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Abstract: The organic cation transporter 2 (OCT2) and multidrug and toxin extrusion protein 1
(MATE1) mediate the renal secretion of drugs. Recent studies suggest that ondansetron, a 5-HT3

antagonist drug used to prevent nausea and vomiting, can inhibit OCT2- and MATE1-mediated
transport. The purpose of this study was to test the ability of five 5-HT3 antagonist drugs to inhibit
the OCT2 and MATE1 transporters. The transport of the OCT2/MATE1 probe substrate ASP+ was
assessed using two models: (1) HEK293 kidney cells overexpressing human OCT2 or MATE1, and
(2) MDCK cells transfected with human OCT2 and MATE1. In HEK293 cells, the inhibition of
ASP+ uptake by OCT2 listed in order of potency was palonosetron (IC50: 2.6 µM) > ondansetron >
granisetron > tropisetron > dolasetron (IC50: 85.4 µM) and the inhibition of ASP+ uptake by MATE1
in order of potency was ondansetron (IC50: 0.1 µM) > palonosetron = tropisetron > granisetron >
dolasetron (IC50: 27.4 µM). Ondansetron (0.5–20 µM) inhibited the basolateral-to-apical transcellular
transport of ASP+ up to 64%. Higher concentrations (10 and 20 µM) of palonosetron, tropisetron,
and dolasetron similarly reduced the transcellular transport of ASP+. In double-transfected OCT2-
MATE1 MDCK cells, ondansetron at concentrations of 0.5 and 2.5 µM caused significant intracellular
accumulation of ASP+. Taken together, these data suggest that 5-HT3 antagonist drugs may inhibit
the renal secretion of cationic drugs by interfering with OCT2 and/or MATE1 function.

Keywords: OCT2; MATE1; cationic; 5-HT3 antagonist; kidney; secretion; transport

1. Introduction

Renal secretion is achieved by the coordinated uptake and efflux of drugs across the
tubule epithelium. For drugs and toxicants that are organic cations, their transepithelial
transport into the filtrate is first achieved by the organic cation transporter 2 (OCT2) on
the basolateral surface and, subsequently, by the multidrug and toxin extrusion 1 (MATE1)
transporter on the brush border membrane. Prior to discovering the OCT2/SLC22A1
and MATE1/SLC47A1 genes, it was well understood that the secretion of organic cations
could be inhibited pharmacologically [1]. Using a variety of experimental approaches
across different preclinical species, it was demonstrated that organic cations undergo
active transport and renal secretion [2–4]. Since these early observations, the research has
advanced to understand not only the molecular mechanisms of organic cation secretion
but also the potential for clinically-relevant drug interactions following the disruption of
OCT2 and MATE1 (reviewed in [5]).
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Antagonists of the serotonin 5-HT3 receptor have emerged as critical drugs for the
management of nausea and vomiting. Serotonin is released by the enterochromaffin cells
of the small intestine. 5-HT3 antagonists inhibit the ionotropic ligand-gated ion channel
on afferent nerves from the vagus and prevent the vomiting reflex [6]. Ondansetron was
the first 5-HT3 antagonist approved to prevent chemotherapy-induced nausea and vomit-
ing [7,8]. Since that time, additional drugs in this class (including tropisetron, granisetron,
dolasetron, and palonosetron) have been developed [9]. While the primary therapeutic
indication of 5-HT3 antagonists has been the prevention of chemotherapy and radiation
induced emesis, they are also approved for the management of postoperative nausea
and vomiting and are used off-label to treat morning sickness, hyperemesis gravidarum,
postoperative delirium, and pruritus [10–14].

