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ABSTRACT
Background National estimates of the upcoming
diabetes epidemic are needed to understand the
distribution of diabetes risk in the population and to
inform health policy.
Objective To create and validate a population-based risk
prediction tool for incident diabetes using commonly
collected national survey data.
Methods With the use of a cohort design that links
baseline risk factors to a validated population-based
diabetes registry, a model (Diabetes Population Risk Tool
(DPoRT)) was developed to predict 9-year risk for
diabetes. The probability of developing diabetes was
modelled using sex-specific Weibull survival functions for
people >20 years of age without diabetes (N¼19 861).
The model was validated in two external cohorts in
Ontario (N¼26 465) and Manitoba (N¼9899). Predictive
accuracy and model performance were assessed by
comparing observed diabetes rates with predicted
estimates. Discrimination and calibration were measured
using a C statistic and HosmereLemeshow c2 statistic
(c2HeL).
Results Predictive factors included were body mass
index, age, ethnicity, hypertension, immigrant status,
smoking, education status and heart disease. DPoRT
showed good discrimination (C¼0.77e0.80) and
calibration (c2

HeL <20) in both external validation
cohorts.
Conclusions This algorithm can be used to estimate
diabetes incidence and quantify the effect of
interventions using routinely collected survey data.

INTRODUCTION
In medicine, prediction tools are used to calculate
risk, defined as the probability of developing a disease
or state in a given time period. Within the clinical
setting, predictive tools such as the Framingham
Heart Score1 have contributed important advances in
individual patient treatment and disease prevention.2

Similarly, applying predictive risk tools to popula-
tions can provide insight into the influence of risk
factors on the future burden of disease in an entire
region or nation and the value of interventions at the
population level.
Global estimates place the number of people with

diabetes at approximately 200 million, and increasing
rapidly.3 There is a growing concern that these trends
may slow or even reverse life expectancy gains in the
USA and other developed countries.4 Planning for
healthcare and public health resources can be
informed by robust prediction tools. Estimates of

future diabetes incidence will alert policy makers,
planners and physicians to the extent and urgency of
the diabetes epidemic. In addition, a population
prediction tool for diabetes can identify the optimal
target groups for new intervention strategies, and
determine how extensive a strategy must be to
achieve the desired reduction in new cases. This
insight can improve the effectiveness and efficiency
of prevention strategies.
Clinical risk algorithms have been applied at the

population level for other diseases,5 but with
considerable challenges. Clinical risk tools usually
require clinical data that are rarely available at the
population level. For diabetes, several clinical risk
prediction tools exist, but they require clinical data
that are collected infrequently or not at all at the
population level, such as fasting blood sugar,6e8 or
require detailed information, such as diabetes
family history.9 10 In addition, some apply only to
specific subgroups of the population, such as
specific age ranges, or only to those with comorbid
conditions.11e13 For a population algorithm, the
input variables should be representative of the entire
population (ideally population-based), meaningful
for health policy decision makers, available to a wide
audience, and regularly collected so that estimates
can be updated frequently. The creation and appli-
cation of a population-based risk algorithm for dia-
betes is feasible because the risk factors for diabetes
are well known and measured through self-reported
questionnaires in population health surveys.
The objective of this study was to create a risk

algorithm for diabetes incidence that can be applied
at the level of populations using widely available
public data. The Diabetes Population Risk Tool
(DPoRT) was created and validated by individually
linking three different provincial population health
surveys to population-based registries of physician-
diagnosed diabetes.

