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ABSTRACT
Background: Biofortification is a strategy to relieve vitamin A
(VA) deficiency. Biofortified maize contains enhanced provitamin
A concentrations and has been bioefficacious in animal and small
human studies.
Objective: The study sought to determine changes in total body
reserves (TBRs) of vitamin Awith consumption of biofortified maize.
Design: A randomized, placebo-controlled biofortified maize effi-
cacy trial was conducted in 140 rural Zambian children. The paired
13C-retinol isotope dilution test, a sensitive biomarker for VA status,
was used to measure TBRs before and after a 90-d intervention.
Treatments were white maize with placebo oil (VA2), orange maize
with placebo (orange), and white maize with VA in oil [400 mg
retinol activity equivalents (RAEs) in 214 mL daily] (VA+).
Results: In total, 133 children completed the trial and were analyzed
for TBRs (n = 44 or 45/group). Change in TBR residuals were not
normally distributed (P, 0.0001); median changes (95% CI) were as
follows: VA2, 13 (219, 44) mmol; orange, 84 (21, 146) mmol; and
VA+, 98 (24, 171) mmol. Nonparametric analysis showed no statistical
difference between VA+ and orange (P = 0.34); both were higher than
VA2 (P = 0.0034). Median (95% CI) calculated liver reserves at
baseline were 1.04 (0.97, 1.12) mmol/g liver, with 59% .1 mmol/g,
the subtoxicity cutoff; none were ,0.1 mmol/g, the deficiency
cutoff. The calculated bioconversion factor was 10.4 mg b-carotene
equivalents/1 mg retinol by using the middle 3 quintiles of change in
TBRs from each group. Serum retinol did not change in response to
intervention (P = 0.16) but was reduced with elevated C-reactive
protein (P = 0.0029) and a-1-acid glycoprotein (P = 0.0023) at baseline.
Conclusions: b-Carotene from maize was efficacious when con-
sumed as a staple food in this population and could avoid the
potential for hypervitaminosis A that was observed with the use
of preformed VA from supplementation and fortification. Use of
more sensitive methods other than serum retinol alone, such as
isotope dilution, is required to accurately assess VA status, evaluate
interventions, and investigate the interaction of VA status
and infection. This trial was registered at clinicaltrials.gov as
NCT01814891. Am J Clin Nutr 2014;100:1541–50.
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INTRODUCTION

Ensuring optimal vitamin A (VA)7 status is an issue of global
health concern. Latest WHO reports estimate that 190 million

preschool-aged children and 19.1 million pregnant women are VA
deficient based on serum retinol (SR) concentrations ,0.7 mmol/L
(1). Vitamin A deficiency (VAD) can lead to blindness, anemia,
weakened resistance to infection, and increased risk of death (1).
Current strategies to alleviate VAD are high-dose supplementation
and low-dose fortification with preformed VA (1). Zambia has
adopted these strategies with high levels of coverage for supplements
(89%, 2007–2011) (2) and fortified sugar (59–99%) (3–5). Sugar in
Zambia had a median VA concentration of 8.8 mg/g (range: 0.5–
54.9) (6), and daily intake in children was estimated as 9–15 g/d
(6, 7), yielding intakes of 77–132 mg preformed retinol/d. Absorption
of preformed VA is very efficient; therefore, the potential for hy-
pervitaminosis exists at consistent intakes above requirements (8).
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Biofortification of staple crops with provitamin A carotenoids
is an alternate method to promote optimal VA status. This
approach is sustainable, cost-effective, and potentially wide-
reaching (9). Furthermore, negative feedback mechanisms of
b-carotene absorption and bioconversion to VA mitigate
hypervitaminosis issues associated with preformed VA (10, 11).
Provitamin A carotenoid sources are efficacious in humans (12–14).
Biofortified orange maize has shown bioefficacy in maintaining VA
liver reserves in Mongolian gerbils (15) and in providing VA in
single meals to humans (16, 17).

