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Abstract
People spontaneously infer other people’s psychology from faces, encompassing inferences of their affective states, cognitive 
states, and stable traits such as personality. These judgments are known to be often invalid, but nonetheless bias many social 
decisions. Their importance and ubiquity have made them popular targets for automated prediction using deep convolutional 
neural networks (DCNNs). Here, we investigated the applicability of this approach: how well does it generalize, and what 
biases does it introduce? We compared three distinct sets of features (from a face identification DCNN, an object recognition 
DCNN, and using facial geometry), and tested their prediction across multiple out-of-sample datasets. Across judgments 
and datasets, features from both pre-trained DCNNs provided better predictions than did facial geometry. However, predic-
tions using object recognition DCNN features were not robust to superficial cues (e.g., color and hair style). Importantly, 
predictions using face identification DCNN features were not specific: models trained to predict one social judgment (e.g., 
trustworthiness) also significantly predicted other social judgments (e.g., femininity and criminal), and at an even higher 
accuracy in some cases than predicting the judgment of interest (e.g., trustworthiness). Models trained to predict affective 
states (e.g., happy) also significantly predicted judgments of stable traits (e.g., sociable), and vice versa. Our analysis pipe-
line not only provides a flexible and efficient framework for predicting affective and social judgments from faces but also 
highlights the dangers of such automated predictions: correlated but unintended judgments can drive the predictions of the 
intended judgments.
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Introduction

People rapidly and spontaneously make judgments about 
unfamiliar others’ social attributes based on their faces, 
such as forming an impression that someone looks beauti-
ful, trustworthy, or happy (Engell et al., 2007; Sutherland 
et al., 2018; Willis & Todorov, 2006). By and large, these 
judgments are either known to be invalid or are of unknown 

validity, since the ground truth of how people really feel 
and what personality they have is generally impossible to 
infer merely from looking at their faces (Todorov, 2017). 
Yet these social judgments have ubiquitous and major con-
sequences in everyday life. For instance, a large body of 
research has demonstrated that social judgments of politi-
cal candidates based merely on faces (e.g., how competent 
an unfamiliar candidate looks) are associated with election 
outcomes across various regions of the world (Lin et al., 
2017; Martin, 1978; Todorov et al., 2005). Some evidence 
even suggests that these social judgments from faces caus-
ally influence individual voting decisions (Ahler et al., 2017; 
Lenz & Lawson, 2011). Other examples of social judgments 
from faces influencing real-life decisions range from picking 
out dates to hiring employees, choosing science news, and 
determining courtroom sentences (Gheorghiu et al., 2017; 
Hamermesh, 2011; Oliviola et al., 2015; Wilson & Rule, 
2015). In the real world, these judgments can show large 
individual differences and context effects: not only are they 
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invalid, but consensus can also be difficult to achieve even 
for stimuli argued to be universal, such as emotional facial 
expressions (Barrett et al., 2019). With these constraints in 
mind, it remains a fact that people make many judgments 
about other people solely from faces in the absence of con-
text or other information (e.g., deciding not to date some-
one just based on profile photos on dating sites), and the 
underlying psychological dimensions that explain the most 
variance in these judgments show considerable consensus 
across cultures (Lin et al., 2021).

An important applied question is whether machines 
could be trained to make social judgments from faces like 
humans do. Recent work has trained deep convolutional 
neural networks (DCNNs) on face images that had been 
previously rated on various social attributes to predict how 
humans would judge new face images on the same set of 
social attributes (Lewenberg et al., 2017; McCurrie et al., 
2018). While this approach is informative, it is difficult to 
obtain sufficiently dense ratings for training — and turns 
out to be unnecessary. DCNNs that have only been trained 
to recognize face identity, or even object identity, without 
any training specifically on social judgments, already gener-
ate features that can be used in linear regression models to 
predict the social judgments that humans make from faces 
(Parde et al., 2019; Song et al., 2017). This successful pre-
diction is likely due to the fact that in the absence of any 
other context, the structural features of the face are also the 
only source of information that human raters have available 
for their social judgments. This approach in principle offers 
a more flexible and scalable framework for practical applica-
tion: new faces can be projected into the same, pre-trained 
DCNN to generate facial features, which could then be used 
in regression models to predict social judgments. This takes 
advantage of the power of existing pre-trained DCNNs that 
typically generalize over pose, viewpoint, and image quality, 
and obviates the need to train new DCNNs or retrain exist-
ing networks on domain-specific social judgments, which is 
inefficient (Hill et al., 2019; O’Toole et al., 2018).

However, past work highlights several specific limitations 
of using pre-trained DCNNs to predict social judgments that 
humans make from faces. First, inconsistent results have 
been found when comparing performance between models 
using features from DCNNs pre-trained for face identifica-
tion and those using features from DCNNs pre-trained for 
object recognition (Parde et al., 2019; Song et al., 2017). It 
is also unclear to what extent features from different pre-
trained DCNNs explain the same or unique variance in 
social judgments from faces. Second, prior studies trained 
and tested their models using a single dataset, such as the 
10 k US Adult Face Database (Bainbridge et al., 2013) in 
Song et al. (2017), and the Human ID Database (O’Toole 
et al., 2005) in Parde et al. (2019). It remains an open ques-
tion how well this approach generalizes out-of-sample, both 

across face databases and across human raters, which is a 
growing concern in modern machine learning for practical 
applications (D’Amour et al., 2020). Third, recent findings 
show that social judgments from faces made by human par-
ticipants on a large number of social attributes can be cap-
tured by only a small number (two to four) of psychological 
dimensions (Lin et al., 2021; Oosterhof & Todorov, 2008; 
Sutherland et al., 2013). These findings suggest that many 
social judgments from faces are highly correlated, raising 
the possibility that models trained to predict one social judg-
ment may also predict other social judgments. If that is the 
case, then it will be difficult to assert whether models trained 
to predict one social judgment (e.g., whether someone looks 
like a criminal) indeed learn the representation of this spe-
cific social attribute from faces (criminal) or they instead 
learn the representation of other social attributes from faces 
that happen to be stereotypically linked to the perception of 
criminality (e.g., whether someone looks feminine or mas-
culine; Oldmeadow et al., 2013). Examining this question 
will offer critical insights into how one should interpret the 
results from the increasingly popular automated predictions 
of various social attributes from faces (Bowyer et al., 2020; 
Wang & Kosinski, 2018).

We address the above three open questions in the present 
study. We fit regularized linear regression models with cross-
validation to predict social judgments from faces made by 
humans using features from three distinct spaces (Fig. 1a–b; 
see also “2”): a pre-trained DCNN for face identification 
(DCNN-Identity; King, 2009, 2017), a pre-trained DCNN 
for object recognition (DCNN-Object; Simonyan & Zisser-
man, 2015), and facial geometry (Facial-Geometry; e.g., eye 
size; see Fig. S2; Ma et al., 2015) for comparison to previous 
findings (e.g., faces with wider eyes are perceived as more 
honest; Zebrowitz et al., 1996). All linear regression models 
were fitted to the neutral, frontal, white faces (N = 183) and 
their corresponding available human subject ratings from 
the Chicago Face Database (Ma et al., 2015), a widely used 
database in machine learning studies of faces. To character-
ize the generalizability of the current approach across faces, 
raters, and social judgments, we tested the models in five 
out-of-sample datasets that included ratings for different 
types of face images on a variety of social attributes pro-
vided by independent samples of human subjects (Fig. 1c). 
To compare the performance across the three distinct feature 
spaces, we conducted variance partitioning analysis to char-
acterize the shared and unique variance in the social judg-
ments that could be explained by these feature spaces. We 
also digitally manipulated several aspects of the face images 
(e.g., color and hair style) and compared how robustly these 
different feature spaces predicted social judgments from 
the manipulated faces. Finally, to understand the specific-
ity of these predictions, we examined the cross-predictions 
across social attributes — that is, how one model trained on 
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a specific social judgment predicted other social judgments. 
We further investigated the underlying mechanism of these 
cross-predictions using semi-partial correlation analyses, 
which sheds light on how different social attributes play a 
role in leading to cross-predictions.

Methods

Training and Test Datasets

The data used in the present research were from publicly 
available datasets and previously published studies. The 
linear regression models were fit to 183 studio portraits of 
neutral, frontal, white faces of men and women and their 
ratings on various social attributes from the Chicago Face 

Database (Ma et al., 2015). This database originally con-
tained social attribute ratings for 597 portraits of neutral, 
frontal faces from four races (Asian, Black, Latino, and 
White); the other 414 of the 597 faces that are not white 
were excluded since the effect of race is beyond the scope 
of our current research. The database provides, for each 
face, ratings by human subjects on 15 social attributes 
(afraid, angry, attractive, baby-faced, disgusted, domi-
nant, feminine, happy, masculine, prototypic, sad, sur-
prised, threatening, trustworthy, and unusual) using a 1–7 
Likert scale (1 = Not at all, 7 = Extremely). We excluded 
judgments of unusual because neither this social attribute 
nor its synonym or antonym was rated in any of the out-
of-sample test datasets that we used. Thus, we fit 14 linear 
regression models, one for each of the remaining 14 social 
attributes. The design matrix for the linear regression had 

Fig. 1   Overview of modeling framework. a Face images were 
projected into three distinct feature spaces: a feature space obtained 
from the top layer of a pre-trained DCNN for face identification 
(DCNN-Identity; King, 2009, 2017); a feature space obtained from 
the block5_conv2 layer (Song et al., 2017) of a pre-trained DCNN for 
object recognition (DCNN-Object; Simonyan & Zisserman, 2015), 
and a feature space obtained from physical and geometric measures 
of the faces (Facial-Geometry; Ma et al., 2015). b Regularized linear 
regression with cross-validation was used to estimate a set of model 

weights for each social attribute, which maps each feature space onto 
the social judgment ratings measured from human participants. c The 
estimated model weights were then used to predict the measured rat-
ings for novel faces from their facial features. Models constructed for 
the three distinct feature spaces were compared based on how accu-
rately they predicted ratings for novel faces (Spearman’s correlation 
between the predicted ratings  from the model and the actual ratings 
collected from human participants)
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183 rows. Each row represented one of the 183 face images 
in the training dataset and each column represented one of 
the features in the respective facial feature space that was 
considered (Fig. 1b).