METHODS
DPoRT derivation cohort
The cohort was derived from 23403 Ontario resi-
dents of the 1996/7 National Population Health
Survey (NPHS-ON) conducted by Statistics Canada
(83% response rate)14 who were linkable to health
administrative databases. Households were selected
through stratified multilevel cluster sampling of
residences using provinces and/or local planning
regions as the primary sampling unit. The sample is
proportionally representative of provinces according
to the size of their populations. Excluded from the
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sampling frame were people living on Indian Reserves and Crown
Lands, institutional residents, full-time members of the Canadian
Forces, and residents of certain remote regions. The survey was
conducted by telephone, and responses were self-reported. People
under the age of 20 (n¼2407), those with diabetes at baseline
(n¼894), women who were pregnant at baseline (n¼241)
(because baseline body mass index (BMI) could not be accurately
ascertained), and men with missing baseline BMI (n¼66) were
excluded, resulting in 9177 male and 10618 female subjects.
Respondents were individually linked to a chart-validated popu-
lation-based registry of physician-diagnosed diabetes. For further
details of the breakdown of the derivation cohort, see figure 1 of
the supplementary online appendix.

DPoRT validation cohorts
The first validation cohort was the Manitoba respondents of the
1996/7 NPHS (NPHS-MB) (N¼10 118). The second validation
cohort was from the Ontario portion of the 2000/1 Canadian
Community Health Survey (CCHS-ON, Cycle 1.1, N¼37 473,
81% response rate) administered by Statistics Canada. The
target population of the CCHS is the same as that of the NPHS
and provides data representative of 98% of the Canadian
population15 16 The same exclusion criteria were applied to both
validation cohorts, and, after exclusions, there were 9899 in
NPHS-MB and 26 465 in CCHS-ON. The NPHS-MB cohort had
a 9-year follow-up (1996e2005), and CCHS-ON had a 5-year
follow-up (2000e2005); therefore DpoRT-predicted risks were
generated accordingly.

Identifying respondents who develop diabetes
Survey data were linked to provincial healthcare databases that
include all people covered under the government-funded
universal health insurance plan. The diabetes status of respon-
dents in Ontario was established by linking people to the
Ontario Diabetes Database (ODD), which contains all patients
with physician-diagnosed diabetes identified since 1991. A patient

is said to have physician-diagnosed diabetes if he or she meets at
least one of the following criteria: (a) a hospital admission with
a diabetes diagnosis (International Classification of Diseases
Clinical Modification code 250 (ICD9-CM) before 2002 or ICD-10
code E10eE14 after 2002; (b) a physician services claim with
a diabetes diagnosis (code 250) followed within 2 years by either
a physician services claim or a hospital admission with a diabetes
diagnosis. A hospital record with a diagnosis of pregnancy care or
delivery close to a diabetic record (ie, a gestational admission date
between 90 days before and 120 days after the diabetes record
date) was considered to relate to a diagnosis of gestational dia-
betes and therefore the data were excluded. The ODD has been
validated against primary care health records and demonstrated to
be accurate for determining incidence and prevalence of diabetes
(sensitivity 86%, specificity 97%).17 18 Information on vital
statistics and eligibility for healthcare coverage was captured from
the Registered Persons Data Base. The ODD algorithm is applied
nationally using provincial administrative registries (known as the
National Diabetes Surveillance System) and has been successfully
validated in several Canadian provinces.19

Variables
To ensure that DPoRTwould be applicable across different popu-
lations, variables considered had to be based on established
evidence, easily captured using population surveys, and captured in
a consistent manner across surveys and populations. Variables
includedwere age, height andweight, chronic conditionsdiagnosed
by a health professional, ethnicity, immigration status, smoking
status, educational achievement, household income, alcohol
consumption and physical activity (based on metabolic equiva-
lents). BMI in kg/m2 was used as an indicator of obesity.20 All
variables were kept in the form released in the public use data file.

Statistical analysis
The probability of physician-diagnosed diabetes was assessed
from the interview date until censoring for death or end of
follow-up. The final model was fitted using a Weibull accelerated

