388394 .01427 .0954019 -0.067 .095 GUCYIA2 5.86866 6.169325 .02413 .0951265 -0.07208 .147 SST 17.46769 15.94985 .033901 .095165 -0.07208 .147 FF11 5.20928 5.966897 .041148 .0873074 -0.19882 .212 SFRINIP1 3.600033 37.13194 .045725 .095176 -0.07133 .271 FF11 5.20928 5.966897 .041148 .0	SERPINB2	6.340134	5.738694	.001279	1.104804	0.143791	.014206
GFBP1	COL4A2	126.1337	135.8197	.001305	0.928685	-0.10674	.014206
FPNG	DKK2	3.452056	3.712034	.00197	0.929963	-0.10475	.019308
COL 4A1 120 7089 129 6466 007841 0.931061 -0.10305 0.89 F13A1 33.13304 31.58468 0.14667 1.049023 0.090046 0.05 E171 0.351676 0.368394 0.1427 0.954619 -0.067 0.95 GUCYIAZ 5.68666 0.169325 0.2413 0.951265 -0.07208 1.47 SST 17.46769 15.94986 0.33801 1.095163 0.131146 1.94 IGFALS 1.412191 1.541967 0.35802 0.91837 -0.12684 1.95 FIT 5.09028 5.966697 0.41148 0.873074 -0.15682 212 SERPINICI 3.06003 32.15194 0.4525 0.96176 -0.07133 221 COL445 5.342238 5.511835 0.63907 0.969412 -0.04482 272 IFNAT 1.900172 1.645373 0.8477 1.154858 0.207716 272 IGFBP3 3.538824 37.81646 0.6762 0.94	IGFBP1	4.473332	5.262762	.004129	0.849997	-0.23447	.03679
FISAT 33.13304 31.58468	IFNG	0.508028	0.480253	.005681	1.057833	0.081112	.046391
FISAT 33,13304 31,58468	COL4A1						.059106
LL11	F13A1			.014657			.095758
GUCY1A2 5.86866 6.169325 .02413 0.951265 -0.07208 .147. SST 17.40769 15.94988 .033801 1.095163 0.131146 .1948 IGFALS 1.1412191 1.541967 .035902 .0918837 -0.12684 .195- F11 5.09028 .5665677 .041148 .0373074 -0.19582 .2122 SERPINE1 30.60093 .3215194 .045225 .0.95176 -0.07133 .2216 COLAAS 5.343238 .5511835 .0.63907 .0.969412 -0.04482 .272- JEWAT 1.090172 .1.648373 .058477 .1.154858 .0.207716 .272- JEFRA 1.7.8615 .18.57063 .07652 .0.44011 -0.0755 .276- GERPA .35.88824 .37.91646 .06762 .0.44011 -0.0755 .276- GERHH .0.133716 .0.117488 .0.076471 .1.138313 .0.186937 .2.94 ILT 4.766534 4.597941 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>.095758</td></th<>							.095758
SST 17.46769 15.94985 .033801 1.095163 0.131146 .1944 IGFALS 1.412191 1.541967 .035902 0.918837 -0.12684 .195- FIT 5.20928 5.966597 .041148 0.873074 -0.19582 .212 SERPINET 30.60093 3.215194 .045225 .0.95176 -0.07133 .221 COL4A5 5.343238 5.511835 .063907 0.959412 -0.04882 .272- LOVI 0.934538 0.904675 .063935 1.03301 .0.46884 .272- IFNA1 1.90172 .1648373 .058477 .1.154858 .0207716 .272- IGFBP3 .35 88824 .37.81646 .06762 .0.949011 -0.0755 .276 GFRR .17 8615 .18.87053 .071365 .0.96182 -0.06166 .279 GFRH .0.133716 .0.117468 .0.75471 .1.138313 .0.186897 .284 IL7 4.766634 4.957941 .0.82676 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>.147794</td>							.147794