The models were tested on five out-of-sample independ-
ent datasets that are publicly available (Lin et al., 2021; 
Oh et al., 2020; Oosterhof & Todorov, 2008; Walker et al., 
2018; White et al., 2017). These test datasets were selected 
to sample social judgments from different types of faces, 
including studio portraits of frontal, neutral faces, computer-
generated faces, and ambient photos of faces taken under 
unconstrained conditions. All faces in our training and test 
datasets were limited to white faces; the effects of race and 
context (e.g., image background and facial expression) are 
beyond the scope of our current study. Specifically, the Lin 
et al. (2021) dataset included ratings for 100 studio por-
traits of frontal, neutral, white faces (of which 60 were non-
overlapping with the training dataset, i.e., 60 novel faces) on 
100 social attributes. The Oh et al. (2020) dataset included 
ratings for 66 novel studio portraits of frontal, neutral, white 
faces on 14 social attributes. The Walker et al. (2018) data-
set included ratings for 40 novel studio portraits of frontal, 
neutral, white faces on seven social attributes. The Oost-
erhof and Todorov (2008) dataset included ratings for 300 
computer-generated frontal, neutral, white faces on nine 
social attributes. The White et al. (2017) dataset originally 
included ratings for 1224 ambient photos (12 images of each 
of the 102 individuals of various races) taken in real-world 
contexts downloaded from their Facebook accounts (varied 
in viewpoint, facial expression, background, illumination, 
etc.) on five social attributes. We only used 504 photos of 
white individuals (12 images of each of the 42 individuals). 
Model training and testing were performed using ratings 
averaged across human subjects per face per social attribute.

To assess how well the linear regression models with dif-
ferent feature sets predicted social judgment from faces (see 
the first section of Results, “Generalizability Across Faces, 
Raters, and Social Attributes”), we fit a model for a social 
attribute on the Chicago Face Database and tested the model 
for the same or highly (dis)similar (synonyms/antonyms) 
social attribute on the out-of-sample test datasets. Ideally, we 
would fit a model for a social attribute and test the model for 
the same social attribute. However, the different test datasets 
generally measured judgments of different social attributes 
than the training dataset. Therefore, in the case where the 
same social attribute in the training dataset was not available 
in the test dataset, we used the synonym/antonym of the fit-
ted social attribute in the test dataset (if available). Based on 
this rationale, we tested the models that were fit to the cor-
responding social attributes in the Chicago Face Database 
on nine social attributes in the Lin et al. (2021) dataset, four 
social attributes in the Oh et al. (2020) dataset, four social 

attributes in the Oosterhof and Todorov (2008) dataset, and 
three social attributes in the White et al. (2017) dataset.

To assess how well a model fitted for a social attribute 
would predict other social attributes (i.e., the last section 
of Results, “Non-specific Predictions Across Social Attrib-
utes”), we did not require ratings on the exact same or highly 
(dis)similar social attribute between the training dataset and 
test datasets. Therefore, we fit a model for each of the 14 
social attributes in the Chicago Face Database, and assessed 
how well the predicted ratings from these models correlated 
with the ratings in the test datasets on all available social 
attributes (except for the Lin et al. (2021) dataset, where rat-
ings were measured for 100 social attributes; we only used 
a subset of 15 social attributes that are commonly studied 
in the literature).

DCNN‑Identity Features

To extract identity features from face images, we used the 
dlib C +  + machine learning library, which offers an open 
source implementation of face recognition with deep neu-
ral networks (King, 2009, 2017). The network’s final layer 
represents each face image with a vector of 128 features. 
The network had been originally trained to identify 7,485 
face identities in a dataset of about three million faces with 
a loss function such that the two face images of the same 
identity were mapped closer to each other in the face space 
than the face images of two different identities. Built on a 
ResNet architecture with 29 convolutional layers, the net-
work achieved an accuracy of 99.38% on the “Labeled Faces 
in the Wild” benchmark (King, 2009, 2017). We directly 
used the feature vectors from the last layer of the network, 
without tuning the network or its last layer specifically for 
social judgments from faces.

DCNN‑Object Features

To extract object features from face images, we used the fea-
tures obtained from the block5_conv2 layer of the VGG16 
network because prior studies showed that features from this 
layer of the network successfully predicted social judgments 
from faces (Song et al., 2017). We also repeated our analyses 
with features from other layers of the network, which pro-
duced worse performance (Fig. S1); we therefore used the 
features from the block5_conv2 layer for subsequent analy-
ses. To extract the object features from a face image, the face 
region of the image was first detected and segmented auto-
matically using the histogram of oriented gradients-based 
face detector implemented in the dlib C + + library (King, 
2009, 2017). Then the segmented image was presented to 
the VGG16 model implemented in the Keras deep learn-
ing library (Chollet, 2015) with weights pre-trained on the 
ImageNet dataset (Deng et al., 2009) for object recognition. 
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The output of the block5_conv2 layer had a volume shape 
of 14 × 14 × 512, which was flattened into a 100,352-dimen-
sional feature vector. Thus, the layer represented each face 
image with a vector of 100,352 features.

Due to the large number of features, we used principal 
component analysis (PCA) to reduce the dimensionality 
and redundancy of these features. Our goal was to retain 
a much smaller number of PCs from the 100,352 features, 
and project the 100,352 features of the face images in both 
the training dataset and test datasets onto these PCs — 
which we eventually used in the linear regression models. 
To prevent biasing the PCs of the faces in the test datasets 
with the variance in the faces from the training dataset, we 
performed PCA using a larger and more comprehensive 
set of faces: face images of 426 white adults with neutral 
expression aggregated from three popular publicly avail-
able face databases (Chelnokova et al., 2014; DeBruine & 
Jones, 2017; Ma et al., 2015). We determined the optimal 
number of PCs based on their performance for predicting 
social judgments from the faces in the model training dataset 
(i.e., the 183 studio portraits from the Chicago Face Data-
base). Specifically, the 426 faces were first represented with 
the 100,352-dimensional DCNN-Object feature vectors, on 
which we performed PCA to extract PCs of the features. 
Next, the 100,352-dimensional feature vectors of the 183 
faces in the training dataset were projected onto these PCs 
obtained from the 426 faces. Finally, we fit ridge regression 
models using different numbers of PCs (increased from 10 
to 110 with a step size of one) to predict the ratings of the 
183 faces. Results showed that the first 26 PCs offered the 
best average prediction accuracy across all 14 social attrib-
utes, and we therefore used the first 26 PCs to represent the 
DCNN-Object features in all subsequent analyses (Fig. S1).

Facial‑Geometry Features

The brute-force approach offered by DCNNs has the well-
known effect of producing representations, such as the face 
features described above, that are not easily interpretable. 
We therefore also used a complementary human-specified 
set of interpretable face features. The physical and geomet-
ric features of the face (e.g., brighter skin, larger eyes, and 
rounder face) have been shown to influence how humans 
make social judgments of unfamiliar others based on faces 
(Ma et al., 2015). To obtain these features, we referred to the 
40 facial-geometry features provided in the Chicago Face 
Database (Ma et al., 2015), which were defined based on 
a review of the social perception literature (Blair & Judd, 
2011; Zebrowitz & Collins, 1997). In the Chicago Face 
Database, these 40 physical and geometric features were 
manually measured using an image editing software (Ma 
et al., 2015). In our present study, given the large number 
of faces we used, we aimed to generate a subset of those 

physical and geometric features that could be automatically 
measured, but were still easily interpretable. A recent study 
showed that automatically measured physical and geometric 
features are highly correlated with those that are manually 
measured (Jones et al., 2021). Here, to automatically meas-
ure physical and geometric features, we used a pre-trained 
model of facial landmark detection implemented in the dlib 
C + + library to estimate the location of 68 key points on 
each face image. This model had been originally built using 
an ensemble-of-regression-trees approach and trained on 
the IBUG 300-W facial landmark dataset (Kazemi & Sul-
livan, 2014; King, 2017; Sagonas et al., 2016). We used 
another pre-trained model of face parsing to segment each 
face image into several facial parts such as skin area, left and 
right eye, and the nose (see Fig. S2). This model has been 
originally built using a BiSeNet architecture and trained on 
CelebAMask-HQ dataset (Lee et al., 2020; Yu et al., 2018; 
Zllrunning, 2020). These automated methods allowed us to 
obtain 30 physical and geometric features (Facial-Geom-
etry features) that closely imitate the manually measured 
physical and geometric features provided in the Chicago 
Face Database. The 30 Facial-Geometry features were the 
median luminance of skin area, nose width, nose length, 
lip thickness, face length, eye height (left, right), eye width 
(left, right), face width at cheek, face width at mouth, dis-
tance between pupils, distance between pupil and upper lip 
(left, right, asymmetry), chin length, length of cheek to chin 
(left, right), face shape, (face) heartshapeness, nose shape, 
lip fullness, eye shape, eye size, midface length, chin size, 
cheekbone height, cheekbone prominence, face roundness, 
and facial width-to-height ratio. We verified that the 30 
automatically extracted Facial-Geometry features described 
the social judgments from faces as well as the 40 manually 
measured features by comparing the prediction accuracy of 
the models based on the two sets of features (see Fig. S2).