Figure 1 Example use of the Diabetes
Population Risk Tool to predict the
9-year risk of diabetes for a specific
high-risk man.
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failure time model which is a time-to-event model that predicts
probability of diabetes and includes time in its equation, allowing
the user to predict diabetes probability for a range of follow-up
periods. Diabetes functions were derived separately for men and
women. Variables were added to the model in a nested fashion
based on clinical importance, and the marginal statistical and
predictive significance was evaluated, controlling for variables
already in the model. Predicted probability for each person was
calculated by multiplying their risk factor values by the corre-
sponding regression coefficients and summing the products.21 An
example of this calculation is shown in figure 1. The functional
form of the model was assessed using likelihood ratio tests to
compare nested parametric models.22 A plot of log(elogS(t))
versus log(t) (where S(t) ¼ the probability of being diabetes free
beyond time t) and CoxeSnell residual plots were produced to
assess the Weibull distribution. Two indices of model performance
were examined: discrimination and calibration. Model discrimi-
nation is the ability to correctly classify those with and without
the disease based on predicted riskdthat is, to rank those whowill
and will not develop diabetes. Discrimination is measured using
a C statistic, which is analogous to the area under the receiver
operating characteristic curve, a plot of sensitivity versus
(1especificity) for a binary outcome at various thresholds.23 This
study uses a C statistic modified for survival data developed by
Pencina and D’Agostino.24 Calibration describes the accuracy of
a prediction modeldspecifically, the extent of agreement between
predicted and observed outcomes. It is measured using the Hosmer
and Lemeshow statistic (HeL test), a c2 test based on grouping

observations into deciles of predicted risk and testing associations
with observed outcomes.25 In our study, it was calculated by
comparing observed diabetes rates and DpoRT-predicted diabetes
probabilities using a modified version of the HeL c2 statistic for
time-to-event data.26 27 To mark sufficient calibration, c2¼20 was
used as a cut-off (p<0.01), consistent with the method of
D’Agostino et al26 in validating the Framingham algorithms. In
addition, discrimination and calibration were computed using the
coefficients generated from the validation cohort and labelled ‘own
cohort’. This was done to assess if the coefficients generated from
the validation cohort produced significantly different predictive
accuracy from DPoRT. In addition, graphical representations of
predicted and observed rates were produced. Recalibration was
achieved by substituting the mean values from the validation
cohort to define all variables. Because of systematic case ascer-
tainment differences between provinces, a further adjustment was
applied to predicted rates outside of Ontario. To demonstrate the
applicability of this tool, the sex-specific DPoRT models were
applied to the most recently released national survey (CCHS 2005)
to provide estimates of diabetes incidence up to 2014. Predicted
diabetes cases and incidence rates were generated overall and by
age, BMI, ethnicity and education.
All estimates incorporated bootstrap replicate survey weights to

accurately reflect the demographics of the population and account
for the survey sampling design based on selection probabilities and
post-stratification adjustments. Variance estimates were calcu-
lated using bootstrap survey weights.28 29 All statistics were
computed using SAS statistical software (version 9.1).

Table 1 Baseline characteristics of development and validation cohorts

Risk factor

Men Women

Development cohorty Validation cohortsz Development cohort Validation cohorts

Ontario NPHS
(N[9177)

Manitoba NPHS
(N[4670)

Ontario CCHS
(N[12020)

Women NPHS
(N[10618)

Manitoba NPHS
(N[5229)

Ontario CCHS
(N[14445)

Mean/median BMI (kg/m2) 26.10/25.70 26.86/26.31 26.12/25.62 24.47/23.50 25.43/24.59 24.98/24.03

Mean age (years) 44 44 44 46 47 46

Age <45 (%) 54.80 55.67 55.85 51.68 52.71 51.59

Age 45e64 (%) 30.78 29.71 31.00 29.92 27.79 31.51

Age $65 (%) 14.42 14.63 13.15 18.39 19.51 16.90

BMI <23 (%) 19.48 17.79 22.23 40.39 35.89 39.29

BMI 23e24 (%) 22.11 20.34 21.51 19.01 16.65 17.79

BMI 25e29 (%) 43.97 44.34 40.03 24.36 28.51 27.19

BMI 30e34 (%) 11.31 14.40 12.74 8.50 10.55 9.47

BMI $35 (%) 2.40 2.63 3.05 2.77 3.15 4.11

BMI missing (%) 0.73 0.51 0.44 4.98 5.26 2.14

Non-white (%) 11.51 10.42 16.68 10.41 10.51 16.76

Hypertension (%) 10.23 10.16 12.50 12.32 13.22 14.94

Current smoker (%) 29.67 30.76 24.78 24.48 24.40 18.97

Physical activity (kcal/day) 1.86/1.20 1.79/1.10 1.97/1.30 1.62/1.10 1.44/1.00 1.63/1.10