Given the cationic nature of 5-HT3 antagonists (Figure 1), they have emerged as
substrates and inhibitors of OCT and MATE transporters. In vitro studies have revealed
that ondansetron and tropisetron are substrates and inhibitors of OCT1 and OCT2 [15–20].
Moreover, individuals with loss-of-function variants in the OCT1/SLC22A1 gene have been
shown to have altered tropisetron pharmacokinetics and improved clinical efficacy [16].
Likewise, ondansetron can inhibit MATE transporters, leading to renal accumulation of
the antidiabetic drug metformin, as well as increased nephrotoxicity of the anticancer
drug cisplatin [19]. In humans, ondansetron decreases the renal clearance of metformin,
presumably by inhibiting MATE1 efflux [21]. Together, these data point to the potential for
5-HT3 antagonists to inhibit the transepithelial secretion of drugs via OCT2 and MATE1.
Therefore, we sought to systematically compare five 5-HT3 antagonists for their ability to
inhibit human OCT2 and MATE1-mediated transport of a probe cationic substrate using
single- and double-transfected kidney cells. Of note, the current study focused primarily
on MATE1, as levels of MATE2-K protein in the human kidney cortex have been previously
shown to be below the lower limit of quantification using mass spectrometry [22].
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Figure 1. Structure of 5-HT3 antagonists.

2. Results
2.1. Characterization of ASP+ as a Fluorescent Substrate in HEK293 Cells Overexpressing OCT2
and MATE1

Initial studies characterized the uptake of ASP+ into cells overexpressing an empty
vector (EV), OCT2, or MATE1 (Figure 2). ASP+ displayed time-dependent (Figure 2A)
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and concentration-dependent (Figure 2B) uptake in both OCT2- and MATE1-expressing
cells and exhibited saturable kinetics (OCT2: Vmax 8.1 nmol/mg/min, Km 2.9 µM, R2

0.95; MATE1: Vmax 3.4 nmol/mg/min, Km 8.2 µM, R2 0.96). EV cells exhibited minimal
accumulation of ASP+ (Vmax 1.9 nmol/mg/min, Km 37.3 µM, R2 0.92). Based on these
findings, ASP+ uptake was quantified after 1 min (linear range for OCT2 and MATE1
transport) at a concentration of 10 µM, which provided sufficient sensitivity for fluorescence
detection and screening of 5-HT3 antagonists as inhibitors.
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Figure 2. Time and Concentration-Dependent Accumulation of ASP+ in HEK293 Cells Overexpress-
ing OCT2 or MATE1. HEK cells expressing empty vector (EV), OCT2, or MATE1 were incubated for
different time periods (0.5–20 min, 10 µM ASP+, 37 ◦C) to evaluate time-dependent uptake (A) or
with increasing concentrations of ASP+ (0–100 µM, 1 min 37 ◦C) for concentration-dependent uptake
(B) on a shaker. Specific transport uptake is shown in dashed lines. Intracellular fluorescence was
quantified and normalized to protein concentration. Data are presented as mean ± SE (n = 3).

To ensure these conditions reflected active transport by each transporter, the IC50
values of cimetidine, a well-established OCT2 and MATE1 inhibitor, were determined
(Figure 3 and Table 1). The IC50 for cimetidine was 24.5 ± 4.0 µM in OCT2-expressing cells
and 0.23 ± 0.2 µM in MATE1-expressing cells, in agreement with published data showing
inhibition of MATE1 at lower concentrations [18,20]. Cimetidine had no influence on ASP+

uptake in EV cells.

Table 1. 5-HT3 antagonist inhibition of in vitro ASP+ transport by OCT2 and MATE1 in HEK293
cells 1.

5-HT3 Antagonist OCT2 IC50 (µM) MATE1 IC50 (µM)

Ondansetron 2.6 ± 0.9 0.1 ± 0.1
Palonosetron 2.2 ± 0.3 1.6 ± 0.6
Granisetron 3.8 ± 1.6 5.0 ± 1.1
Tropisetron 31.3 ± 6.6 1.6 ± 0.9
Dolasetron 85.4 ± 3.4 27.4 ± 2.8
Cimetidine 24.5 ± 4.0 0.23 ± 0.2

1 Avg ± SE (n = 3).
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Figure 3. 5-HT3 Antagonist Inhibition of ASP+ Transport in HEK293 Cells Overexpressing OCT2 and MATE1 following
5-HT3 Antagonist Treatment. Cells were incubated with ASP+ (10 µM) in the presence and absence of various concentrations
of 5-HT3 antagonist or the positive control inhibitor, cimetidine. Fluorescence was quantified and normalized to protein
concentration. Fluorescence quantified in empty vector, OCT2, and MATE1 treated with vehicle control (no inhibitor) was
set to 100%. Data are expressed as mean ± SE (n = 3). * p < 0.05 compared to the vehicle.