Model Fitting

L2-regularized linear regression (a.k.a. ridge regression; 
Hoerl & Kennard, 1970) was used to fit a set of model 
weights separately for each social attribute that optimally 
mapped facial features onto human subjects’ social judg-
ments from faces (Fig. 1). Cross-validation was used to 
determine the optimal regularization parameter for ridge 
regression. Specifically, the training dataset was randomly 
split into 80% training and 20% validation samples for 2,000 
iterations. At each iteration, a range of regularization param-
eters (n = 30, log-spaced between 1 and 100,000) were used 
to fit models to the training part, and each fitted model was 
used to predict the human ratings of the faces in the vali-
dation part. This procedure yielded a model accuracy per 
regularization parameter per iteration per social attribute, 
assessed with the mean squared error (MSE). For each social 
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attribute, the optimal regularization parameter that mini-
mized the average error across all iterations was selected, 
and the model weights were refit with this optimal regulari-
zation parameter using the entire training dataset (i.e., the 
final model). We also repeated this procedure of selecting 
regularization parameter using evaluation metrics in addition 
to MSE, including the coefficient of determination (R2) and 
the root mean square error (RMSE) — results corroborated 
those using MSE reported here.

The final fitted model for each social attribute was used to 
predict ratings of the same social attribute for the novel faces 
in each test dataset. Some out-of-sample test datasets did not 
include ratings of the exact same social attributes as in the 
training set (i.e., the Chicago Face Database). In those cases, 
we used the final model for a social attribute (e.g., domi-
nant) to predict ratings of a semantically highly (dis)similar 
social attribute in the test dataset (e.g., submissive) if that 
was available. A bootstrap procedure was used to robustly 
estimate the prediction accuracy of each model on each 
test dataset. Specifically, the face images and their ratings 
in each test dataset were randomly sampled 10,000 times 
with replacement, and the Spearman rank-order correlation 
between the resampled predicted and resampled human rat-
ings was computed per social attribute (Lescroart & Gal-
lant, 2019). We used the Spearman rank-order correlation 
to assess model accuracy because the ratings in some test 
datasets were collected on a different scale than the training 
dataset and the rank order of faces based on an attribute (i.e., 
whether a face looks more trustworthy than another face) is a 
more reliable metric than raw rating values attributed to the 
faces. The mean prediction accuracy for each social attribute 
was obtained by averaging the accuracies across bootstrap 
iterations. For the test dataset that contained a large num-
ber of ambient photos (504 photos of 42 white individuals; 
White et al., 2017), one image was randomly sampled from 
the set of images available for each identity at each bootstrap 
iteration (i.e., 42 images were included at each iteration) to 
prevent bias in prediction accuracy.

To assess the statistical significance of the mean predic-
tion accuracy and estimate the chance threshold for the pre-
diction per social attribute in each test dataset, we performed 
a permutation analysis to generate an empirical null distribu-
tion of correlations for each social attribute and test dataset 
separately. At each permutation iteration, the ratings in a 
test dataset were shuffled across face images, and the Spear-
man correlation between the predicted and permuted ratings 
was computed for each social attribute. This procedure was 
repeated 10,000 times to obtain a distribution of the correla-
tions, under the null hypothesis that there is no relationship 
between facial features and social judgments from faces. 
The chance threshold was determined by taking the 95th 
percentile of the empirical null distribution (p = 0.05). The 
permutation p-value for each social attribute was defined as 

the proportion of the null correlations that were greater than 
or equal to the observed prediction accuracy. The p-values 
were corrected for multiple comparisons across the predicted 
social attributes using the false discovery rate (FDR) proce-
dure (Benjamini & Hochberg, 1995).

In order to characterize the robustness of our findings to 
the specific analysis pipeline, we also repeated the above 
analysis procedures using linear regression methods in 
addition to ridge regression, including LASSO regres-
sion and ordinary least square regression (OLS). The same 
cross-validation procedure as described for ridge regression 
was used to select the optimal regularization parameter for 
LASSO regression from a range of regularization param-
eters (n = 30, log-spaced between 0.01 and 100). No cross-
validation procedure was used in training the OLS models 
since there was no regularization parameter to be determined 
for this method. We found that ridge regression provided 
the best predictions across social attributes and test datasets 
(mean prediction accuracy measured with Spearman’s � = 
0.552 ± 0.197 for the DCNN-Identity models; 0.430 ± 0.218 
for the DCNN-Object models; 0.385 ± 0.213 for the Facial-
Geometry models; mean ± standard deviation across test 
datasets and attributions). In comparison, LASSO regres-
sion provided similar prediction accuracies as ridge regres-
sion across social attributes and test datasets (mean Spear-
man’s � = 0.527 ± 0.198 for the DCNN-Identity models; 
0.426 ± 0.226 for the DCNN-Object models; 0.369 ± 0.224 
for the Facial-Geometry models). However, OLS regression 
provided worse prediction accuracies for the DCNN-Identity 
models (mean Spearman’s � = 0.239 ± 0.140 across social 
attributes and test datasets) and the Facial-Geometry models 
(0.169 ± 0.098) due to multicollinearity in the features, and 
similar prediction accuracies for the DCNN-Object models 
(0.434 ± 0.221). Therefore, we used the linear regression 
method that produced the best prediction accuracies across 
feature spaces, ridge regression, in our present investigation.

Variance Partitioning Analysis

We used a variance partitioning analysis procedure to com-
pare the unique and shared explained variance between each 
pair of feature spaces (Çukur et al., 2016; Lescroart & Gal-
lant, 2019). Specifically, for each social attribute and each 
pair of feature spaces, we fit three models using the train-
ing dataset: one fit the ratings to a feature space (e.g., 128 
DCNN-Identity features), the second fit the ratings to a sec-
ond feature space (e.g., 26 DCNN-Object features), and the 
third fit the ratings to both feature spaces (e.g., 154 DCNN-
Identity and DCNN-Object features). These three fitted mod-
els were used to predict the ratings of the faces in the test 
dataset. The variance explained (R2) by each model for each 
social attribute was computed by using R2, the coefficient 
of determination. Finally, the unique variance explained by 
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each of the two compared feature spaces (A and B) and the 
shared variance explained by both feature spaces were com-
puted as follows:

where R2

A
 is the total variance explained by the first model 

using feature space A, R2

B
 is the total variance explained by the 

second model using feature space B, R2

A∪B
 is the total variance 

explained by the third model using features from both spaces, 
R
2

uA
 is the unique variance explained by feature space A, R2

uB
 

is the unique variance explained by feature space B, and R2

A∩B
 

is the shared variance explained by feature spaces A and B.

Semi‑partial Correlation Analysis

To understand how different social judgments contribute to the 
cross-predictions across multiple social attributes (i.e., when a 
model fitted to one social attribute predicted other social attrib-
utes), we performed a semi-partial correlation analysis. This 
analysis procedure measures the relationship between two vari-
ables X and Y while statistically controlling for (or partialing out) 
the effect of a third variable Z on Y. Note that, in contrast, the 
(standard) partial correlation controls for the effect of Z on both 
X and Y. In this analysis, the actual ratings of a social attribute 
provided by the human subjects in the test dataset were used as 
the variable X (i.e., the social attribute to be cross-predicted by a 
model that was not fitted to this social attribute). The ratings of a 
second social attribute predicted by a model for the same set of 
faces were used as the variable Y (i.e., a second social attribute 
that was used to fit a model). The ratings of a third social attribute 
predicted by another model for the same set of faces were used 
as the variable Z (i.e., a third social attribute that was used to fit 
another model). To partial out the effect of Z from Y, a simple 
bivariate regression of Y on Z was performed, and the residuals 
were obtained. These residuals quantified the unique variance 
in Y that was not linearly associated with or predictable from 
Z. Finally, we computed the Spearman correlation coefficient 
between X and the residuals.

Results

Generalizability Across Faces, Raters, and Social 
Attributes

For each social attribute and each facial feature space, we fit 
a ridge regression model with cross-validation to learn the 
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relationship between the features and human judgments of 
this social attribute from faces. Results reported here were 
from models fitted to the popular Chicago Face Database 
(Ma et al., 2015). We also fit the models using a more recent 
database that collected ratings from human subjects on a 
much larger number of social attributes for a representa-
tively sampled set of faces (Lin et al., 2021), whose results 
corroborated those reported here (see Fig. S3; the models 
differed in the attributes that they could predict, because the 
two datasets differed in the social attributes on which human 
subjects had provided ratings in the first place).