Heart disease (%) 4.97 4.43 5.19 4.16 4.62 5.24

Graduated post secondary
school (%)

81.12 73.28 82.11 81.86 73.81 81.09

Number incident diabetes (unweighted) 718 272 559 692 258 558

% developing diabetes
in 9 years

7.78 7.22 6.13 4.75

Age standardised* % developing diabetes
in 9 years

6.67 6.55 5.59 4.27

% developing diabetes in 5 years 4.26 4.60 3.23 3.69

Age standardised* % developing diabetes
in 5 years

3.59 3.95 2.81 3.35

Categorical variables are represented as a proportion (%), and continuous variables are represented as a mean/median.
*Standardised to the 1991 Canadian population.
yThe development cohort refers to the cohort where the Diabetes Population Risk Tool (DPoRT) was created: the Ontario 1996/7 National Population Health Survey (NPHS) linked to diabetes
status.
zThe validation cohorts refer to the populations that DPoRT was validated on: the Manitoba 1996/7 NPHS and the Ontario 2000/1 Canadian Community Health Survey (CCHS) both linked with
diabetes status.
BMI, body mass index.
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RESULTS
All population characteristics in the derivation cohort and two
validation cohorts are shown in table 1. In the development
cohort, 7.78% and 6.13% of men and women, respectively,
developed diabetes during the follow-up period. The derivation
cohort differed from the validation cohorts in risk factor and
sociodemographic composition, particularly ethnic composition
(table 1).

Diabetes risk was strongly related to BMI and age. BMI was
considered in both its continuous and categorical form; however,
the best goodness-of-fit and calibration were achieved by cate-
gorising BMI and including its interactions with age. This
categorisation was least likely to cause over-fitting when applied
to external data while maintaining discrimination. Including
only age and BMI achieved a moderate degree of discrimination
(C statistic¼0.70). Non-white ethnicity, hypertension and less
than post-secondary education were also important factors
associated with an increased risk of diabetes. For men, smoking
and heart disease were important independent risk factors found
to improve model characteristics; for women, immigrant status
improved the model. The following variables were excluded
because they did not improve the model or worsened predictive
accuracy: income, physical activity and alcohol consumption.
The DPoRT model for predicting diabetes risk is shown in table
2 for men and table 3 for women. Figure 1 demonstrates how
the risk coefficients in DPoRTwere used to calculate risk using
a man with numerous risk factors as an example.

In the CCHS validation cohort, the DPoRT 5-year predicted
(and observed) diabetes incidence rates were 4.2% (4.6%) for
men and 3.4% (3.7%) for women. In the NPHS-MB validation

cohort, DPoRT 9-year predicted (observed) diabetes incidence
rates were 7.0% (7.1%) for men and 5.1% (4.7%) for women.
Overall predicted diabetes rates differed from observed rates by
#0.4% in both validation cohorts (figure 2 of the supplementary
online appendix).
Observed and predicted risks closely agreed overall and across

levels of diabetes risk. R2 between observed diabetes rates and
DpoRT-predicted probabilities across quantiles of risk exceeded
98%. C statistics when DPoRT was applied to the validation
cohorts were high (0.77e0.80) and were not appreciably lower
than those generated from the ‘own cohort’ models (table 4). As
shown graphically in figure 2, for men and women, observed and
predicted rates of diabetes did not substantially differ across
quantiles of risk in both validation cohorts (cHeL<20).
To demonstrate the applicability of DPoRT to recent Cana-

dian data, the predicted risk and number of new cases in the
next 9 years using the 2005 data are shown in table 5. Approx-
imately 1.7 million new diabetes cases are predicted for the
subsequent 9 years with significant variability by age, ethnicity,
education and levels of obesity (table 5). Risk increases sharply
with increasing levels of obesity, and decreases with increasing
level of educational achievement.