Determining the VA status of an individual or the response to
an intervention is difficult (18). Liver VA concentrations are the
gold standard because the liver is the primary storage site for VA
(19), but these measures are difficult in the field or unethical to
directly obtain from humans. SR concentrations are homeo-
statically controlled over a wide range of physiologic conditions,
responding only to severe deficiency or toxicity (20). Isotope
dilution is the most sensitive, indirect measure of VA status across
a broad range of VA status (18). The deuterated retinol dilution
(DRD) technique requires a high dose of isotope (w17.5 mmol),
gives an accurate measure of liver stores (21, 22), and has been
used before and after provitamin A, food-based interventions to
determine efficacy (13, 14, 23).

13C-Retinol isotope dilution (13C-RID), which has been val-
idated against liver reserves in rats (24) and monkeys (25), as
well as correlated with long-term dietary intakes of U.S. women
(26), has demonstrated a response to a preformed VA in-
tervention in Thai schoolchildren (27). Because the carbon (not
hydrogen) is isotopically labeled, retinol may be analyzed by using
gas chromatography–combustion isotope ratio mass spectrometry
(GC-CIRMS), which is more sensitive than the gas chromatography–
mass spectrometry used for the DRD test (28). This allows much
smaller isotope doses to be used, allowing the isotope to act like
a true tracer (28).

The focus of this community-based, randomized controlled
trial in Zambian preschool children was to evaluate the VA efficacy
of orange maize. The 13C-RID test was used to quantitatively
determine VA total body reserves (TBRs) and liver concentrations
at baseline and after orange maize consumption in comparison
with negative and positive control groups.

SUBJECTS AND METHODS

Subjects

All procedures involving human subjects were approved by the
Tropical Diseases Research Centre’s Ethics Review Committee
in Zambia and University of Wisconsin (UW)–Madison’s Health
Sciences Human Subjects Institutional Review Board. This trial
was registered with clinicaltrials.gov as NCT01814891. Written
informed consent was obtained from parents or caregivers. The
trial was conducted in 2012 in Nyimba District of the Eastern
Province of Zambia in preschool children (n = 143 initial en-
rollment, aged 71.5 6 6.9 mo) because of the high prevalence of
low SR concentrations in a prior survey (6). Nyimba District
was also selected because local communities expressed interest
in participating following community sensitization programs
related to orange maize performed by the National Food and
Nutrition Commission (Lusaka, Zambia) and a prior efficacy
study orchestrated by UW-Madison (29) in previous years. Four

feeding sites were chosen: 2 sites adjacent to the main roadway
and 2 sites about 8 km off the paved road.

Inclusion criteria were relatively healthy children aged 5–7 y
living in the study area with weight-for-age and weight-for-
height z scores .23, hemoglobin .70 g/L, no clinical infection
at recruitment causing fever, antihelminthic treatment the week
before recruitment, and not having received a 200,000 IU VA
supplement in the past 6 mo.

Assuming a 16-kg child with a 480-g liver (3% body weight),
sample size was calculated by using a theoretical midpoint
change of 1125 mg in the orange group’s liver stores based on an
estimated 15 mg b-carotene/g maize, 75% retention of b-carotene
through preparation, 200-g daily maize intake, and a mid-
point between the 6 and 12 mg b-carotene/1 mg retinol
bioconversion factors (16, 17). In this calculation, daily mg
retinol activity equivalent (RAE) intake from the maize was
corrected for the estimated average requirement of 275 mg
RAEs, which was assumed to be used. Using this difference
from a similar child consuming white maize (assuming no
change in liver stores), a sample size of 45 would allow an SD of
1.5 times the difference; a was set at 0.05, and power was 0.90.
This was increased to a target of 50/group to allow for loss to
follow-up.

Biofortified orange maize

The biofortified orange maize for the test group was developed
at the International Maize andWheat Improvement Center as part
of its HarvestPlus biofortified maize research project (30). The
orange maize variety was created specifically to enable efficacy
studies and was formed by making all possible crosses and
mixing the resultant seed by using 5 maize lines bred for high
provitamin A concentration (17–24 mg/g, predominately
b-carotene). Grain of this orange maize variety was produced on
a commercial farm in Zambia during November to April im-
mediately preceding the trial. After harvest, the grain was ana-
lyzed and had w18 mg b-carotene equivalents (bCEs)/g at the
time it was placed into a large freezer container in Lusaka.
Every 2 weeks, maize (250 kg) was delivered to the study site.