To investigate how well the predictions of these linear 
regression models with different feature spaces general-
ized across faces, raters, and social attributes, we tested the 
models on multiple out-of-sample datasets. These out-of-
sample datasets consisted of ratings on various social attrib-
utes from independent sets of human subjects for  faces that 
were different from those used in the training set. While the 
training stimuli were all drawn from studio portraits, the 
out-of-sample datasets encompassed studio portraits as well 
as ambient photos (taken in real-world contexts) that var-
ied in viewpoint, facial expression, and background. Since 
the social attributes with available human ratings in the test 
datasets were not always identical to those in the training 
dataset, we only computed the prediction accuracy for social 
attributes in the test datasets that were the same or semanti-
cally highly similar (or the exact opposite) to those in the 
training dataset (e.g., predicting submissive ratings in the test 
dataset using the models fitted to the dominant ratings in the 
training dataset by multiplying the model weights with -1). 
Results summarized in Fig. 2 showed that the DCNN-Iden-
tity models significantly predicted judgments of almost all 
social attributes across all datasets (except dominant ratings 
for ambient photos, Fig. 2d), and yielded a higher prediction 
accuracy across social attributes and test datasets (Spear-
man’s correlations 0.55 ± 0.19, mean ± SD across all social 
attributes and test datasets) than the DCNN-Object models 
(0.43 ± 0.22) or the Facial-Geometry models (0.38 ± 0.21). 
We also explicitly examined the generalization across raters 
only (using a subset of overlapping faces in the training and 
one test dataset) and found similar relative performances 
across the three feature spaces (Fig. S4). These results dem-
onstrate that, out of our three feature spaces, features from 
the pre-trained DCNN for face identification provided the 
best generalizable predictions across faces, raters, and social 
attributes.

The superior performance of the DCNN-Identity mod-
els over the DCNN-Object and Facial-Geometry models 
raises two questions. First, is this superior performance 
simply due to the much larger number of features in the 
DCNN-Identity models (n = 128)? Second, is this superior 
performance idiosyncratic to the specific network used to 
derive those DCNN-Identity features? To address the first 
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question, we applied principal component analysis (PCA) 
on the DCNN-Identity features and used only the first 30 
PCs for fitting the models, a number close to the number 
of features in the DCNN-Object (n = 26) and the Facial-
Geometry models (n = 30). To address the second question, 
we fit the models using features from a different DCNN 
for face identification that has an architecture distinct from 
the DCNN-Identity network, the OpenFace DCNN (Amos 
et al., 2016). The performance of the DCNN-Identity PC 
models was as good as with the original DCNN-Identity 

models, and the superior performance of the original 
DCNN-Identity models was not idiosyncratic to the spe-
cific network architecture (Fig. S5).

Comparison Across Feature Spaces

We have shown that models using DCNN-Identity features 
predicted social judgments from faces at a higher accuracy 
than models using the other two feature spaces across vari-
ous social attributes and test datasets. We next sought to 

Fig. 2   Prediction accuracy of three feature spaces across differ-
ent test datasets. All models were fitted to human subject ratings for 
183 studio portraits of frontal, neutral, white faces from the Chicago 
Face Database (Ma et al., 2015). The x-axis indicates the social judg-
ments measured in the test and training datasets (test-training). a The 
prediction accuracy of the models tested on an independent dataset 
of 60 novel studio portraits of frontal, neutral, white faces and their 
ratings (Lin et al., 2021). The bar height indicates the mean predic-
tion and error bars indicate the standard deviations of the mean pre-
diction accuracy across bootstrap samples (n = 10,000). Saturated 
colors, asterisks, and p-values indicate statistically significant predic-
tions (p < 0.05, assessed with permutation tests, and FDR corrected); 
desaturated colors indicate nonsignificant predictions. Dashed black 

lines indicate the chance threshold for the prediction accuracy 
(p = 0.05, assessed with permutation test). b The prediction accuracy 
of the models tested on a different independent dataset of 300 com-
puter-generated white faces and their ratings (Oosterhof & Todorov, 
2008). c The prediction accuracy of the models tested on a different 
independent dataset of 66 studio portraits of frontal, neutral, white 
faces and their ratings (Oh et al., 2020). d The prediction accuracy of 
the models tested on a different independent dataset of 504 ambient 
photos of white faces in the wild (varied in viewpoint, facial expres-
sion, background, illumination, etc.; White et al., 2017) and their rat-
ings (42 images were used in each bootstrap iteration, see “2”). The 
automatic extraction of Facial-Geometry features was not feasible for 
these faces.
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quantify the variance explained by models using each of 
these three feature spaces. We performed a variance par-
titioning analysis (see “2; Çukur et al., 2016; Lescroart & 
Gallant, 2019) to identify the proportion of variance in the 
social judgments that was uniquely explained by each feature 
space and the proportion of variance that was commonly 
explained by any two feature spaces. Models were fitted to 
the Chicago Face Database and tested using the Lin et al. 
(2021) dataset (as in Fig. 2a).

The variance partitioning analysis revealed that the 
DCNN-Identity and DCNN-Object models accounted for 
almost the same variance in the test datasets (Fig. 3a). The 
Facial-Geometry model, on the other hand, was not able to 
explain any unique variance beyond that shared with the 
other two feature spaces (Fig. 3b–c). These findings indi-
cate that most of the variance in the social judgments that 
was explained by any of the three feature spaces could be 
explained by the DCNN-Identity feature space alone.

The highly similar explained variance between the 
DCNN-Identity and the DCNN-Object feature spaces raises 
an interesting question: do the two feature spaces provide 
equally robust predictions? To provide insights into this 
question, we manipulated the face images in the test data-
set on a set of low-level image properties—their color, hair 
region, and mean luminance (Fig. 4). We expected these 
changes to have minimal impact on how humans make social 
judgments from the faces. We used the previously fitted 
regression model weights (i.e., models fitted to the unma-
nipulated version of the faces as in Fig. 2a) and the features 
of the manipulated versions of the face images in the test 
dataset (extracted using the DCNN-Identity network and the 
DCNN-Object network, respectively) to predict the human 
ratings of the unmanipulated version of the face images.

We found that the manipulation of these low-level image 
properties yielded a larger decline in the prediction accuracy 
of the DCNN-Object models (mean accuracy difference Δ� 

Fig. 3   Results of variance 
partitioning analyses. All 
models were fitted to the 
Chicago Face Database and 
tested on the Lin et al. (2021) 
dataset as in Fig. 2a. a Vari-
ance partitioning between the 
DCNN-Identity and DCNN-
Object models. Error bars show 
bootstrap standard deviations of 
the explained variance across 
bootstrap samples (n = 10,000 
iterations). Saturated colors, 
and the asterisks and p-values 
next to the error bars indicate 
that the explained variance was 
significantly different from 
zero (p < 0.05, assessed with 
bootstrap tests, FDR corrected). 
Desaturated colors indicate 
that the explained variance was 
not significantly different from 
zero. The asterisks and p-values 
above the horizontal brackets 
indicate statistically significant 
differences in the explained 
variance between unique and 
shared components (p < 0.05, 
bootstrap tests, FDR cor-
rected). b Variance partitioning 
between the DCNN-Identity and 
Facial-Geometry models (this 
analysis was not performed for 
the attribute “happy” because 
the Facial-Geometry model 
failed to predict this judgment 
in the test dataset, see Fig. 2a). 
c Variance partitioning between 
the DCNN-Object and Facial-
Geometry models
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= 0.28 across social attributes, especially in the predictions 
of trustworthy, criminal, white, and happy), but only a slight 
drop in the prediction accuracy of the DCNN-Identity model 
( Δ� = 0.05 across social attributes) as shown in Fig. 4e–f. 
These results indicate that the DCNN-Identity features carry 
face-specific information (e.g., identity and gender) that is 
largely robust to the changes in image styles (Hill et al., 
2019; O’Toole et al., 2018). In contrast, the DCNN-Object 
features carry substantial information about image-based 
characteristics (e.g., illumination and hair parts close to 
face area), limiting the generalizability of predicting human 
social judgments of the same face in different image styles.

Taken together, these results indicate that DCNNs pre-
trained to recognize face identity produce features that 
can be used most successfully to predict social judgments 

made by humans from faces. These predictions generalize 
well across faces, raters, social attributes, and image styles. 
However, features from the DCNN pre-trained to recognize 
objects and the physical and geometric features were less 
robust and generalizable for predicting social judgments 
from faces.

Non‑specific Predictions Across Social Attributes

Having identified the best performing feature space (the 
DCNN-Identity features), we next sought to understand 
whether the predictions made by our regression models were 
based on a specific pattern of weights for each social attrib-
ute. Considerable prior work has shown that the hundreds of 
different words people use to describe judgments of others 

Fig. 4   Prediction accuracy as 
a function of low-level image 
properties. Models were fitted 
to the Chicago Face Database 
and tested on the Lin et al. 
(2021) dataset as in Fig. 2a. a 
An example of a face image 
before any manipulation. b An 
example of the face image in 
(a) manipulated on colors (i.e., 
converted to gray-scale). c An 
example of the face image in 
(a) manipulated on hair style 
(i.e., hair was removed). d An 
example of the face image in (a) 
manipulated on mean luminance 
(i.e., the face area luminance 
histograms were equalized 
across cropped gray-scale face 
images in the test dataset). 
e The accuracy of using the 
model weights obtained from 
the training dataset (unmanipu-
lated version of the faces) and 
the DCNN-Identity features 
extracted from the manipulated 
versions (a–d) of the faces in 
the test dataset to predict the 
human subject ratings of the 
unmanipulated version of the 
faces in the same test dataset. 
f Same as (e) except that the 
features were DCNN-Object 
features
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from faces could be represented by just a few psychological 
dimensions (typically 2–4 dimensions account for > 70% of 
the variance in ratings; Jones & Kramer, 2021; Lin et al., 
2021; Oosterhof & Todorov, 2008; Sutherland et al., 2013). 
These findings highlight the possibility that the individual 
models fitted for different social attributes would also be 
correlated (Todorov et al., 2013, 2015). Indeed, we found 
that social judgments that were correlated in the original 
human subject ratings across face images were also corre-
lated in their model weights across features (Fig. S6). None 
of the correlations computed with the human subject ratings 
was significantly different from the correlation computed 
with the estimated model weights for the same pair of social 
attributes (bootstrap tests, p > 0.05, FDR corrected).