IGFALS 1.412191 1.541967 .035902 0.915837 -0.12684 .195-FTI FIT 5.20928 5.966597 .041148 0.873074 -0.19582 .2125 SERPINET 30.60093 32.15194 .045225 .0.96176 -0.07133 .2216 COLAAS 5.34238 5.511835 .063907 0.969412 -0.04482 .2724 ADCYT 0.934538 0.904675 .063935 1.03301 0.046854 .2722 JENAT 1.1900172 1.645873 .058477 1.154858 0.207716 .2722 JEFBA 3.58824 37.81646 .06762 0.949011 -0.0755 .276 FER 1.78615 18.57053 .071365 0.96182 -0.05616 .279 GHRH 0.133716 0.117468 .075471 1.138313 0.186897 .284 IL-7 4.766534 4.597941 .082626 1.036667 0.051953 .299 HLA-DRB 11.7147 12.42623 .103898							.194852
F11 \$ 20928 \$ 966597 .041148 0.873074 -0.19582 2122 SERPINE1 30 60093 32.15194 .045225 0.99176 -0.07133 2211 COL4A5 \$ 5.343238 \$ 5511835 .063907 0.969412 -0.04482 272- JACVYI 0.934538 0.904675 .063935 1.03301 0.046884 272- JENAT 1.900172 1.645973 .058477 1.154858 0.207716 272- JEPR3 35.88824 37.81646 .06762 0.949011 -0.0755 .276 GHRH 0.133716 0.117468 .075471 1.133313 0.186897 .284- IL7 4.766534 4.597941 .082626 1.036667 .0051953 .299- HLA-DRB3 11.7147 12.42623 .103898 0.94274 -0.08507 .363 IGFBP6 9.694764 9.706376 .119517 0.998804 -0.00173 .390 DKK1 2.210085 22.21794 .118374							.195464
SERPINET 30.60093 32.15194 .045225 0.95176 -0.07133 .2211 COLAA5 5.343238 5.51835 .063907 0.96412 -0.04482 .272- ADCYT 0.934538 0.904675 .063935 1.03301 0.046854 .272- JENAT 1.900172 1.645373 .088477 1.154888 0.207716 .272- JEPB3 35.88824 37.81646 .06762 0.949011 -0.0755 .276 FZR 17.8615 18.57053 .071365 0.96182 -0.05616 .279 GHRH 0.133716 0.117468 .075471 1.138313 0.166897 .284 LC 4.765534 4.597941 .082625 1.036667 .005195 .299 HLA-DRB3 11.7147 12.42623 .103898 0.94274 -0.08507 .363 IGFBP6 9.694764 9.706376 .119517 0.998804 -0.00173 .390 DKK1 22.10085 22.91794 .118374 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>.212236</td></td<>							.212236
COL 4A5 5.343238 5.511835 .063907 0.969412 -0.04482 272-2 ADCYI 0.934538 0.904675 .063935 1.03301 0.046854 2272-1 JENAI 1.900172 1.646373 .058477 1.158868 0.207716 272-2 JEFB3 35.88824 37.81646 .06762 0.94011 -0.0755 2.76 F2R 17.8615 18.57053 .071365 0.96182 -0.05616 279 GHRH 0.133716 0.117468 .075471 1.138313 0.186897 284 LF7 4.766634 4.597941 .082626 1.036667 0.051953 .2995 HLA-DRB3 11.7147 12.42623 .103893 0.94274 -0.08507 .363 JEFBP6 9.694764 9.706376 .119517 .098804 -0.00173 .390 DKK1 22.10085 22.91794 .118374 .0964347 -0.05238 .390 NOS3 6.51765 6.748245 .131233 .							.221602
ADCYT 0.934538 0.904675 0.63935 1.03301 0.046854 272-1FNAT 1.900172 1.645373 0.68477 1.154858 0.207716 272-1FNAT 1.6FBP3 35.88824 37.81646 0.0762 0.949011 -0.0755 276-1FNAT F2R 17.8615 18.57053 0.071365 0.96182 -0.05616 279-1FNAT GIRH 0.133716 0.1117468 0.075471 1.138313 0.186897 284-1FNAT IL7 4.766534 4.597941 0.982626 1.036667 0.051953 299-1FNAT HLA-DRB3 11.7147 12.42623 1.03898 0.94274 -0.08507 363-667-7-0.051953 299-7-18-7-18-7-18-7-18-7-18-7-18-7-18-7-							.272419
IFNA1							.272419