Study design

The paired 13C-RID test was used, meaning each child gave 4
blood samples (i.e., 2 blood draws for each assessment) and
served as his or her own control for response to the intervention
(28). As illustrated in Figure 1, the study began with a baseline
assessment for VA TBRs and other variables of interest, fol-
lowed by the intervention, a washout period, and a similar
endline assessment. The 13C-RID test was administered as fol-
lows: after an overnight fast and venous blood draw, 1 mmol
13C2-retinyl acetate in soybean oil (180 mL) was delivered
directly into the child’s mouth with a positive displacement
pipette. The dose was followed with 1.0 mL oil and a high-fat
snack (bread with w16 g peanut butter) to maximize absorption.
After an isotope mixing period of 14 d, another overnight fasting
venous blood sample was obtained. During mixing and washout
(7-d) periods, all subjects ate white maize and were not sup-
plemented. Treatment groups consisted of a negative control
group (VA2, n = 47), who ate white maize and received daily
placebo oil; the test group (orange, n = 46), who ate orange
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maize and received daily placebo oil; and a positive control
group (VA+, n = 47), who ate white maize and received daily VA
[retinyl palmitate, 400 mg RAEs (the current U.S. Recom-
mended Dietary Allowance for children this age)] in oil. Maize
dishes consisted of porridge for breakfast (prepared with maize,
water, sugar, salt, and milk or groundnuts; w17% maize by
weight) and nshima for lunch and dinner (stiff porridge, pre-
pared with maize and water; w30% maize by weight). White or
orange maize was used for all dishes according to treatment
group and was the only difference in the menu among the
groups. Unfortified industrial-grade sugar was purchased from
a processing company to use in porridge preparation.

Labeled retinyl acetate was synthesized by using published
procedures (31). Purity, assessed by ultraviolet-Vis spectropho-
tometry and thin-layer chromatography, was confirmed with
HPLC to be w99%. The dose was dissolved in soybean oil,
purged with nitrogen, and stored frozen in amber vials until use
in the field.

Randomization and masking

Once an adequate baseline blood samplewas obtained (w3mL),
children were randomly assigned within a site by picking
a card with a colored sticker corresponding to their treatment
group from opaque envelopes, and an identification number was
assigned. Oil doses (214 mL), identical in appearance, were
given during the treatment period only, measured with a positive
displacement pipette onto a serving spoon, and administered
immediately preceding the lunch meal. Children ate breakfast,
lunch, and dinner on site 6 d/wk, and all food intake was mea-
sured. The diet was designed to be low in VA (29 mg RAEs/d);
menu, nutrient content, and off-site intakes are reported elsewhere
(32). Children eating orange maize ate in a separate room to
prevent sharing.

In the laboratory, technicians were blinded to treatment
groups. All gas chromatograms were integrated by a technician
who was not involved in the conduct of the fieldwork.

Food carotenoid analysis

Food samples were analyzed with a modified published pro-
cedure (33). Modifications included using 500 mL aqueous po-
tassium hydroxide (50:50), resuspending samples in 150 mL
(50:50 methanol/dichloroethane), and injecting 50 mL on the
HPLC system for nshima and porridge analysis. For nshima
analysis, saponification was carried out at room temperature for
45 min.

13C atom percentage and concentration of serum retinol

Blood collection was performed by the Tropical Diseases
Research Centre. Blood (target 7 mL) was collected and
centrifuged, and serum was poured into 2 tubes, transported in
nitrogen vapor, shipped on dry ice, and stored at 2808C until
analysis at UW-Madison.