2.2. Inhibition of OCT2- and MATE1-Mediated Transport by Antiemetic Drug in HEK293 Cells

Five different 5-HT3 antagonists (ondansetron, palonosetron, granisetron, tropisetron,
and dolasetron) were evaluated for their inhibition of OCT2 and MATE1 transport in
HEK293 cells using ASP+ as a substrate (Figure 3). A concentration-dependent decrease in
ASP+ uptake was observed in OCT2- and MATE1-expressing cells in the presence of all five
5-HT3 antagonists tested across a range of concentrations. IC50 values for the inhibition of
ASP+ accumulation by 5-HT3 antagonists using the concentration ranges tested are shown
in Table 1. With the exception of granisetron, the other 5-HT3 antagonists inhibited MATE1
more potently than they did OCT2. OCT2-mediated transport was inhibited up to ~90%
while MATE1-mediated transport was inhibited up to ~70% at the concentrations tested.

In general, the uptake of ASP+ by EV cells was not altered to a large degree by the
5-HT3 antagonists. However, it was noted that palonosetron and tropisetron stimulated
additional ASP+ uptake in EV cells and the highest concentration of granisetron caused a
small decrease in ASP+ accumulation.

2.3. Characterization of the Transcellular Transport and Intracellular Accumulation of ASP+ in
OCT2/MATE1-Expressing MDCK Cells

To investigate the combined contribution of OCT2 and MATE1 in transepithelial secre-
tion, subsequent experiments were performed in MDCK cells that polarize with basolateral
(OCT2) and apical (MATE1) surfaces. The expression of the OCT2 and MATE1 protein
was confirmed in double-transfected MDCK cells using Western blotting (Figure 4A). The
transcellular transport of the cationic probe substrate ASP+ (25 µM) was tested in these
cells using Transwell inserts. The basolateral-to-apical (B-to-A) transport of ASP+ was
much greater (up to 2.8-fold at 120 min) than the apical-to-basolateral (A-to-B) transport in
the OCT2/MATE1 double transfected cells (Figure 4B). The B-to-A/A-to-B efflux ratio at
120 min was estimated to be 2.7 for OCT2/MATE1 cells supporting the active secretion of
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ASP+. In contrast, control cells exhibited much lower ASP+ transport in both directions
compared to OCT2/MATE1 cells. The B-to-A transport of ASP+ was only significantly
higher compared to the A-to-B transport in control cells at 90 (1.3-fold) and 120 min
(1.7-fold). All further inhibition assays were performed in the B-to-A direction.
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OCT2 (~63 kDa,) and MATE1 (~54 kDa) in vector control MDCK cells (lanes 1–2) and OCT2/MATE1 double transfected
(lanes 3–4). (B). Cells were incubated with ASP+ (25 µM) in either apical or basolateral media for 120 min and fluorescence in
apical or basolateral media was quantified (A-to-B: apical-to-basolateral; B-to-A: basolateral-to-apical). † p < 0.05 compared
to A-to-B. ‡ p < 0.05 compared to vector. (C). Cells were incubated with ASP+ (25 µM) in basolateral media and positive
control inhibitors in apical and basolateral media for 120 min. Fluorescence was measured in the apical chamber. (D).
Intracellular fluorescence was quantified and normalized to protein concentration. Data are expressed as mean ± SE (n = 3).
* p < 0.05 compared to no inhibitor. CIM–Cimetidine; PYR–Pyrimethamine; OLA–Olanzapine.