IGFBP3 35.88824 37.81646 .06762 0.949011 -0.0755 .276 F2R 17.8615 18.57053 .071365 0.96182 -0.05616 .279 GHRH 0.133716 0.117488 .075471 1.138313 0.186897 .284 IL7 4.766534 4.597941 .082626 1.036667 0.051953 .299 ILA-DRB3 11.7147 12.42623 .103898 0.94274 -0.08507 .3636 IGFBP6 9.694764 9.706376 .119517 0.998804 -0.00173 .3900 DKK1 22.10085 22.91794 .118374 0.964347 -0.05238 .390 NOS3 6.61765 6.748245 .131233 0.980648 -0.02819 .403 TRPC4 2.317167 2.436718 .134398 0.95038 -0.07258 .403 L3 0.040412 0.048445 .153894 0.93337 -0.033938 .403 THV1 250.0147 256.8625 .158908 0.973							.272419
F2R 17.8615 18.57053 .071365 0.96182 -0.05616 .2793 GHRH 0.133716 0.117468 .075471 1.138313 0.186897 .2844 IL7 4.766534 4.597941 .082626 1.036667 0.051953 .2999 HLA-DRB3 11.7147 12.42623 .103898 0.94274 -0.08507 .363 GFBP6 9.694764 9.706376 .119517 0.998804 -0.00173 .390 DKK1 22.10085 22.91794 .118374 0.964347 -0.05238 .390 NOS3 6.61765 6.748245 .131233 0.980648 -0.02819 .403 TRPC4 2.317167 2.436718 .134398 0.950938 -0.07258 .403 TRPC5 0.240457 0.234866 .15888 1.023803 0.033938 .403 IL3 0.040412 0.048445 .153974 0.834189 -0.26155 .433 IL4 1.250.0147 256.8635 .158908 0.							
GHRH 0.133716 0.117468 .075471 1.138313 0.186897 2844 IL7 4.766534 4.597941 .082626 1.036667 0.051953 2998 HLA-DRB3 11.7147 12.42623 .103898 0.94274 -0.08507 3631 IGFBP6 9.694764 9.706376 .119617 0.998804 -0.00173 390- DKK1 22.10085 22.91794 .118374 0.964347 -0.05238 390- DKK1 22.10085 22.91794 .118374 0.964347 -0.05238 390- DKK1 22.1085 6.1748245 .131233 0.980648 -0.02819 403 TRPC4 2.317167 2.436718 .134398 0.950938 -0.07258 403 TRPC5 0.240457 0.234866 .13588 1.023803 0.033938 403 L3 0.040412 0.048445 .153974 0.834189 -0.26155 4436 KREMEN2 0.66296 0.714977 .163883 0.9							
IL7 4.766534 4.597941 .082626 1.036667 0.051953 .2999 HLA-DRB3 11.7147 12.42623 .103898 0.94274 -0.08507 .3636 IGFBP6 9.694764 9.706376 .119517 0.998804 -0.00173 .3906 DKK1 22.10085 22.91794 .118374 0.964347 -0.05238 .390 NOS3 6.61765 6.748245 .131233 0.980648 -0.02819 .403 TRPC4 2.317167 2.436718 .134398 0.950938 -0.07258 .403 TRPC5 0.240457 0.234866 .13588 1.023803 0.033938 .403 L3 0.040412 0.048445 .153974 0.834189 -0.26155 .4436 THY1 250.0147 256.8635 .158908 0.973337 -0.03899 .4446 KREMEN2 0.66296 0.714977 .163883 0.927246 -0.10898 .4466 CCR3 1.093817 1.05404 .177757							
HLA-DRB3 11.7147 12.42623 .103898 0.94274 -0.08507 .3630 IGFBP6 9.694764 9.706376 .119517 0.998804 -0.00173 .3900 DKK1 22.10085 22.91794 .118374 0.964347 -0.05238 .3900 NOS3 6.61765 6.748245 .131233 0.980648 -0.02819 .4031 TRPC4 2.317167 2.436718 .134398 0.950938 -0.07258 .4031 TRPC5 0.240457 0.234866 .13588 1.023803 0.033938 .4031 LI3 0.040412 0.048445 .153974 0.834189 -0.26155 .4438 THY1 250.0147 256.8635 .158908 0.973337 -0.03899 .4449 KREMEN2 0.66296 0.714977 .16383 0.927246 -0.10898 .4466 CCR3 1.093817 1.05404 .177757 1.037737 0.053441 .470 HLA-DRA 240,3654 232.0491 .20184							