DISCUSSION
This study shows that diabetes risk can be accurately predicted at
the population level using self-reported measures available in

Table 3 Diabetes Population Risk Tool functions for
predicting 9-year risk of physician-diagnosed diabetes for
women

Risk factor Value

Intercept 10.5474

Hypertension

Yes 0.00

No e0.2865

Non-white ethnicity

Yes 0.00

No e0.4309

Immigrant status

Yes 0.00

No e0.2930

Education

< Post-secondary 0.00

Post-secondary or higher 0.2042

BMI/age category

BMI <23/age <45 0.00

BMI 23e24/age <45 e0.5432

BMI 25e29/age <45 e0.8453

BMI 30e34/age <45 e1.4104

BMI $35/age <45 e2.0483

BMI missing/age <45 e1.1328

BMI<23/age 45e64 0.0711

BMI 23e24/age 45e64 e0.7011

BMI 25e29/age 45e64 e1.4167

BMI 30e34/age 45e64 e2.2150

BMI $35/age 45e64 e2.2695

BMI missing/age 45e64 e1.7260

BMI <23/age $65 e1.0823

BMI 23e24/age $65 e1.1419

BMI 25e29/age $65 e1.5999

BMI 30e34/age $65 e1.9254

BMI $35/age $65 e2.1959

BMI missing/age $65 e1.8284

Scale 0.7814

BMI, body mass index (m/kg2).

Table 2 Diabetes Population Risk Tool functions for
predicting 9-year risk of physician-diagnosed diabetes for
men

Risk factor Value

Intercept 10.5971

Hypertension

No 0.00

Yes e0.2624

Non-white ethnicity

No 0.00

Yes e0.6316

Heart disease

No 0.00

Yes e0.5355

Current smoker

No 0.00

Yes e0.1765

Education

< Post-secondary 0.00

Post-secondary or higher 0.2344

BMI/age category

BMI <23/age <45 0.00

BMI 23e24/age <45 e1.2378

BMI 25e29/age <45 e1.5490

BMI 30e34/age <45 e2.5437

BMI $35/age <45 e3.4717

BMI <23/age $45 e1.9794

BMI 23e24/age $45 e2.4426

BMI 25e29/age $45 e2.8488

BMI 30e34/age $45 e3.3179

BMI $35/age $45 e3.5857

Scale 0.8049

BMI, body mass index (m/kg2).
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population health surveys. In addition to being able to effectively
rank-order subjects from low to high risk, DPoRT-predicted rates
closely agreed with observed rates across levels of risk for both
sexes in two external validation cohorts. DPoRT represents
a novel approach that can be integrated into commonly collected
population health survey data.

Similar to the clinical setting, where decisions are guided by
estimation of baseline risk at the time of patient assessment,
DPoRT allows estimation of baseline risk of diabetes using the
current level of risk factors in the population. This approach has
several advantages. Firstly, it has been widely accepted with

demonstrated utility for clinical decision-making by providing
an effective way to assess patient risk based on multiple risk
factors. This risk assessment is then used to guide treatment or
prevention recommendations. Secondly, there are well-described
methods for developing clinical risk tools and assess their
validity, providing a sound methodological basis to validate our
approach.26 30 Thirdly, the use of simple self-reported risk factor
data allows DPoRT to be used in population settings where
detailed clinical data are often unavailable. Further, the use of
regularly collected population surveys allows estimates to be
updated frequently. The most stringent test of predictive model

Table 4 C statistics with 95% CIs and calibration c2 statistics for Diabetes Population Risk Tool (DpoRT) and cohorts’ own functions

Men Women

NPHS ON CCHS ON NPHS MB NPHS ON CCHS ON NPHS MB

C statistic (95% CI)

DPoRT 0.77 (0.76 to 0.79) 0.77 (0.76 to 0.79) 0.79 (0.77 to 0.82) 0.78 (0.76 to 0.79) 0.76 (0.74 to 0.77) 0.80 (0.77 to 0.82)