The ability of chemicals to inhibit ASP+ flux and accumulate in OCT2/MATE1 double
transfected cells at the specified test conditions was assessed using three positive con-
trol inhibitors (cimetidine 5 and 50 µM, pyrimethamine 1 µM, and olanzapine 20 µM)
(Figure 4C). Cimetidine is a known inhibitor of OCT2 and MATE1, with a greater potency
for MATE1 (Table 1) [18]. Pyrimethamine is a specific MATE1 inhibitor [23], whereas
olanzapine was found to inhibit OCT2 more potently (Supplementary Figure S1) [18,20].
All three chemicals inhibited the transcellular flux of ASP+ (18% cimetidine 5 µM, 40%
cimetidine 50 µM, 36% pyrimethamine 1 µM, and 28% olanzapine 20 µM at 120 min).

The accumulation of ASP+ intracellularly was also quantified in lysates at 120 min.
Cimetidine and pyrimethamine increased the intracellular accumulation of ASP+ by 1.8-
fold and 1.3-fold (due to inhibition of MATE1 primarily), respectively, whereas olanzapine
decreased the intracellular accumulation of ASP+ by 51% (due to the inhibition of OCT2).
In control cells, no significant inhibition of B-to-A transport of ASP+ was observed at any
of the time points. In control cells, there were also no significant changes in intracellular
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accumulation of ASP+ compared to vehicle control cells, except for a modest decrease in
ASP+ accumulation in the presence of olanzapine 20 µM.

2.4. Inhibition of the Transcellular Transport of ASP+ by 5-HT3 Antagonists in
OCT2/MATE1-Expressing MDCK Cells

The five 5-HT3 antagonists (ondansetron, palonosetron, granisetron, tropisetron, and
dolasetron) were evaluated for their ability to affect the transcellular transport and intracel-
lular accumulation of ASP+ in OCT2/MATE1 double-transfected cells (Figures 5 and 6).
Cimetidine (50 µM) was included with each experiment in a parallel set of Transwells as
a positive control. Interestingly, all five 5-HT3 antagonists exhibited varying degrees
of inhibition on the transcellular B-to-A transport of ASP+ (Figure 5). Compared to
vehicle-treated cells, ondansetron inhibited the B-to-A transport of ASP+ in a concentration-
dependent manner, with 36% inhibition at 120 min in the highest concentration tested
(20 µM). Palonosetron and tropisetron also displayed a concentration-dependent inhibition
of ASP+ secretion, which was significant at 10 and 20 µM for all time-points. Inhibition of
ASP+ secretion was observed with palonosetron and tropisetron at 20 µM. Dolasetron at 10
and 20 µM inhibited ASP+ transport at 120 min only. Lastly, granisetron did not alter the
B-to-A transport of ASP+ at any concentration tested. Control cells showed no significant
inhibition in the B-to-A transport of ASP+ with any of the 5-HT3 antagonists (data not
shown).
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Figure 5. 5-HT3 Antagonist Inhibition of ASP+ Transepithelial Transport in OCT2/MATE1-
Transfected MDCK Cells. Cells were incubated with ASP+ (25 µM) in basolateral media and/or
5-HT3 antagonists (0.5–20 µM) or 50 µM cimetidine in apical and basolateral media for 120 min.
Apical fluorescence was quantified between 40–120 min. Data are expressed as mean ± SE (n = 3).
Two-way ANOVA analyses evaluated the influence of time and inhibitor on ASP+ transport.
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Figure 6. Intracellular Accumulation of ASP+ in OCT2/MATE1-Transfected MDCK Cells after 5-HT3 Antagonist Treatment.
Empty vector (black bars) and OCT2/MATE1-transfected (red bars) MDCK cells were incubated with ASP+ (25 µM) in
basolateral media with or without 5-HT3 antagonists (0.5–20 µM) or 50 µM cimetidine in apical and basolateral media for
120 min. Intracellular fluorescence (120 min) was quantified and normalized to protein concentration. Data are expressed as
mean ± SE (n = 3). * p < 0.05 compared to no inhibitor. † p < 0.05 compared to empty vector control cells.