Serum analysis was a modified published procedure (34).
Briefly, serum was thawed at room temperature. To 1.5 mL (or all
available) serum, ethanol (1 3 vol) was added to precipitate
proteins, C23 b-apo-carotenol was added as an internal stan-
dard, and 3 3 1–mL hexane extractions were performed. Hex-
ane layers were pooled, dried under nitrogen, resuspended in
100 mL methanol, frozen at 2808C for w5 min, centrifuged
briefly, and injected onto HPLC system 1 for quantification and
purification. System 1 contained a Gracesmart C18 (5-mm, 4.63
250–mm) column with 92:8 acetonitrile/water at 1.0 mL/min.
The retinol fraction was collected, dried under nitrogen, and
resuspended in 100 mL methanol for injection onto system 2.
System 2 contained an identical column with 100% methanol at
0.7 mL/min. The retinol fraction was collected, dried under
vacuum with a SPD1010 SpeedVac (Thermo Scientific), and
resuspended in 4–6 mL hexane, and 1–3 mL was injected (to inject
approximately 75 ng) on the gas chromatograph. The GC-CIRMS
system was published (34). Atom percentage (At%) was directly
calculated (Isodat version 2.0; Thermo Scientific) in reference to
carbon dioxide, which was calibrated against a sucrose standard
(National Institute of Standards and Technology, 8542).

Other biochemical analyses

Serum C-reactive protein (CRP), a-1-acid glycoprotein
(AGP), ferritin, and zinc were analyzed to adjust or confirm
assumptions. CRP, AGP, and ferritin were analyzed by using
ELISA kits (CRP: Cayman Chemical Company; AGP: Abcam;
ferritin: Phoenix Pharmaceuticals Inc.). Zinc analyses were
performed by UW-Madison Soil Testing Laboratories by using
inductively coupled plasma optical emission spectrometry.

Calculation of total body reserves

Vitamin A TBRs were calculated by using the mass-balance
equation (35), which balances 13C before and after the dose:

ðFa 3 aÞ þ ðFb 3 bÞ ¼ ðFc 3 cÞ ð1Þ

where a is mmol absorbed from the dose (dose 3 absorption
rate), b is TBR in mmol at baseline, and c is TBR in mmol after

FIGURE 1 Study design. Baseline assessment comprised blood draw 1, isotope dose 1, the 14-d mixing period, and blood draw 2. This was followed by
90 d of intervention and a 7-d washout period. The endline assessment procedure was repeated identically to baseline and comprised blood draw 3, isotope dose
2, the 14-d mixing period, and blood draw 4. Sample size: n = 44, 44, and 45 for VA2, orange, and VA+ groups, respectively. White maize VA– = received placebo
oil (214 mL) daily during treatment period and was fed white maize throughout (white shading). Orange maize VA– = received placebo oil (214 mL) daily and
orange maize during the treatment period and white maize during mixing and washout periods (light gray shading). White maize VA+ = received VA in oil (400 mg
retinol activity equivalents/d in 214 mL) during the treatment period and was fed white maize throughout (dark gray shading). VA, vitamin A.
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dosing (c = a + b). Fa, Fb, and Fc are the isotope abundance
[13C/total C; At%/100; R/(R + 1), with R being 13C/12C] of the
dose, baseline serum, and postdose serum, respectively.

Absorption of a 5-mg dose was 81.2% in 3 children without
illness (36), but a 1-mg dose had a higher absorption of 99.2% in
5 children (37). We assumed absorption to be 90% for most
children to account for underlying repeated infections, potential
micronutrient codeficiencies, and the smaller dose size (0.288
mg), which appears to be absorbed more completely. For children
with elevated CRP (.10 mg/L) (38–40) at the time of dosing,
absorption was reduced further to 80% (37).

Fa was 0.11 [(13C2 labeled in synthesis + natural abundance
13C)/20 C total], with the equation solved for b, TBR at
baseline. Total body reserves were corrected for catabolism
and replacement during the mixing period by the following
equation:

Corrected TBR ¼ b3 e2 kt ð2Þ

where k = ln(2)/(half-life of retinol in days), and t is time in days
since dosing.

Half-life of VA was calculated from the decay of the mmol
tracer of the VA2 group from blood draws 2–3 for those sub-
jects having ,50 mmol change in TBR (41). These constraints
help satisfy assumptions regarding isotopic kinetics (41).

Liver concentrations were calculated by assuming a liver
weight of 3% body weight (8, 39, 42). The factor for dose retained
in the liver was originally assumed to be 0.5 for a population with
a high prevalence of deficiency (24, 42), but after determining the
initial TBR results, this assumption was changed to 0.8 to account
for the actual VA status of this population, because it is well
accepted that the percentage of VA in the liver increases as total
body VA stores increase (24, 25, 42).