IGFBP6 9.694764 9.706376 .119517 0.998804 -0.00173 .3900 DKK1 22.10085 22.91794 .118374 0.964347 -0.05238 .3900 NOS3 6.61765 6.748245 .131233 0.980648 -0.02819 .4033 TRPC4 2.317167 2.436718 .134398 0.950938 -0.07258 .4033 TRPC5 0.240457 0.234866 .13588 1.023803 0.033938 .4033 IL3 0.040412 0.048445 .153974 0.834189 -0.26155 .4438 THY1 250.0147 256.8635 .158908 0.973337 -0.03899 .4445 KREMEN2 0.66296 0.714977 .163883 0.927246 -0.10898 .4467 CCR3 1.093817 1.05404 .177757 1.037737 0.053441 .4708 HLA-DRA 240.3654 232.0491 .201984 1.038399 0.050799 .5205 FZD1 5.426793 5.19561 .212446							
DKK1 22.10085 22.91794 .118374 0.964347 -0.05238 .3900 NOS3 6.61765 6.748245 .131233 0.980648 -0.02819 .4031 TRPC4 2.317167 2.436718 .134398 0.950938 -0.07258 .4032 TRPC5 0.240457 0.234866 .13588 1.023803 0.033938 .4032 IL3 0.040412 0.048445 .153974 0.834189 -0.26155 .4438 THY1 250.0147 256.8635 .158908 0.973337 -0.03899 .4448 KREMEN2 0.66296 0.714977 .163883 0.927246 -0.10898 .446 CCR3 1.093817 1.05404 .177757 1.037737 0.053441 .4708 HLA-DRA 240.3654 232.0491 .201944 1.035839 0.050799 .5205 FZD1 5.426793 5.19561 .212446 1.04496 0.062807 .5338 KCNQ2 0.616584 0.676582 .217989							
NOS3 6.61765 6.748245 .131233 0.980648 -0.02819 .4031 TRPC4 2.317167 2.436718 .134398 0.950938 -0.07258 .4031 TRPC5 0.240457 0.234866 .13588 1.023803 0.033938 .4031 IL3 0.040412 0.048445 .153974 0.834189 -0.26155 .4438 THY1 250.0147 256.8635 .158908 0.973337 -0.03899 .4449 KREMEN2 0.66296 0.714977 .163883 0.927246 -0.10898 .446 CCR3 1.093817 1.05404 .177757 1.037737 0.053441 .4708 HLA-DRA 240.3654 232.0491 .201984 1.035839 0.050799 .5209 FZD1 5.426793 5.19561 .212446 1.044496 0.062807 .5338 KCNQ2 0.616584 0.676582 .217989 0.911322 -0.13397 .5340 IGFBP5 139.5291 142.7088 .253947							
TRPC4 2.317167 2.436718 .134398 0.950938 -0.07258 .403 TRPC5 0.240457 0.234866 .13588 1.023803 0.033938 .403 IL3 0.040412 0.048445 .153974 0.834189 -0.26155 .4438 THY1 250.0147 256.8635 .158908 0.973337 -0.03899 .4448 KREMEN2 0.66296 0.714977 .163883 0.927246 -0.10898 .446 CCR3 1.093817 1.05404 .177757 1.037737 0.053441 .4708 HLA-DRA 240.3654 232.0491 .201984 1.035839 0.050799 .5209 FZD1 5.426793 5.19561 .212446 1.044496 0.062807 .5338 KCNQ2 0.616584 0.676582 .217989 0.911322 -0.13397 .5340 WNT8B 0.196908 0.187153 .266235 1.052122 0.073302 .6212 GHRL 1.549805 1.969712 .275682							.390422
TRPC5 0.240457 0.234866 .13588 1.023803 0.033938 .403 IL3 0.040412 0.048445 .153974 0.834189 -0.26155 .443 THY1 250.0147 256.8635 .158908 0.973337 -0.03899 .4448 KREMEN2 0.66296 0.714977 .163883 0.927246 -0.10898 .446 CCR3 1.093817 1.05404 .177757 1.037737 0.053441 .4708 HLA-DRA 240.3654 232.0491 .201984 1.035839 0.050799 .5209 FZD1 5.426793 5.19561 .212446 1.044496 0.062807 .538 KCNQ2 0.616584 0.676582 .217989 0.911322 -0.13397 .5340 IGFBP5 139.5291 142.7088 .253947 0.977719 -0.03251 .606 WNT8B 0.196908 0.187153 .266235 1.052122 0.073302 .6212 GHRL 1.549805 1.969712 .275682							.403521