2.5. ASP+ Intracellular Accumulation in OCT2/MATE1-Expressing MDCK Cells Following
Treatment with 5-HT3 Antagonists

Low concentrations (0.5 and 2.5 µM) of ondansetron resulted in a 1.3-fold increase
in intracellular ASP+ accumulation in OCT2/MATE1-expressing cells, while there was
no difference compared to vehicle at higher concentrations (10 and 20 µM) (Figure 6).
However, in control cells, there was a decrease (40%) in the accumulation of ASP+ at
high concentrations of ondansetron. In OCT2/MATE1 cells, tropisetron and granisetron
increased ASP+ accumulation (1.5 and 1.3-fold, respectively) at the highest concentration
(20 µM). No significant changes in ASP+ accumulation were observed with palonosetron
or dolasetron.

3. Discussion

OCT2 and MATE1 are key transporters that coordinate the renal secretion of organic
cations. They share a number of overlapping substrates including metformin, cisplatin,
lamivudine, and entecavir, as well as select 5-HT3 antagonist drugs [15–20,24]. Previous
studies have suggested that 5-HT3 antagonists can also inhibit transport by OCT2 and
MATE1. Most notably, ondansetron has been shown to reduce the transport of cisplatin
and metformin by MATE1 [19]. The current study aimed to extend this prior work to
compare five 5-HT3 antagonists for their ability to inhibit OCT2 and MATE1 individually
when overexpressed in HEK293 cells and when coexpressed in MDCK cells and grown on
Transwell inserts. Ondansetron and palonosetron were able to inhibit the uptake of a probe
cationic chemical, ASP+, into HEK293 cells expressing OCT2 or MATE1, most notably, at
concentrations as low as 0.1–0.5 µM. Similarly, granisetron, tropisetron, and dolasetron
were also able to inhibit each transporter (at higher concentrations, however). Using
OCT2/MATE1 double-transfected MDCK cells, ondansetron inhibited the basolateral-to-
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apical ASP+ secretion at all concentrations tested (0.5–20 µM), which was only observed at
higher concentrations for palonosetron, tropisetron, and dolasetron. These data, obtained
using a probe fluorescent substrate, suggest the potential for OCT2- and MATE1-mediated
drug interactions with 5-HT3 antagonists.

The data generated in the OCT2/MATE1 double transfected cells largely agree with
the HEK293 data, with the exception of granisetron. Ondansetron, palonosetron, and
tropisetron exhibited concentration-dependent inhibition of the B-to-A transport of ASP+

with the order of potencies reflecting that observed with MATE1 inhibition seen in HEK293
cells. Surprisingly, granisetron did not exhibit any significant inhibition in OCT2/MATE1
MDCK cells, even at concentrations five times above the IC50 concentration observed in
HEK293 cells expressing OCT2 or MATE1. Because the MDCK cells resemble native tubular
cells to a greater extent than do HEK293 cells, there is the potential for the disposition
of granisetron to be altered due to the expression of endogenous transporter orthologs
of OCT2 or MATE1, or potentially other transporters. For example, MDCK cells highly
express the canine P-glycoprotein transporter [25], which could lead to granisetron efflux.
Supporting this speculation is the fact that a single nucleotide polymorphism in the human
MDR1/ABCB1 transporter improved the clinical efficacy of granisetron for treating eme-
sis [26]. These data suggest that granisetron may be a substrate for canine P-glycoprotein,
causing an alteration in the intracellular concentration exposed to the MATE1 transporter.

While there is much overlap between the substrates and inhibitors of OCT and MATE
transporters, distinctions do exist. Transporter-based drug–drug interactions can often
be dependent upon the identity of the victim substrate being evaluated, as has been
demonstrated for OCT2 [27–29]. For OCT2, selection of the cationic substrate has both
a quantitative and qualitative impact on the extent and type of inhibition [27,28]. In
contrast, the apparent Michaelis constant of the transported substrate and IC50 values for
the inhibition of MATE1 across four different substrates was similar [30]. These data would
suggest that there is a shared binding site for the interaction of substrates and inhibitors on
the external surface of hMATE1. As a result, the interactions of 5-HT3 antagonist drugs
with OCT2 and MATE1 may occur through different mechanisms, despite their shared
cationic nature. Future studies are needed to advance the current study using a probe
substrate and evaluating interactions with specific drug substrates such as cimetidine,
metformin, and cisplatin.