Statistical analysis and calculation of bioconversion factor

Values are reported as means 6 SDs, medians (95% CIs), or
percentages. Data were analyzed by using the General Linear
Model procedure in the Statistical Analysis System (SAS In-
stitute, version 9.2). Normality of residuals was assessed by the
Shapiro-Wilk test. For data with normally distributed residuals,
outcomes of interest were evaluated by using 1- or 2-way
ANOVA, and differences among treatment groups were determined
by using least significant difference tests. For data with non-
normally distributed residuals, nonparametric analysis was car-
ried out on ranked data. Proportions were compared by using x2

analysis. For calculation of the bioconversion factor, the middle
3 quintiles of change in TBRs from each treatment group were
used. The mean change of the VA2 group was subtracted from
orange and VA+ groups, and mg b-carotene/1 mg retinol from
the orange maize was calculated in reference to the VA+ group
by the following formula (23):

Significance was P , 0.05. Growth standard z scores were
calculated by using WHO macros for child growth standards and
run by using R (version 3.0.2; R Core Team) (43).

RESULTS

Subject characteristics

The intervention began in May and went through October
2012. Children (n = 143) were recruited and consented, and 140
met baseline inclusion criteria. Baseline anthropometric data did
not differ among groups (Table 1). One hundred thirty-five
children completed the trial, and 133 sample sets were suc-
cessfully analyzed; reasons for dropouts and losses are outlined
in Figure 2. At baseline, 8 children (6%) were severely stunted
(height-for-age z score ,23), whereas 39 (28%) were moder-
ately stunted (height-for-age z score ,22); 25 (18%) children
were undernourished (weight-for-age z score ,22), while none
were severely undernourished (weight-for-age z score ,23).

Food carotenoid analysis

The nshima, porridge, and dry maize in the orange maize
group contained 4.09 6 0.69, 2.60 6 0.36, and 17.9 6 1.14 mg
bCEs/g, respectively. Nshima content did not differ by site (P =
0.45) or time (P = 0.80), and porridge content did not differ by
recipe (P = 0.54), site (P = 0.096), or time (P = 0.056). Re-
tention of provitamin A carotenoids from ground maize to
cooked nshima was w78%. Dry white maize contained 0.089 6
0.050 mg bCEs/g but was not detectable in nshima or porridge
in the white maize group (limit of detection: 0.005 mg bCEs/g).

Dietary intakes

Dietary intakes for the trial are published (32). Briefly, total
food intake among groups did not differ, but the orange maize
group ate less nshima (2766 36 compared with 2886 26 g/serving,
P = 0.008) because this maize takes up less water and is
more nutrient dense [0.28 6 0.02 (orange) compared with 0.26
6 0.02 (white) g dry weight/g nshima, P = 0.0085] than the
white maize after cooking. Meal compliance was 98.4% and
similar among groups. The orange maize group consumed
49,000 g nshima per child (4.09 mg bCEs/g) and 22,000 g
porridge per child (2.60 mg bCEs/g) during the trial. This
equates to 257.6 mg bCEs or 2.86 mg bCEs/d per child. VA
dosing compliance was 98.7% in the VA+ group, for a mean VA
dose intake of 35.53 mg or 394.8 mg RAEs/d per child.

Total body reserves, liver concentration, and bioconversion
factor

The calculated half-life of retinol for a subset of the children in
the VA2 group (n = 19) was 1366 33 d. The TBR and liver VA

�
b-carotene consumed in orange group ðlgÞ

RAEs consumed in VAþ group ðlgÞ
�
3

�
Change in pool size of ðVAþ groupÞ � ðVA� groupÞ
Change in pool size of ðorange groupÞ � ðVA� groupÞ

�
: ð3Þ
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concentrations at baseline and endline, as well as their re-
spective changes, were calculated (Table 2). Change in TBR
residuals was not normally distributed (P , 0.0001); median
(95% CI) changes were as follows: VA2: 13 (219, 44); orange:
84 (21, 146); and VA+: 98 (24, 171) mmol; nonparametric
analysis showed that there were no statistical differences be-
tween VA+ and orange groups (P = 0.34), but both were higher
than the VA2 group (Figure 3; P = 0.0034). Median (95% CI)
calculated liver reserves for all subjects at baseline were 1.04
(0.97, 1.12) mmol/g liver, with 59% .1 mmol/g, the current
subtoxicity cutoff. None were ,0.1 mmol/g, a more recently
suggested, higher than traditional, deficiency cutoff (18).