IL3 0.040412 0.048445 .153974 0.834189 -0.26155 .4438 THY1 250.0147 256.8635 .158908 0.973337 -0.03899 .4448 KREMEN2 0.66296 0.714977 .163883 0.927246 -0.10898 .446* CCR3 1.093817 1.05404 .177757 1.037737 0.053441 .4708 HLA-DRA 240.3654 232.0491 .201984 1.035839 0.050799 .5209 FZD1 5.426793 5.19561 .212446 1.044496 0.062807 .5338 KCNQ2 0.616584 0.676582 .217989 0.911322 -0.13397 .5340 IGFBP5 139.5291 142.7088 .253947 0.977719 -0.03251 .6069 WNT8B 0.196908 0.187153 .266235 1.052122 0.073302 .6212 GHRL 1.549805 1.969712 .275682 0.786818 -0.3459 .6282 IL1B 9.159799 8.311716 .28624							.403521
THY1 250.0147 256.8635 .158908 0.973337 -0.03899 .4448 KREMEN2 0.66296 0.714977 .163883 0.927246 -0.10898 .446 CCR3 1.093817 1.05404 .177757 1.037737 0.053441 .4708 HLA-DRA 240.3654 232.0491 .201984 1.035839 0.050799 .5209 FZD1 5.426793 5.19561 .212446 1.044496 0.052807 .5338 KCNQ2 0.616584 0.676582 .217989 0.911322 -0.13397 .5340 IGFBP5 139.5291 142.7088 .253947 0.977719 -0.03251 .6069 WNT8B 0.196908 0.187153 .266235 1.052122 0.073302 .6212 GHRL 1.549805 1.969712 .275682 0.78618 -0.3459 .6282 IL1B 9.159799 8.311716 .28624 1.102035 0.14017 .6376 RAPGEF5 22.38004 23.16832 .320002							
KREMEN2 0.66296 0.714977 .163883 0.927246 -0.10898 .446° CCR3 1.093817 1.05404 .177757 1.037737 0.053441 .4708 HLA-DRA 240.3654 232.0491 .201984 1.035839 0.050799 .5209 FZD1 5.426793 5.19561 .212446 1.044496 0.062807 .5338 KCNQ2 0.616584 0.676582 .217989 0.911322 -0.13397 .5340 IGFBP5 139.5291 142.7088 .253947 0.977719 -0.03251 .6069 WNT8B 0.196908 0.187153 .266235 1.052122 0.073302 .6212 GHRL 1.549805 1.969712 .275682 0.786818 -0.3459 .6282 IL1B 9.159799 8.311716 .28624 1.102035 0.14017 .6376 RAPGEF5 22.38004 23.16832 .320002 0.965976 -0.04994 .6400 CD3D 10.69667 11.29104 .302337							
CCR3 1.093817 1.05404 .177757 1.037737 0.053441 .4708 HLA-DRA 240.3654 232.0491 .201984 1.035839 0.050799 .5209 FZD1 5.426793 5.19561 .212446 1.044496 0.062807 .5338 KCNQ2 0.616584 0.676582 .217989 0.911322 -0.13397 .5340 IGFBP5 139.5291 142.7088 .253947 0.977719 -0.03251 .6069 WNT8B 0.196908 0.187153 .266235 1.052122 0.073302 .6212 GHRL 1.549805 1.969712 .275682 0.786818 -0.3459 .6282 IL1B 9.159799 8.311716 .28624 1.102035 0.14017 .6378 RAPGEF5 22.38004 23.16832 .320002 0.965976 -0.04994 .6400 CD3D 10.69667 11.29104 .302337 0.947359 -0.07802 .6400 IGF1 5.536212 5.559563 .308441							.444942
HLA-DRA 240.3654 232.0491 .201984 1.035839 0.050799 .5209 FZD1 5.426793 5.19561 .212446 1.044496 0.062807 .5338 KCNQ2 0.616584 0.676582 .217989 0.911322 -0.13397 .5340 IGFBP5 139.5291 142.7088 .253947 0.977719 -0.03251 .6069 WNT8B 0.196908 0.187153 .266235 1.052122 0.073302 .6212 GHRL 1.549805 1.969712 .275682 0.786818 -0.3459 .6285 IL1B 9.159799 8.311716 .28624 1.102035 0.14017 .6378 RAPGEF5 22.38004 23.16832 .320002 0.965976 -0.04994 .6400 PLAU 13.92074 14.346 .301644 0.970357 -0.04341 .6400 CD3D 10.69667 11.29104 .302337 0.947359 -0.07802 .6400 IGF1 5.536212 5.559563 .308441							.446127