Additional classes of drugs beyond the 5-HT3 antagonists are also used to prevent
nausea and vomiting. In preliminary studies, we assessed the ability of other antiemetic
drugs to inhibit OCT2 and MATE1-mediated transport of ASP+ in HEK293 cells. Interest-
ingly, olanzapine, prochlorperazine, and metoclopramide inhibited OCT2 activity across a
range of concentrations (Supplementary Figure S1). None of these drugs inhibited MATE1
activity at a concentration of 10 µM (data not shown). Other antiemetics, including aprepi-
tant and dexamethasone, had no impact on ASP+ uptake in OCT2- or MATE1-expressing
HEK293 cells (data not shown). As a result, there may be the potential for other antiemetic
drugs (olanzapine, prochlorperazine, and metoclopramide) coadministered with 5-HT3
antagonists to also impact the renal secretion of cations, most notably through their ability
to inhibit OCT2 uptake.

It is important to consider how well in vitro models recapitulate features of endoge-
nous transport in human kidneys. Human OCT2 and MATE1 protein levels have been
previously quantified in double-transfected MDCK cells by LC-MS/MS (hOCT2 and
hMATE1 were 28.6 and 6.9 fmol/µg membrane protein, respectively) [31]. By comparison,
studies determining the protein expression in the human kidney cortex and human kidney
membranes reveal a more modest difference in expression between the two transporters
or even greater MATE1 expression (OCT2 7.4 pmol/mg, MATE1 5.1 pmol/mg) [22] and
(OCT2 5 fmol/µg, MATE1 10 fmol/µg) [32]. These differences between in vitro models
and the endogenous human expression of OCT2 and MATE1 should be considered and fac-
tored into the development of physiologically-based pharmacokinetic models for potential
cationic drug interactions in the kidneys.
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The current study focused largely on the renal secretion of cationic drugs. How-
ever, it is important to recognize that the liver also expresses OCT1 and MATE1, which
enable the biliary clearance of cationic chemicals. This is important because the 5-HT3
antagonists differ in their structure, metabolism, protein binding, and routes of clearance.
Structurally, 5-HT3 receptor antagonists contain a basic amine, an aromatic or heteroaro-
matic ring system, and a carbonyl (or similar structure) that is coplanar to the aromatic
region (Figure 1) [33]. Notably, the structure of the amine moiety differs for ondansetron
and includes an imidazole, whereas 6-member rings are incorporated in the other 5-HT3
antagonists. The relevance of these structural differences on interaction with OCT2 and/or
MATE1 require further investigation, but could explain the more significant effects of
ondansetron at lower concentrations. In addition, some 5-HT3 antagonists are cleared
extensively by the kidneys as parent or metabolite (such as palonosetron and tropisetron).
Many of the 5-HT3 antagonists (including ondansetron, tropisetron, palonosetron, and
granisetron) are highly metabolized (48–95%) by cytochrome P450 enzymes in the liver.
Recently, studies have shown that metabolites may play a larger role in drug–drug interac-
tions than previously thought [34]. Further testing of OCT2 and MATE1 transport with
major metabolites of 5-HT3 antagonists that exceed 25% of parent systemic exposure is
warranted. Likewise, within the chemical class, there are drugs with short half-lives (< 6 h,
ondansetron and tropisetron), moderate half-lives (8–9 h, granisetron and dolasetron), and
a long half-life (40 h, palonosetron). These factors should be considered when evaluating
potential drug–drug interactions using in vitro transporter findings.