Own function* 0.80 (0.78 to 0.83) 0.78 (0.76 to 0.79) 0.80 (0.77 to 0.82) 0.80 (0.78 to 0.83) 0.77 (0.75 to 0.79) 0.80 (0.77 to 0.82)

Calibration c2

Uncalibrated DPoRT 4.33 13.23 136.13 5.22 24.84 35.07

Mean calibrated DPoRTz e 13.04 18.35 e 18.27 17.61

Own function e 8.89 8.32 e 10.44 4.88

*Own function is the factors of the algorithm applied using coefficients derived from the validation cohort’s own data.
zCalibrated DPoRT is function adjusted using the validation cohort’s own means for factors.
CCHS, Canadian Community Health Survey; MB, Manitoba; NPHS, National Population Health Survey; ON, Ontario.

Figure 2 Predicted 10 versus observed incidence of diabetes for men and women in two validation datasets across deciles or quintiles of risk. The x
axis refer to quantile (decile or quintile) of predicted Diabetes Population Risk Tool (DPoRT). The y axis refers to the observed (bars) and DPoRT-
predicted (dotted line) probability of developing Diabetes Mellitus (DM) in a 5-year period for Ontario and a 9-year period for Manitoba. Observed
diabetes rates are physician-diagnosed diabetes rates in the same time period. CCHS, Canadian Community Health Survey; DPoRT, Diabetes Population
Risk Tool; NPHS, National Population Health Survey.
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accuracy is the application of the model to a different popula-
tion.31 32 This study shows that DPoRT is discriminating and
accurate in two external populations that varied across geog-
raphy and time.

Previous studies that estimate future diabetes burden have
either extrapolated overall trends in diabetes prevalence or
indirectly incorporated information on the influence of risk
factors with various assumptions.3 33e36 Studies of diabetes
lifetime risk and life expectancy are not predictive; rather they
describe diabetes from a life-course perspective using a period or
stationary population approach.36 37 Although these approaches
are useful, they do not enable users to directly and quantita-
tively assess the impact of risk factors, such as BMI, on future
diabetes cases. Complex modelling and simulation methods
differ from the approach used in this study in that they use
additional information on how populations and risk factors
change over time.38 39 A strength of simulation models is that
they can combine different data sources.40 However, these
models often represent clinical or theoretical populations,
making estimates difficult to validate in populations that are
meaningful for population health planning.

Potentially important clinical values, such as fasting blood
glucose, are excluded from DPoRT because they are not captured
in population surveys. Although these variables may be clinically
important, their use is not feasible for population risk assessment
because they are not routinely collected in most populations.
These omitted variables are unlikely to have a major effect on the
performance characteristics of the model because of the clustering
of risk factors, particularly when dealing with abnormalities of
the metabolic system.41e45

A potential limitation of this study is that variables such as
family history of diabetes or poor diet were not collected. These
variables are also associated with the clustering of metabolic and
other risk factors included in the algorithm. Using self-report
measures is a limitation because these measures may be subject

to reporting error. Validation studies have shown a strong
correlation between measured height and weight; however,
weight has been shown to be underestimated and height over-
estimated.46 47 It is important to note that DPoRT is designed to
be applied to self-reported data, and, unless surveys or reporting
patterns change, this is unlikely to affect model performance.
There is evidence that simple clinical risk tools, including those
with self-report data, perform as well as complex models.48 49