FZD1 5.426793 5.19561 .212446 1.044496 0.062807 .5338 KCNQ2 0.616584 0.676582 .217989 0.911322 -0.13397 .5340 IGFBP5 139.5291 142.7088 .253947 0.977719 -0.03251 .6069 WNT8B 0.196908 0.187153 .266235 1.052122 0.073302 .6212 GHRL 1.549805 1.969712 .275682 0.786818 -0.3459 .6283 IL1B 9.159799 8.311716 .28624 1.102035 0.14017 .6378 RAPGEF5 22.38004 23.16832 .320002 0.965976 -0.04994 .6400 PLAU 13.92074 14.346 .301644 0.970357 -0.04341 .6400 CD3D 10.69667 11.29104 .302337 0.947359 -0.07802 .6400 EPO 0.189023 0.208045 .319003 0.908568 -0.13833 .6400							.470815
KCNQ2 0.616584 0.676582 .217989 0.911322 -0.13397 .5340 IGFBP5 139.5291 142.7088 .253947 0.977719 -0.03251 .6068 WNT8B 0.196908 0.187153 .266235 1.052122 0.073302 .6212 GHRL 1.549805 1.969712 .275682 0.786818 -0.3459 .6282 IL1B 9.159799 8.311716 .28624 1.102035 0.14017 .6375 RAPGEF5 22.38004 23.16832 .320002 0.965976 -0.04994 .6400 PLAU 13.92074 14.346 .301644 0.970357 -0.04341 .6400 CD3D 10.69667 11.29104 .302337 0.947359 -0.07802 .6400 IGF1 5.536212 5.559563 .308441 0.9958 -0.00607 .6400 EPO 0.189023 0.208045 .319003 0.908568 -0.13833 .6400							.520906
IGFBP5 139.5291 142.7088 .253947 0.977719 -0.03251 .6069 WNT8B 0.196908 0.187153 .266235 1.052122 0.073302 .6212 GHRL 1.549805 1.969712 .275682 0.786818 -0.3459 .6282 IL1B 9.159799 8.311716 .28624 1.102035 0.14017 .6375 RAPGEF5 22.38004 23.16832 .320002 0.965976 -0.04994 .6400 PLAU 13.92074 14.346 .301644 0.970357 -0.04341 .6400 CD3D 10.69667 11.29104 .302337 0.947359 -0.07802 .6400 IGF1 5.536212 5.559563 .308441 0.9958 -0.00607 .6400 EPO 0.189023 0.208045 .319003 0.908568 -0.13833 .6400							.533839
WNT8B 0.196908 0.187153 .266235 1.052122 0.073302 .6212 GHRL 1.549805 1.969712 .275682 0.786818 -0.3459 .6282 IL1B 9.159799 8.311716 .28624 1.102035 0.14017 .6378 RAPGEF5 22.38004 23.16832 .320002 0.965976 -0.04994 .6400 PLAU 13.92074 14.346 .301644 0.970357 -0.04341 .6400 CD3D 10.69667 11.29104 .302337 0.947359 -0.07802 .6400 IGF1 5.536212 5.559563 .308441 0.9958 -0.00607 .6400 EPO 0.189023 0.208045 .319003 0.908568 -0.13833 .6400							.534073
GHRL 1.549805 1.969712 .275682 0.786818 -0.3459 .6282 IL1B 9.159799 8.311716 .28624 1.102035 0.14017 .6375 RAPGEF5 22.38004 23.16832 .320002 0.965976 -0.04994 .6400 PLAU 13.92074 14.346 .301644 0.970357 -0.04341 .6400 CD3D 10.69667 11.29104 .302337 0.947359 -0.07802 .6400 IGF1 5.536212 5.559563 .308441 0.9958 -0.00607 .6400 EPO 0.189023 0.208045 .319003 0.908568 -0.13833 .6400							.606994
IL1B 9.159799 8.311716 .28624 1.102035 0.14017 .6375 RAPGEF5 22.38004 23.16832 .320002 0.965976 -0.04994 .6400 PLAU 13.92074 14.346 .301644 0.970357 -0.04341 .6400 CD3D 10.69667 11.29104 .302337 0.947359 -0.07802 .6400 IGF1 5.536212 5.559563 .308441 0.9958 -0.00607 .6400 EPO 0.189023 0.208045 .319003 0.908568 -0.13833 .6400							.621216