Based on the 2020 FDA Guidance for In Vitro Metabolism and Transporter-Mediated
Drug–Drug Interaction Studies [35], a drug has the potential to inhibit the transporter
in vivo if: the Cmax (unbound)/IC50 value is ≥ 0.1. Based on these guidelines, the MATE1
Cmax/IC50 values for ondansetron indicate potential in vivo drug interactions using ASP+

as a probe substrate. Comparison of the IC50 values for the other 5-HT3 antagonists to their
Cmax values (range from high nanomolar to low micromolar) would not suggest a risk of
drug interaction, at least with ASP+ as the victim substrate. Likewise, we do not currently
know the intrarenal concentrations of 5-HT3 antagonists, which would be important for
evaluating potential MATE1 drug interactions. There are limited clinical data evaluating
ondansetron-related drug interactions with OCT/MATE substrates. For example, levels of
creatinine and metformin are increased in healthy subjects by ondansetron due to renal
transporter inhibition [21,36]. Interestingly, ondansetron not only reduced renal clearance
of metformin but also had improved glucose tolerance measures [21]. In other clinical
studies, ondansetron has been reported to heighten the nephrotoxicity of a substrate drug
by potentially altering transporter-mediated secretion within the kidney [37–39]. Together,
these data warrant further investigation of ondansetron drug interactions through the
inhibition of OCT and MATE transporters.

In summary, these in vitro data indicate that many of the 5-HT3 antagonists have
a greater potency towards MATE1 inhibition, raising the potential for increased tubular
concentration of cationic drugs. Further, ondansetron was potent enough to increase the
intracellular concentration of a probe substrate, ASP+ at concentrations close to the clin-
ically relevant Cmax. These data are in line with previous in vivo study in mice where
increased cisplatin-mediated nephrotoxicity was observed with concurrent administration
of ondansetron [19]. Based on the current criteria for evaluating clinical drug–drug interac-
tion potential, the other 5-HT3 antagonists as well as antiemetic drugs tested in our study
likely pose less risk of a clinically-relevant drug interaction due to much lower therapeutic
plasma concentrations and higher inhibition constants.

4. Materials and Methods
4.1. Chemicals

4-(4-(Dimethylamino)styryl)-N-methylpyridinium iodide (ASP+) was purchased from
Life Technologies (Grand Island, NY, USA). Tropisetron was purchased from Abcam
(Cambridge, MA, USA). All other chemicals are from Sigma-Aldrich (St. Louis, MO, USA).
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4.2. Cell Lines and Cell Culture

Empty Vector (EV) control (pcDNA5-transfected) and Flp-In human embryonic kid-
ney (HEK)293 cell lines stably expressing human MATE1 and OCT2 transporters were
generously provided by Dr. Kathy Giacomini at the University of California, San Francisco.
HEK293 cells were cultured in Dulbecco’s Modified Eagle’s medium (DMEM) supple-
mented with 10% fetal bovine serum, 2 mM L-glutamine, 100 U/mL penicillin, 100 µg/mL
streptomycin, and 200 µg/mL hygromycin B. Vector (pcDNA3.1+ and pcDNA3.1/Hygro(+))
and human OCT2/MATE1 double-transfected Madin–Darby canine kidney (MDCK) cell
lines were generously provided by Dr. Joanne Wang at the University of Washington,
Seattle, WA. MDCK cells were maintained in minimum essential medium (MEM) supple-
mented with 10% fetal bovine serum, 500 µg/mL G418 and 200 µg/mL hygromycin B. All
cell lines were cultured in a humidified incubator at 37 ◦C with 5% CO2.

4.3. Uptake and Efflux Inhibition Assays in HEK293 Cells

OCT2- and MATE1-overexpressing HEK293 cells were seeded in clear poly-D-lysine-
coated 24-well plates (Fisher Scientific, Hanover Park, IL, USA) and grown for 24 h until
approximately 90% confluent. After washing once with prewarmed Hank’s Buffered
Saline Solution (HBSS), cells were preincubated for 30 min at 37 ◦C with various 5-HT3
antagonists for OCT2 cells or in a 30 mM NH4Cl solution in HBSS at pH 6.5 for MATE1
cells for intracellular acidification. Uptake into OCT2 cells was initiated through exposure
to 10 µM of fluorescent substrate ASP+ directly in the incubation media. Uptake into
MATE1 cells was initiated by application of HBSS at pH 7.4 containing 5-HT3 antagonists
and 10 µM of fluorescent substrate ASP+. After incubating for 1 min at 37 ◦C on a shaker,
substrate uptake was stopped by adding ice-cold HBSS containing 500 µM cimetidine.
Media was removed and washed four times with ice-cold HBSS. Cells were lysed with 1%
Triton X-100. Fluorescence was detected using a Spectramax Microplate Reader (Molecular
Devices, Sunnyvale, CA, USA) at the following wavelengths (Excitation 485 nm/Emission
495 nm). Intracellular fluorescence was normalized to total protein concentration of cell
lysates from each well using the bicinchoninic acid (BCA) assay (Pierce Biotechnology,
Rockford, IL, USA). Experiments were repeated three separate times, with three to four
replicates in each experiment.