To ensure that DPoRTcan be applied in different populations,
we used variables that remained stable over time, were unlikely
to be subject to serious measurement error (such as alcohol and
dietary habits), and are easily captured using survey data in
different populations. For example, physical activity, shown to
have a protective effect on diabetes risk, was removed from the
model because of the inability to capture it in a reliable and
reproducible manner across surveys, as well as its lack of
improvement of model accuracy. Despite considerable variable
constraints, DPoRT maintained good discrimination. Additional
predictive variables need to have a high independent risk (OR
$6.9) to result in significant improvements once a discrimina-
tion of 0.8 is already achieved.50 This phenomenon was
corroborated in this study, as a maximum level of discrimination
was achieved using few variables.
DPoRT was developed in Canada and is most appropriate in

the Canadian setting; however, like other risk tools, it may be
transportable once validated and calibrated. The simplicity of
the model and the fact that it was validated in two very
different populations make its generalisability a genuine possi-
bility. We recommend that, when this model is applied outside
of Canada, it be validated to ensure accuracy.
The use of physician-diagnosed diabetes, as opposed to true

diabetes status (diagnosed plus undiagnosed), is a limitation

Table 5 Predicted 9-year diabetes risk in 2005 by subgroups in Canada
from the Canadian Community Health Survey (CCHS)

Characteristic

Men Women

9-year risk
(%)

No of new
cases

9-year risk
(%)

No of new
cases

Age group

<35 3.4 104277 3.9 112821

35e54 8.5 386398 6.3 282964

55e75 14.4 334362 10.8 275086

>75 13.6 69917 11.9 100537

Body mass index

<23 2.7 57028 2.7 102262

23e24 5.5 122731 4.4 79762

25e29 8.8 384631 9.2 254164

30e34 17.3 230934 17.6 180091

$35 28.3 99629 22.6 100734

Ethnicity

White 8.2 712985 7.4 611092

Non-white 10.7 181968 9.7 160316

Education level

< Secondary 13.2 211818 12.1 209799

Secondary school
graduation

9.5 152154 8.7 149895

Other post-secondary
school

6.6 60718 6.1 49803

Graduated post-secondary
school

7.4 470263 5.9 361911

Overall 8.6 894953 7.0 771408

What is already known on this subject

< Risk algorithms are often used in the clinical setting to guide
clinical decision making; however, they have typically not
been adapted for use at the population level.

< Clinical risk tools for diabetes require data that are rarely
available at the population level.

< Previous studies that have estimated future diabetes burden
have either extrapolated overall trends in diabetes prevalence
or indirectly incorporated information on the influence of risk
factors with various assumptions.

What this study adds

< This study develops and validates an algorithm for population-
based prediction of diabetes (DPoRT), which differs from
individual risk approaches.

< This algorithm can be used to estimate diabetes incidence in
populations and quantify the effect of interventions using
routinely collected survey data on risk factors.

< Population-based prediction models such as DPoRT can be
used to improve population health planning, explore the effect
of prevention strategies, and enhance our understanding of the
distribution of diabetes in the population.
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because the estimates may exclude people with diabetes who are
not yet identified. This may reflect patients with less severe
disease and/or poorer access to medical care. Physician-diagnosed
diabetes is currently the most commonly used definition of
diabetes at the level of populations. Although true prevalence
estimates would be higher, advocates of the physician-diagnosed
outcome argue that it is meaningful to people with recognised
diabetes and to the treatment of patients in the healthcare
system. In Canada, all residents are covered under a universal
health insurance plan and thus are eligible for healthcare and
access to a physician for diabetes testing. If diabetes testing/
screening increases over time, predicted estimates may be lower
than the observed estimates (under the assumption of increased
case detection). DPoRT has been found to be accurate in
different populations for different time periods; however, it
could be adjusted to predict total diabetes cases using informa-
tion on screening/testing in the population.

Curbing the diabetes epidemic has been identified by
governments and health policy makers as a top priority for
improving, and even maintaining, the health of their nations.
Population-based prediction models such as DPoRT can be used
to improve health planning, explore the effect of prevention
strategies, and enhance understanding of distribution of the
disease. This study shows that DPoRT accurately predicts dia-
betes incidence and is effective at predicting the population level
of diabetes risk. This algorithm can be used by health planners
to estimate diabetes incidence, to stratify the population by risk,
and quantify the effect of interventions using routinely collected
survey data. As the surveillance of risk factors and diabetes
advances, DPoRTcan be adapted to become more accurate, while
maintaining its accessibility for decision makers.
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