RAPGEF5 22.38004 23.16832 .320002 0.965976 -0.04994 .6400 PLAU 13.92074 14.346 .301644 0.970357 -0.04341 .6400 CD3D 10.69667 11.29104 .302337 0.947359 -0.07802 .6400 IGF1 5.536212 5.559563 .308441 0.9958 -0.00607 .6400 EPO 0.189023 0.208045 .319003 0.908568 -0.13833 .6400	GHRL	1.549805	1.969712	.275682	0.786818	-0.3459	.628299
PLAU 13.92074 14.346 .301644 0.970357 -0.04341 .6400 CD3D 10.69667 11.29104 .302337 0.947359 -0.07802 .6400 IGF1 5.536212 5.559563 .308441 0.9958 -0.00607 .6400 EPO 0.189023 0.208045 .319003 0.908568 -0.13833 .6400							.637535
CD3D 10.69667 11.29104 .302337 0.947359 -0.07802 .6400 IGF1 5.536212 5.559563 .308441 0.9958 -0.00607 .6400 EPO 0.189023 0.208045 .319003 0.908568 -0.13833 .6400							.640003
IGF1 5.536212 5.559563 .308441 0.9958 -0.00607 .6400 EPO 0.189023 0.208045 .319003 0.908568 -0.13833 .6400		13.92074	14.346	.301644	0.970357	-0.04341	.640003
EPO 0.189023 0.208045 .319003 0.908568 -0.13833 .6400						-0.07802	.640003
		5.536212	5.559563	.308441	0.9958	-0.00607	.640003
<i>ITGB</i> 2 80.68734 76.83119 .330846 1.05019 0.07065 .6484	EP0	0.189023	0.208045	.319003	0.908568	-0.13833	.640003
	ITGB2	80.68734	76.83119	.330846	1.05019	0.07065	.648459

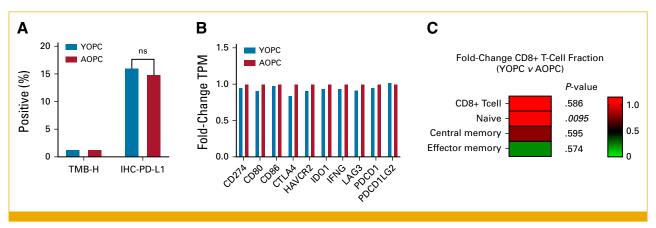

JCO Precision Oncology ascopubs.org/journal/po

TABLE A2. List of Differentially Expressed Genes Between YOPC and AOPC (continued)

Gene	Age ≥70 Years	Age <70 Years	Р	Fold Change	Log ₂ Fold Change	Q
ITGAX	16.62007	15.83322	.343258	1.049696	0.069971	.659594
IGFBP4	42.73864	43.66044	.370802	0.978887	-0.03079	.661693
ITGAL	15.41324	15.15506	.371358	1.017036	0.024371	.661693
COL4A6	0.729051	0.737712	.369763	0.98826	-0.01704	.661693
PLAT	132.5589	130.0715	.367849	1.019123	0.027329	.661693
CD8A	3.415586	3.407509	.404158	1.00237	0.003415	.707277
CCL11	2.96355	3.101497	.424294	0.955523	-0.06564	.729488
APP	279.2316	283.0418	.44122	0.986538	-0.01955	.74551
CD28	3.54859	3.457023	.480784	1.026487	0.037716	.76157
CD4	8.300176	8.062119	.463251	1.029528	0.041983	.76157
IL2	0.266584	0.279494	.479105	0.953809	-0.06823	.76157
TLR7	2.848408	2.722911	.482509	1.046089	0.065006	.76157
ANPEP	55.2169	48.97576	.489581	1.127433	0.173042	.76157
HLA-DRB5	33.96501	35.24904	.510114	0.963573	-0.05353	.781112
PTPRC	0.345803	0.348093	.55971	0.99342	-0.00952	.818681
GNAS	190.484	192.1411	.555008	0.991376	-0.0125	.818681
COL4A3	2.246328	2.306565	.558027	0.973884	-0.03818	.818681
CD5	3.249027	3.293036	.579605	0.986636	-0.01941	.835313
IL10	1.410248	1.284904	.615607	1.097551	0.134288	.86185
HLA-DRB1	134.2702	131.7672	.607662	1.018996	0.027148	.86185
CSF1	15.09522	14.63318	.635041	1.031574	0.044848	.876536
COL4A4	1.664774	1.619377	.645554	1.028033	0.039887	.878671