These results raise a concern that the models fitted to 
predict a certain social judgment might in fact learn the rep-
resentation of other correlated social judgments. Therefore, 
we investigated to which degree a model fitted to predict 
a certain social attribute would also predict the judgments 
of other social attributes regarding the same face (“cross-
prediction”). We assessed the cross-prediction accuracy with 
the Spearman correlation between the ratings predicted by 
the model for a certain social attribute (e.g., feminine) and 
the ratings collected from human subjects for a different 
social attribute (e.g., criminal) regarding the same set of 
faces in the test dataset. All analyses in this section used the 
same training dataset and test datasets as in Fig. 2 (with one 
additional test dataset; Walker et al., 2018).

We found significant cross-predictions across social 
attributes in all test datasets (Fig. 5a, Figs. S7a, S8a, S9a, c, 
e). For instance, the model fitted to predict feminine judg-
ments from faces not only predicted feminine judgments in 
the test dataset as intended (Figs. 5a and 2a) but also pre-
dicted how much human subjects judged the faces in the test 
dataset to be aggressive, baby-faced, beautiful, competent, 
criminal, happy, etc. (Fig. 5a). What is even more concern-
ing is that some models (e.g., trustworthy in Fig. 5a) pre-
dicted a different social judgment (e.g., feminine and crimi-
nal) at a higher accuracy than the social judgment that they 
were fitted to and intended to predict (trustworthy) (see also 
Fig. S7a and Fig. S8a). These results indicate that automated 
predictions of human social judgments from faces are not 
attribute-specific.

Given these cross-predictions (e.g., Fig. 5a), we next 
investigated whether there are some social judgments that 
play a more important role in leading to the cross-predictions 
than others. For each cross-prediction (e.g., using the femi-
nine model to predict ratings of criminal in the test dataset), 
we computed the residual cross-prediction accuracy after 
partialing out the effect of each remaining social attribute 
model (i.e., the 13 social attribute models in the x-axis of 
Fig. 5a except for feminine). The residual cross-prediction 
accuracy (Fig. 5b, Figs. S7b, S8b, S9b, d, f) was assessed 

with the semi-partial Spearman’s correlation between the 
human ratings of a social attribute for the faces in a test 
dataset (e.g., criminal) and the residuals from a simple 
bivariate regression of the predicted ratings of a different 
social attribute from a model (e.g., feminine model) on the 
predicted ratings of a third social attribute from a remaining 
model (e.g., trustworthy model) for the faces in the same 
test dataset (these residuals quantify the unique variance in 
the predicted feminine ratings that were not associated with 
the predicted trustworthy ratings). Figure 6 summarizes the 
mean residual cross-prediction accuracy in each test dataset 
after partialing out the effect of each remaining model cor-
responding to each social attribute in the x-axis. We found 
that models predicting gender (masculine/feminine) played a 
more important role for cross-prediction of personality traits 
from faces (the “Big-2” and “Big-5” personality dimensions) 
and social judgments of computer-generated faces (Ooster-
hof & Todorov, 2008; Walker et al., 2018). Models predict-
ing trustworthy played a more important role in test datasets 
where the photos were neutral and taken for research pur-
poses (Lin et al., 2021; Oh et al., 2020). The model predict-
ing attractiveness was more important for ambient social 
media profile photos (White et al., 2017).

Discussion

In this paper, we examined the generalizability, robustness, 
and specificity of a recent popular modeling approach for 
automatically predicting social judgments made by human 
perceivers from faces. This approach trained regularized 
linear regression models (ridge regression with cross-
validation) to predict social judgments from faces using 
features extracted from the face images based on DCNNs 
pre-trained for other purposes than social judgments from 
faces (Fig. 1). We compared the predictive power of these 
features to that of the physical and geometric features of 
the faces, which are traditionally studied in psychology 
research. We tested these regularized linear regression 
models built with different feature sets using five inde-
pendent out-of-sample test datasets, which included rat-
ings from different human participants, for various types 
of faces, and on a range of social and affective attributes 
(Fig. 2).

We found that regression models built with features from 
DCNNs that were pre-trained to distinguish facial identity 
(DCNN-Identity) predicted human judgments from faces 
most accurately and generalized the best across faces and 
raters (Fig. 2 and Fig. S4), compared to the models built 
with DCNN features for object recognition (DCNN-Object) 
or features based on facial geometry (Facial-Geometry). The 
performance of the DCNN-Identity models was robust to 
the dataset used to fit the models (Fig. S3), the number of 
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features included in the regression models (Fig. S5), and 
the network architecture used to obtain the identity features 
(Fig. S5).

Using variance partitioning analysis, we showed that 
the DCNN-Identity models and the DCNN-Object models 
explain almost the same variance in the social judgments 
from faces (Fig. 3). However, the features extracted by the 
two DCNNs from face images that were relevant for pre-
dicting social judgments from the faces differed in predic-
tion robustness. Features extracted using the pre-trained 
DCNN-Identity network represented more information 
unique to the faces (e.g., identity and gender), whereas 
features extracted using the pre-trained DCNN-Object net-
work represented more information about the images in 
general (e.g., color and parts of the images), and thus the 
predictions from the DCNN-Object network features were 
less robust to manipulations of image styles (Fig. 4).

Although the DCNN-Identity features provided the most 
accurate, robust, and generalizable predictions of social 
and affective judgments from faces, we note that these pre-
dictions were not attribute-specific. Models fitted to pre-
dict judgments of a certain social attribute from faces also 
predicted judgments of other unintended social attributes 
(Fig. 5a, Figs. S7a, S8a, S9a, c, e). Some models even pre-
dicted other unintended social attributes at a greater accu-
racy than the intended social attributes that the models were 
fitted to (Fig. 5a, Fig. S7a, and Fig. S8a). These results indi-
cate that the representation of social judgments from faces 
that the models learned might not be specific to the social 
judgment that the researchers intend to predict. This finding 
is an important cautionary note: one should be aware that 
there are likely many other correlated but unintended social 
judgments that might explain the predictions.

In this cross-prediction analysis, we also included mod-
els fitted to six affective attributes (happy, afraid, angry, 
disgusted, sad, surprised) since this analysis did not require 

Fig. 5   Cross-prediction accuracy across social attributes. a Cross-
prediction accuracy (the Spearman correlations) between the pre-
dicted ratings of the faces in the Lin et al. (2021) dataset on 14 social 
attributes (x-axis) and the human subject ratings of the same set of 
faces on 15 social attributes available in the test dataset (y-axis). All 
social attribute models (x-axis) were fitted to the Chicago Face Data-
base. Statistically significant accuracy values are colored. The satura-
tion of the color indicates the magnitude of the correlation (red for 
positive, blue for negative). Numbers indicate the mean and stand-
ard deviation (across bootstrap samples), and the significance of the 
correlation (permutation test, FDR corrected). The highest accuracy 
per row was highlighted with a solid box (black for significant, gray 
for nonsignificant). b An example of the residual cross-prediction 
accuracy for the social attributes in the Lin et al. (2021) test dataset 
(y-axis) from 13 social attribute models (x-axis) while controlling for 
the prediction from the trustworthy model (the third column; shown 
here specifically because for this test dataset, the trustworthy model 
had the largest impacts on cross-predictions across all 14 models fit-
ted to all 14 social attributes in the Chicago Face Database). Numbers 
report the mean bootstrap residual cross-prediction accuracy, boot-
strap standard deviation, and significance level computed via permu-
tation tests and FDR corrected (n = 10,000 iterations)