4.4. Transwell Studies in MDCK-OCT2/MATE1 Cells

Control and OCT2/MATE1-expressing MDCK cells were evaluated for protein ex-
pression of OCT2 and MATE1 using SDS-PAGE and western blotting with specific primary
antibodies (OCT2, sc292622 1:500 and MATE1, sc133390 1:250, Santa Cruz Biotechnol-
ogy, Santa Cruz, CA, USA), followed by an antirabbit HRP-conjugated secondary an-
tibody (1:1000, Sigma Aldrich, St. Louis, MO, USA) and Super Signal Western Dura
Extended Duration Substrate (Pierce Biotechnology, Rockford, IL, USA). Detection was
performed with a FluorChem imager (ProteinSimple, Santa Clara, CA, USA). Both MDCK
cell lines were seeded on 0.4 µm transwell inserts (VWR, Radnor, PA, USA) at a density
of 2 × 105 cells/cm2. Transport experiments were performed 3 to 5 days after seeding.
The integrity of MDCK monolayers was verified by measuring transepithelial electrical
resistance (TEER) >150 Ω*cm2 using an epithelial voltohmmeter, EVOM2 (World Precision
Instruments, Sarasota, FL). Proper formation of tight junctions was also verified by mea-
surement of passive permeability of lucifer yellow in the basolateral-to-apical (B-to-A)
direction. Lucifer yellow (20 µM) was applied to the basolateral chamber for 1 h, and
media were collected from the apical chamber. Lucifer yellow fluorescence was read at an
excitation wavelength of 430 nm and emission wavelength of 538 nm. Average passive
permeability (Papp) values were 7 × 10−7 cm/s, which is line with literature values [40].

After washing the cells once with Hank’s Buffered Saline Solution (HBSS) pH 7.4,
transport studies were initiated after aspirating the wash buffer from both the apical and
basal chambers. Cells were incubated with 5-HT3 antagonists in the apical chamber in
HBSS pH 6.0 and 5-HT3 antagonists with ASP+ (25 µM) in the basolateral chamber in
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HBSS pH 7.4 and incubated at 37 ◦C for 120 min. To measure time-dependent transcellular
transport, an aliquot of the incubation medium (100 µL) from the apical chamber (receiving
chamber) was collected at 40, 60, 90, and 120 min and replaced with an equal volume of
fresh buffer containing 5-HT3 antagonist or the positive control chemical at the original
concentration. After 120 min, treatment media was removed and Transwells were washed
three times with ice-cold HBSS. Cells were lysed with 1% Triton X-100. Fluorescence was
detected using Spectramax Microplate Reader at the following wavelengths (Excitation
485 nm/Emission 495 nm). Intracellular fluorescence was normalized to total protein
concentration of cell lysates from each transwell using the BCA assay. Experiments were
performed in three individual Transwell inserts.

4.5. Statistical Analysis

GraphPad Prism v6 (GraphPad Software, La Jolla, CA, USA) was used for statistical
analysis. Km and Vmax were calculated using nonlinear regression (Michaelis–Menten
enzyme kinetics equation, (Y = Vmax × X/(Km + X), fit for least squares). Data with
two variables were analyzed using a two-way ANOVA followed by a one-way ANOVA
and/or Dunnett’s post-hoc test for multiple comparisons. IC50 values were calculated via a
nonlinear regression to fit least squares. Differences were considered statistically significant
at p < 0.05.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms22126439/s1.
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