IL13	0.148691	0.166913	.658406	0.890831	-0.16678	.883887
CSF3	0.241441	0.270488	.669021	0.892615	-0.16389	.886001
CD3E	3.611179	3.676768	.679651	0.982161	-0.02597	.888077
WNT8A	0.212926	0.210431	.699022	1.011857	0.017005	.901371
GUCY1B2	0.117637	0.114455	.721064	1.027805	0.039567	.916251
IL5RA	0.5349	0.525738	.738611	1.017426	0.024924	.916251
CSF2	0.464305	0.490354	.736615	0.946876	-0.07875	.916251
KCNQ4	1.031623	1.061972	.7602	0.971422	-0.04183	.925889
CD33	2.685025	2.571431	.765276	1.044175	0.062364	.925889
CD40	6.996738	7.014987	.785324	0.997399	-0.00376	.92725
IFNB1	0.40215	0.398549	.784699	1.009034	0.012974	.92725
KCNQ5	1.984083	2.036391	.81366	0.974313	-0.03754	.938102
IL5	0.918246	0.891812	.81098	1.029641	0.042142	.938102
GH1	0.253986	0.240908	.879246	1.054285	0.076265	.94375
CD247	1.340309	1.352437	.894933	0.991033	-0.013	.94375
CD3G	2.645035	2.61187	.898651	1.012698	0.018204	.94375
CD2	5.977274	5.972806	.843204	1.000748	0.001079	.94375
TRPC3	0.60144	0.585058	.876152	1.028	0.03984	.94375
ICAM1	17.30879	17.27843	.863639	1.001757	0.002533	.94375
CD7	2.710846	2.767003	.837295	0.979705	-0.02958	.94375
TRPV4	9.437347	9.389004	.905229	1.005149	0.007409	.94375
IL6	2.973981	2.991521	.857324	0.994137	-0.00848	.94375
IL9	0.120191	0.108006	.944594	1.112816	0.154215	.954332
IL4	0.571577	0.553736	.939582	1.032219	0.045749	.954332
KCNQ3	1.195197	1.204244	.939356	0.992487	-0.01088	.954332
IGFBP2	19.61493	20.58527	.985116	0.952862	-0.06966	.985116

NOTE. Genes are listed in order of statistical significance (Q value).

Abbreviations: AOPC, average-onset pancreatic cancer; YOPC, young-onset pancreatic cancer.

FIG A1. Immune landscape of YOPC and AOPC. (A) Percentage of cases positive for immunotherapy biomarkers TMB-H and PD-L1(+) for YOPC (blue bars, n = 273-292 [a small number of patients lacked PD-L1 IHC or dMMR/MSI-H analysis]) and AOPC (red bars, n = 2,028-2,138 [a small number of patients lacked PD-L1 IHC or dMMR/MSI-H data]). Statistical analysis was performed using the chi-square or Fisher's exact test. (B) Fold-change gene expression levels in TPM of immune checkpoint genes between YOPC (blue bars, n = 284) and AOPC (red bars, n = 2,089). AOPC expression is set to 1 for each gene. There were no statistically significant differences in immune gene expression between YOPC and APOC (determined using the Mann-Whitney U test). (C) Fold-change median CD8+ T-cell fractions (YOPC *v* AOPC) calculated by xCell immune deconvolution. *P* value determined using the Kruskal-Wallis test. Significant *P* value (<.05) indicated by italics. AOPC, average-onset pancreatic cancer; dMMR, mismatch repair deficiency; IHC, immunohistochemistry; MSI-H, microsatellite instability-high; TMB-H, tumor mutational burden-high; TPM, transcripts per million; YOPC, young-onset pancreatic cancer.

JCO Precision Oncology ascopubs.org/journal/po