◂

Fig. 6   Residual cross-prediction accuracy after partialing out 
the effect of another social attribute model. a The first column 
(“None”) plots the mean cross-prediction accuracy (dots; i.e., mean 
absolute Spearman’s correlations) across all cross-predictions in each 
test dataset (all cells in Fig. 5a, Figs. S7a, S8a, S9a, c, e). The other 
columns plot the mean residual cross-prediction accuracy across all 
cross-predictions after partialing out the effect of the model fitted 
for the social attributes labeled in the x-axis. The top seven (of the 
14) social attributes that had the largest effect on cross-predictions 
across test datasets are shown here. The square symbol (rather than 
filled circle)  indicates the social attribute model (x-axis) that was 
the most impactful for cross-predictions in a test dataset (i.e., mini-
mum mean residual cross-prediction accuracy). b The first column 
(“None”) plots the mean maximum cross-prediction accuracy (the 
absolute maximum correlation per row in Fig.  5a, Figs.  S7a, S8a, 
S9a, c, e) across all social attributes in a test dataset (y-axis in Fig. 5a, 
Figs.  S7a, S8a, S9a, c, e). The other columns plot the mean maxi-
mum residual cross-prediction accuracy across all social attributes 
in a test dataset after partialing out the effect of the social attribute 
model labeled in the x-axis. c The first column (“None”) plots the 
ratio of significant cross-predictions across all cross-predictions in 
each test dataset. The other columns plot the ratio of significant cross-
predictions after partialing out the effect of the social attribute model 
labeled in the x-axis
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the same or highly (dis)similar social attributes to be avail-
able in the out-of-sample test datasets. We examined how 
these affective models predicted judgments of other social 
attributes from the faces (all with emotionally neutral expres-
sions). Prior research has shown that people’s social judg-
ments from emotionally neutral faces are influenced by the 
face’s structural resemblance to emotional expressions (e.g., 
individuals whose emotionally neutral face images look like 
they are somewhat angry are judged to be more aggressive; 
Said et al., 2009). In line with this research, we found that 
models fitted to affective judgments of the faces significantly 
cross-predicted other social judgments (e.g., Fig. 5). How-
ever, the number of other social judgments that these affective 
models cross-predicted was on average much smaller than the 
models fitted to other social attributes (attractive, baby-faced, 
dominant, feminine, masculine, prototypic, threatening, trust-
worthy), likely because the faces used in our study were all 
intended to be emotionally neutral. The non-affective social 
attributes in our study describe more temporally stable char-
acteristics of a person, and therefore their judgments from 
faces are more likely to be linked to the structural features of 
the face, which were captured by the features from DCNNs 
pre-trained for face identification. Since the judgments of 
affective attributes from the face are likely to be shaped by 
more temporally changeable features of the face (e.g., facial 
expression) that are more difficult to be captured by the fea-
tures from DCNNs pre-trained for face identification, this 
results in worse prediction (e.g., happy model in Fig. 2) as 
well as fewer cross-predictions (e.g., Fig. 5). Future research 
directions could address these issues by combining features 
from DCNNs pre-trained for face identification and for emo-
tion categorization, and using faces with strong expressions 
(ideally several from the same person).

Finally, we provided a novel analysis, semi-partial cor-
relation analysis, for understanding how different social 
attributes contribute to the cross-predictions across social 
judgments (e.g., Fig. 5a). We found that the most important 
social attribute for cross-predictions varied depending on 
the context. For instance, the judgments of trustworthy seem 
to play a more important role in test datasets consisting of 
neutral face photos taken for research purposes, whereas the 
judgment of attractiveness was more important in the test 
dataset where the photos were taken for social media pro-
files by the users themselves (Fig. 6). The social attributes 
we examined in this analysis were constrained by the social 
attributes whose ratings were available in the training data-
set. With datasets that include a more comprehensive set 
of social attributes in future studies, our approach could be 
applied to these broader social attributes to help understand 
the most important social judgments from faces for human 
perceivers in different contexts (e.g., photos taken for dif-
ferent purposes, or for different types of decision-making).

Several limitations of our study constrain the generality of 
our findings. First, the most important limitation is that the 
rating data we used to fit and test our models almost certainly 
lack validity. That is, even though there is considerable con-
sensus in the social judgments made by humans from faces 
(generating the “ground-truth” labels for training our models; 
Rule et al., 2010), the majority of those judgments do not 
reflect the actual attribute of the person whose face is shown. 
Instead, those judgments mainly reveal our biases and stereo-
types (Sutherland et al., 2020; Todorov, 2017). This limitation 
is even more acute given that all stimuli in both the training 
and test datasets were isolated faces devoid of context and any 
other information about the person. Our results thus show that 
it is possible to predict what people judge or believe about 
brief glances of a face, but not what is in fact valid about the 
person whose face is shown as the stimulus. Needless to say, 
it is critical to keep this distinction in mind: we did not predict 
anything about the people whose faces were used; instead, we 
predicted what human viewers judge about those faces.

Our conclusions were also limited by the small number 
of overlapping social attributes between the training dataset 
and the different test datasets, and thus the small number of 
social attributes for which we could construct meaningful 
models. Finally, we only included white faces in our analy-
sis, since these were by far the predominant race available in 
the training datasets, and since there are known and impor-
tant race bias effects. Previous work has shown that social 
judgments from faces are influenced by the unique facial 
features of faces from different races  as well as the different 
social concepts associated with the different races (Fan et al., 
2020; Stolier & Freeman, 2016). Altogether, the restricted 
range of different types of faces and the small number of 
social attributes provide results that are not yet comprehen-
sive. Analyses on future datasets that are more complete in 
the social judgments and more diverse in the face stimuli 
will be valuable to extend the present study.

We conclude with two remarks. First, our analysis pipe-
line could be flexibly applied to other domains of auto-
mated predictions to better understand their generalizabil-
ity, robustness, and underlying mechanisms. This analysis 
pipeline includes testing models using multiple independ-
ent out-of-sample datasets, performing variance partitioning 
analysis to compare between models, manipulating stimulus 
properties to test robustness, and conducting cross-predic-
tion analysis to examine potential correlated predictions. 
Second, given that the many social judgments humans make 
from faces are highly correlated, future research attempting 
to automatically predict social judgments from faces (e.g., 
predicting whether people judge a face to look criminal) or 
even the actual characteristics of the people whose faces are 
used as stimuli (e.g., predicting who is criminal from their 
face) should be cautious when interpreting those predictions. 
Specifically, we would recommend that researchers examine 
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other potentially correlated social judgments before drawing 
conclusions.

Additional Information 

Funding  Funded in part by NSF grants BCS-1840756 and BCS-
1845958, the Simons Foundation Collaboration on the Global Brain 
(542941), and the Carver Mead New Adventures Fund.

Data Availability  All data are from publicly available datasets which 
could be accessed via the links provided in the papers cited.

Code Availability  All analysis codes are available at https://​osf.​io/​
xdsvp/?​view_​only=​6efb5​0f8b6​bd49a​493ac​9c64d​df630​e6.

Conflicts of Interest  The authors declare no competing interests.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s42761-​021-​00075-5.

Author Contributions  U.K. and R.A. developed the study concept and 
designed the study; C.L. performed data collection; U.K. performed all 
data analyses; all authors drafted, revised, and reviewed the manuscript, 
and approved the final manuscript for submission.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

Ahler, D. J., Citrin, J., Dougal, M. C., & Lenz, G. S. (2017). Face 
value? Experimental evidence that candidate appearance influ-
ences electoral choice. Political Behavior, 39(1), 77–102. 
https://​doi.​org/​10.​1007/​s11109-​016-​9348-6

Amos, B., Ludwiczuk, B., & Satyanarayanan, M. (2016). OpenFace: 
A general-purpose face recognition library with mobile applica-
tions. CMU School of Computer Science, 6(2), 20.

Bainbridge, W. A., Isola, P., & Oliva, A. (2013). The intrinsic mem-
orability of face photographs. Journal of Experimental Psy-
chology: General, 142(4), 1323–1334. https://​doi.​org/​10.​1037/​
a0033​872

Barrett, L. F., Adolphs, R., Marsella, S., Martinez, A. M., & Pollak, 
S. D. (2019). Emotional expressions reconsidered: Challenges 
to inferring emotion from human facial movements. Psychologi-
cal Science in the Public Interest, 20(1), 1–68. https://​doi.​org/​
10.​1177/​15291​00619​832930

Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discov-
ery rate: A practical and powerful approach to multiple testing. 
Journal of the Royal Statistical Society. Series B (Methodologi-
cal), 57(1), 289–300.

Blair, I. V., & Judd, C. M. (2011). Afrocentric facial features and 
stereotyping. The Science of Social Vision, 18, 306–320.

Bowyer, K. W., King, M. C., Scheirer, W. J., & Vangara, K. (2020). 
The “Criminality From Face” illusion. IEEE Transactions on 
Technology and Society, 1(4), 175–183. https://​doi.​org/​10.​1109/​
TTS.​2020.​30323​21

Chelnokova, O., Laeng, B., Eikemo, M., Riegels, J., Løseth, G., 
Maurud, H., & Leknes, S. (2014). Rewards of beauty: The opi-
oid system mediates social motivation in humans. Molecular 
Psychiatry, 19(7), 746–747. https://​doi.​org/​10.​1038/​mp.​2014.1

Chollet, F., & others. (2015). Keras [Github]. Retrieved June 10, 
2021, from https://​keras.​io

Çukur, T., Huth, A. G., Nishimoto, S., & Gallant, J. L. (2016). Func-
tional subdomains within scene-selective cortex: Parahippocam-
pal place area, retrosplenial complex, and occipital place area. 
The Journal of Neuroscience, 36(40), 10257–10273. https://​doi.​
org/​10.​1523/​JNEUR​OSCI.​4033-​14.​2016

D’Amour, A., Heller, K., Moldovan, D., Adlam, B., Alipanahi, 
B., Beutel, A., … Sculley, D. (2020). Underspecification 
presents challenges for credibility in modern machine learn-
ing. ArXiv:2011.03395 [Cs, Stat]. Retrieved from http://​arxiv.​
org/​abs/​2011.​03395

DeBruine, L., & Jones, B. (2017). Face Research Lab London 
Set.https://​doi.​org/​10.​6084/​m9.​figsh​are.​50476​66.​v3

Deng, J., Dong, W., Socher, R., Li, L., Kai Li, & Li Fei-Fei. (2009). 
ImageNet: A large-scale hierarchical image database. 2009 
IEEE Conference on Computer Vision and Pattern Recognition, 
248–255https://​doi.​org/​10.​1109/​CVPR.​2009.​52068​48

Engell, A. D., Haxby, J. V., & Todorov, A. (2007). Implicit trustwor-
thiness decisions: Automatic coding of face properties in the 
human amygdala. Journal of Cognitive Neuroscience, 19(9), 
1508–1519. https://​doi.​org/​10.​1162/​jocn.​2007.​19.9.​1508

Fan, X., Wang, F., Shao, H., Zhang, P., & He, S. (2020). The bottom-up 
and top-down processing of faces in the human occipitotemporal 
cortex. ELife, 9, e48764. https://​doi.​org/​10.​7554/​eLife.​48764

Gheorghiu, A. I., Callan, M. J., & Skylark, W. J. (2017). Facial 
appearance affects science communication. Proceedings of the 
National Academy of Sciences, 114(23), 5970–5975. https://​doi.​
org/​10.​1073/​pnas.​16205​42114

Hamermesh, D. S. (2011). Beauty pays: Why attractive people are 
more successful. Princeton University Press.

Hill, M. Q., Parde, C. J., Castillo, C. D., Colón, Y. I., Ranjan, R., 
Chen, J.-C., & O’Toole, A. J. (2019). Deep convolutional neural 
networks in the face of caricature. Nature Machine Intelligence, 
1(11), 522–529. https://​doi.​org/​10.​1038/​s42256-​019-​0111-7

Hoerl, A. E., & Kennard, R. W. (1970). Ridge regression: Biased esti-
mation for nonorthogonal problems. Technometrics, 12(1), 55–67. 
https://​doi.​org/​10.​1080/​00401​706.​1970.​10488​634

Jones, A. L., & Kramer, R. S. S. (2021). Facial first impressions form 
two clusters representing approach-avoidance. Cognitive Psychol-
ogy, 126, 101387. https://​doi.​org/​10.​1016/j.​cogps​ych.​2021.​101387

Jones, A. L., Schild, C., & Jones, B. C. (2021). Facial metrics gener-
ated from manually and automatically placed image landmarks are 
highly correlated. Evolution and Human Behavior, 42(3), 186–193. 
https://​doi.​org/​10.​1016/j.​evolh​umbeh​av.​2020.​09.​002

Kazemi, V., & Sullivan, J. (2014). One millisecond face alignment with 
an ensemble of regression trees. IEEE Conference on Computer 
Vision and Pattern Recognition, 2014, 1867–1874. https://​doi.​org/​
10.​1109/​CVPR.​2014.​241

King, D. E. (2009). Dlib-ml: A machine learning toolkit. Journal of 
Machine Learning Research, 10, 41755–41758.

King, D. E. (2017). Dlib-models [Github]. Retrieved June 10, 2021, 
from https://​github.​com/​davis​king/​dlib-​models

Affective Science (2021) 2:438–454452

https://osf.io/xdsvp/?view_only=6efb50f8b6bd49a493ac9c64ddf630e6
https://osf.io/xdsvp/?view_only=6efb50f8b6bd49a493ac9c64ddf630e6
https://doi.org/10.1007/s42761-021-00075-5
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s11109-016-9348-6
https://doi.org/10.1037/a0033872
https://doi.org/10.1037/a0033872
https://doi.org/10.1177/1529100619832930
https://doi.org/10.1177/1529100619832930
https://doi.org/10.1109/TTS.2020.3032321
https://doi.org/10.1109/TTS.2020.3032321
https://doi.org/10.1038/mp.2014.1
https://keras.io
https://doi.org/10.1523/JNEUROSCI.4033-14.2016
https://doi.org/10.1523/JNEUROSCI.4033-14.2016
http://arxiv.org/abs/2011.03395
http://arxiv.org/abs/2011.03395
https://doi.org/10.6084/m9.figshare.5047666.v3
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1162/jocn.2007.19.9.1508
https://doi.org/10.7554/eLife.48764
https://doi.org/10.1073/pnas.1620542114
https://doi.org/10.1073/pnas.1620542114
https://doi.org/10.1038/s42256-019-0111-7
https://doi.org/10.1080/00401706.1970.10488634
https://doi.org/10.1016/j.cogpsych.2021.101387
https://doi.org/10.1016/j.evolhumbehav.2020.09.002
https://doi.org/10.1109/CVPR.2014.241
https://doi.org/10.1109/CVPR.2014.241
https://github.com/davisking/dlib-models


	

Lee, C.-H., Liu, Z., Wu, L., & Luo, P. (2020). MaskGAN: Towards 
diverse and interactive facial image manipulation. 2020 IEEE/
CVF Conference on Computer Vision and Pattern Recognition 
(CVPR), 5548–5557. Seattle, WA, USA: IEEE. https://​doi.​org/​
10.​1109/​CVPR4​2600.​2020.​00559

Lenz, G. S., & Lawson, C. (2011). Looking the part: Television leads 
less informed citizens to vote based on candidates’ appearance. 
American Journal of Political Science, 55(3), 574–589. JSTOR. 
Retrieved from JSTOR.

Lescroart, M. D., & Gallant, J. L. (2019). Human scene-selective areas 
represent 3D configurations of surfaces. Neuron, 101(1), 178-192.
e7. https://​doi.​org/​10.​1016/j.​neuron.​2018.​11.​004

Lewenberg, Y., Bachrach, Y., Shankar, S., & Criminisi, A. (2017). 
Predicting personal traits from facial images using convolutional 
neural networks augmented with facial landmark information. 
Proceedings of the Thirtieth AAAI Conference on Artificial Intel-
ligence, 4365–4366.

Lin, C., Adolphs, R., & Alvarez, R. M. (2017). Cultural effects on the 
association between election outcomes and face-based trait infer-
ences. PLoS ONE, 12(7), e0180837. https://​doi.​org/​10.​1371/​journ​
al.​pone.​01808​37

Lin, C., Keles, U., & Adolphs, R. (2021). Four dimensions character-
ize attributions from faces using a representative set of English 
trait words. Nature Communications. 12, 5168. https://​doi.​org/​10.​
1038/​s41467-​021-​25500-y

Ma, D. S., Correll, J., & Wittenbrink, B. (2015). The Chicago face 
database: A free stimulus set of faces and norming data. Behav-
ior Research Methods, 47(4), 1122–1135. https://​doi.​org/​10.​3758/​
s13428-​014-​0532-5

Martin, D. S. (1978). Person perception and real-life electoral behav-
iour. Australian Journal of Psychology, 30(3), 255–262. https://​
doi.​org/​10.​1080/​00049​53780​82563​78

McCurrie, M., Beletti, F., Parzianello, L., Westendorp, A., Anthony, S., 
& Scheirer, W. J. (2018). Convolutional neural networks for sub-
jective face attributes. Image and Vision Computing, 78, 14–25. 
https://​doi.​org/​10.​1016/j.​imavis.​2018.​06.​010

Oh, D., Dotsch, R., Porter, J., & Todorov, A. (2020). Gender biases 
in impressions from faces: Empirical studies and computational 
models. Journal of Experimental Psychology: General. 149(2), 
323–342. https://​doi.​org/​10.​1037/​xge00​00638

Oldmeadow, J., Sutherland, C., & Young, A. (2013). Facial stereotype 
visualization through image averaging. Social Psychological and 
Personality Science, 4, 615–623. https://​doi.​org/​10.​1177/​19485​
50612​469820

Oliviola, C., Eastwick, P., Finkel, E., Hortaçu, A., Ariely, D., & 
Todorov, A. (2015). First impressions and consumer mate prefer-
ences in online dating and speed-dating. ACR North American 
Advances, 43. Retrieved from https://​www.​acrwe​bsite.​org/​volum​
es/​10198​00/​volum​es/​v43/​NA-​43

Oosterhof, N. N., & Todorov, A. (2008). The functional basis of face 
evaluation. Proceedings of the National Academy of Sciences, 
105(32), 11087–11092. https://​doi.​org/​10.​1073/​pnas.​08056​64105

O’Toole, A. J., Castillo, C. D., Parde, C. J., Hill, M. Q., & Chellappa, 
R. (2018). Face space representations in deep convolutional neural 
networks. Trends in Cognitive Sciences, 22(9), 794–809. https://​
doi.​org/​10.​1016/j.​tics.​2018.​06.​006

O’Toole, A. J., Harms, J., Snow, S. L., Hurst, D. R., Pappas, M. R., 
Ayyad, J. H., & Abdi, H. (2005). A video database of moving 
faces and people. IEEE Transactions on Pattern Analysis and 
Machine Intelligence, 27(5), 812–816. https://​doi.​org/​10.​1109/​
TPAMI.​2005.​90

Parde, C. J., Hu, Y., Castillo, C., Sankaranarayanan, S., & O’Toole, A. 
J. (2019). Social trait information in deep convolutional neural 

networks trained for face identification. Cognitive Science, 43(6). 
https://​doi.​org/​10.​1111/​cogs.​12729

Rule, N. O., Ambady, N., Adams, R. B., Ozono, H., Nakashima, S., 
Yoshikawa, S., & Watabe, M. (2010). Polling the face: Prediction 
and consensus across cultures. Journal of Personality and Social 
Psychology, 98(1), 1–15. https://​doi.​org/​10.​1037/​a0017​673

Sagonas, C., Antonakos, E., Tzimiropoulos, G., Zafeiriou, S., & Pantic, 
M. (2016). 300 Faces in-the-wild challenge: Database and results. 
Image and Vision Computing, 47, 3–18. https://​doi.​org/​10.​1016/j.​
imavis.​2016.​01.​002

Said, C. P., Sebe, N., & Todorov, A. (2009). Structural resemblance to 
emotional expressions predicts evaluation of emotionally neutral 
faces. Emotion. 9(2), 260–264. https://​doi.​org/​10.​1037/​a0014​681

Simonyan, K., & Zisserman, A. (2015). Very deep convolutional net-
works for large-scale image recognition. ArXiv:1409 1556 [Cs]. 
Retrieved from https://​arxiv.​org/​abs/​1409.​1556

Song, A., Linjie, L., Atalla, C., & Cottrell, G. (2017). Learning to see 
faces like humans: Modeling the social dimensions of faces. Jour-
nal of Vision, 17(10), 837–837. https://​doi.​org/​10.​1167/​17.​10.​837

Stolier, R. M., & Freeman, J. B. (2016). Functional and temporal con-
siderations for top-down influences in social perception. Psycho-
logical Inquiry, 27(4), 352–357. https://​doi.​org/​10.​1080/​10478​
40X.​2016.​12160​34

Sutherland, C. A. M., Burton, N. S., Wilmer, J. B., Blokland, G. A. M., 
Germine, L., Palermo, R., & Rhodes, G. (2020). Individual differ-
ences in trust evaluations are shaped mostly by environments, not 
genes. Proceedings of the National Academy of Sciences, 117(19), 
10218–10224. https://​doi.​org/​10.​1073/​pnas.​19201​31117

Sutherland, C. A. M., Liu, X., Zhang, L., Chu, Y., Oldmeadow, J. A., & 
Young, A. W. (2018). Facial first impressions across culture: Data-
driven modeling of Chinese and British perceivers’ unconstrained 
facial impressions. Personality and Social Psychology Bulletin, 
44(4), 521–537. https://​doi.​org/​10.​1177/​01461​67217​744194

Sutherland, C. A. M., Oldmeadow, J. A., Santos, I. M., Towler, J., 
Michael Burt, D., & Young, A. W. (2013). Social inferences from 
faces: Ambient images generate a three-dimensional model. Cog-
nition, 127(1), 105–118. https://​doi.​org/​10.​1016/j.​cogni​tion.​2012.​
12.​001

Todorov, A. (2017). Face value: The irresistible influence of first 
impressions. Princeton University Press.

Todorov, A., Dotsch, R., Porter, J. M., Oosterhof, N. N., & Falvello, 
V. B. (2013). Validation of data-driven computational models of 
social perception of faces. Emotion, 13(4), 724–738. https://​doi.​
org/​10.​1037/​a0032​335

Todorov, A., Mandisodza, A. N., Goren, A., & Hall, C. C. (2005). 
Inferences of competence from faces predict election outcomes. 
Science, 308(5728), 1623–1626. https://​doi.​org/​10.​1126/​scien​ce.​
11105​89

Todorov, A., Olivola, C. Y., Dotsch, R., & Mende-Siedlecki, P. 
(2015). Social attributions from faces: Determinants, conse-
quences, accuracy, and functional significance. Annual Review 
of Psychology, 66(1), 519–545. https://​doi.​org/​10.​1146/​annur​
ev-​psych-​113011-​143831

Walker, M., Schönborn, S., Greifeneder, R., & Vetter, T. (2018). The 
Basel Face Database: A validated set of photographs reflect-
ing systematic differences in Big Two and Big Five personality 
dimensions. PLoS ONE, 13(3), e0193190. https://​doi.​org/​10.​1371/​
journ​al.​pone.​01931​90

Wang, Y., & Kosinski, M. (2018). Deep neural networks are more 
accurate than humans at detecting sexual orientation from facial 
images. Journal of Personality and Social Psychology, 114(2), 
246–257. https://​doi.​org/​10.​1037/​pspa0​000098

White, D., Sutherland, C. A. M., & Burton, A. L. (2017). Choos-
ing face: The curse of self in profile image selection. Cognitive 

Affective Science (2021) 2:438–454 453

https://doi.org/10.1109/CVPR42600.2020.00559
https://doi.org/10.1109/CVPR42600.2020.00559
https://doi.org/10.1016/j.neuron.2018.11.004
https://doi.org/10.1371/journal.pone.0180837
https://doi.org/10.1371/journal.pone.0180837
https://doi.org/10.1038/s41467-021-25500-y
https://doi.org/10.1038/s41467-021-25500-y
https://doi.org/10.3758/s13428-014-0532-5
https://doi.org/10.3758/s13428-014-0532-5
https://doi.org/10.1080/00049537808256378
https://doi.org/10.1080/00049537808256378
https://doi.org/10.1016/j.imavis.2018.06.010
https://doi.org/10.1037/xge0000638
https://doi.org/10.1177/1948550612469820
https://doi.org/10.1177/1948550612469820
https://www.acrwebsite.org/volumes/1019800/volumes/v43/NA-43
https://www.acrwebsite.org/volumes/1019800/volumes/v43/NA-43
https://doi.org/10.1073/pnas.0805664105
https://doi.org/10.1016/j.tics.2018.06.006
https://doi.org/10.1016/j.tics.2018.06.006
https://doi.org/10.1109/TPAMI.2005.90
https://doi.org/10.1109/TPAMI.2005.90
https://doi.org/10.1111/cogs.12729
https://doi.org/10.1037/a0017673
https://doi.org/10.1016/j.imavis.2016.01.002
https://doi.org/10.1016/j.imavis.2016.01.002
https://doi.org/10.1037/a0014681
https://arxiv.org/abs/1409.1556
https://doi.org/10.1167/17.10.837
https://doi.org/10.1080/1047840X.2016.1216034
https://doi.org/10.1080/1047840X.2016.1216034
https://doi.org/10.1073/pnas.1920131117
https://doi.org/10.1177/0146167217744194
https://doi.org/10.1016/j.cognition.2012.12.001
https://doi.org/10.1016/j.cognition.2012.12.001
https://doi.org/10.1037/a0032335
https://doi.org/10.1037/a0032335
https://doi.org/10.1126/science.1110589
https://doi.org/10.1126/science.1110589
https://doi.org/10.1146/annurev-psych-113011-143831
https://doi.org/10.1146/annurev-psych-113011-143831
https://doi.org/10.1371/journal.pone.0193190
https://doi.org/10.1371/journal.pone.0193190
https://doi.org/10.1037/pspa0000098


Research: Principles and Implications, 2(1), 23. https://​doi.​org/​
10.​1186/​s41235-​017-​0058-3

Willis, J., & Todorov, A. (2006). First impressions: Making up your 
mind after a 100-ms exposure to a face. Psychological Science, 
17(7), 592–598. https://​doi.​org/​10.​1111/j.​1467-​9280.​2006.​
01750.x

Wilson, J. P., & Rule, N. O. (2015). Facial trustworthiness predicts 
extreme criminal-sentencing outcomes. Psychological Science, 
26(8), 1325–1331. https://​doi.​org/​10.​1177/​09567​97615​590992

Yu, C., Wang, J., Peng, C., Gao, C., Yu, G., & Sang, N. (2018). 
BiSeNet: Bilateral segmentation network for real-time seman-
tic segmentation. In V. Ferrari, M. Hebert, C. Sminchisescu, & 
Y. Weiss (Eds.), Computer Vision – ECCV 2018 (pp. 334–349). 

Cham: Springer International Publishing. https://​doi.​org/​10.​1007/​
978-3-​030-​01261-8_​20

Zebrowitz, L. A., & Collins, M. A. (1997). Accurate social perception 
at zero acquaintance: The affordances of a Gibsonian approach. 
Personality and Social Psychology Review: An Official Journal 
of the Society for Personality and Social Psychology, Inc, 1(3), 
204–223. https://​doi.​org/​10.​1207/​s1532​7957p​spr01​03_2

Zebrowitz, L. A., Voinescu, L., & Collins, M. A. (1996). “Wide-eyed” 
and “crooked-faced”: Determinants of perceived and real honesty 
across the life span. Personality and Social Psychology Bulletin, 
22(12), 1258–1269. https://​doi.​org/​10.​1177/​01461​67296​22120​06

Zllrunning. (2020). Face-parsing.PyTorch [Github]. Retrieved June 10, 
2021, from https://​github.​com/​zllru​nning/​face-​parsi​ng.​PyTor​ch

Affective Science (2021) 2:438–454454

https://doi.org/10.1186/s41235-017-0058-3
https://doi.org/10.1186/s41235-017-0058-3
https://doi.org/10.1111/j.1467-9280.2006.01750.x
https://doi.org/10.1111/j.1467-9280.2006.01750.x
https://doi.org/10.1177/0956797615590992
https://doi.org/10.1007/978-3-030-01261-8_20
https://doi.org/10.1007/978-3-030-01261-8_20
https://doi.org/10.1207/s15327957pspr0103_2
https://doi.org/10.1177/01461672962212006
https://github.com/zllrunning/face-parsing.PyTorch

	A Cautionary Note on Predicting Social Judgments from Faces with Deep Neural Networks
	Abstract
	Introduction
	Methods
	Training and Test Datasets
	DCNN-Identity Features
	DCNN-Object Features
	Facial-Geometry Features
	Model Fitting
	Variance Partitioning Analysis
	Semi-partial Correlation Analysis

	Results
	Generalizability Across Faces, Raters, and Social Attributes
	Comparison Across Feature Spaces
	Non-specific Predictions Across Social Attributes

	Discussion
	References