The bioconversion factor for the provitamin A carotenoids
from the orange maize was estimated to be 10.4 mg bCEs/1 mg
retinol. Retrospective power analysis revealed that for change in
TBRs, we had a power of 0.76 to detect a difference between the
VA2 and orange groups and a power of 0.95 to detect a change
between the VA2 and VA+ groups.

Serum retinol and morbidity biomarkers

Change in SR showed no treatment effect (Table 2, P = 0.16)
and was not correlated to change in TBRs (r2 = 0.0016,
P = 0.80). At baseline, 22 children (17%) had concentrations
,0.7 mmol/L. Comparing all 4 time points, SR did not show
a treatment (P = 0.12) or a treatment-by-time interaction (P = 0.82)
but had a time effect (P , 0.0001) and increased from the first to
second blood draw (0.956 0.27–1.086 0.29 mmol/L, P = 0.0038)
while all subjects were on a low VA diet during the isotope
mixing period.

Subjects with an elevated CRP at baseline (n = 21) had
a significantly lower SR than did those with a normal CRP
(n = 94) (0.83 6 0.28 compared with 1.02 6 0.25, P = 0.0029)
and a higher prevalence of SR ,0.7 mmol/L (33% compared
with 10%, P = 0.0053). Subjects with a positive malaria smear at
baseline (n = 16) had a significantly higher prevalence of ele-
vated CRP than did subjects with a negative smear (56% com-

pared with 12%, P = 0.0002). Subjects with an elevated AGP at
baseline (n = 110) had a significantly lower SR than did those
with a normal AGP (n = 8) (0.96 6 0.26 compared with 1.26 6
0.26, P = 0.0023) and a higher prevalence of SR ,0.7 mmol/L
(17.3% compared with 0%, P , 0.0001). CRP and AGP were
positively and significantly correlated (r2 = 0.32, P , 0.0001).

DISCUSSION

Orange maize was efficacious in Zambian children, as de-
termined by the 13C-RID test in the presence of high liver stores,
with 59% having concentrations .1.0 mmol/g liver at baseline.
While the orange maize was expected to be efficacious, the
absence of VAD and high liver stores were unexpected findings
given 2009 VAD estimates of 56.4% with SR ,0.7 mmol/L
(unadjusted for infection) or 22% with modified relative dose-
response tests .0.06 in younger Zambian children aged 2–5 y
(6). However, children aged 6–59 mo are given high-dose sup-
plements semiannually, sugar has been fortified since 1998 with
more complete coverage in recent years, and dietary intake of
VA was adequate for 99.6% of children aged 2–5 y in the prior
survey (6); all 3 sources allow TBR to build over time. VA status
is reported as TBR (mmol or mmol), which relies on fewer as-
sumptions, and liver concentration (mmol/g) to compare with
published values. Validation against liver reserves is on a con-
centration basis and accounts for body weight. Baseline TBRs in
mmol (0.73) were much higher than those in Filipino children
(0.08–0.09) (13), Chinese children (0.09–0.13 and 0.27) (14,
44), Mexican children (0.17) (45), and Nicaraguan children
before sugar fortification (0.39) (8).

Although the isotope dilution test is the most sensitive bio-
marker of VA status, it relies on assumptions that must be
carefully considered for the population and the specific test used.
It is important to note the distinction between isotope dilution
methods. Methods using 13C combined with GC-CIRMS are
more sensitive than deuterium or 13C on gas chromatography–
mass spectrometry, allowing for smaller isotope doses to give an

TABLE 1

Baseline anthropometric data for Zambian children (n = 140) enrolled in a bioefficacy trial investigating biofortified

orange maize by randomized treatment groups1

VA2 (n = 47) Orange (n = 46) VA+ (n = 47) P value2

Age,3 mo 69.0 (65.2, 72.8)4 69.0 (66.5, 71.5) 71.0 (67.7, 74.3) 0.99

Weight,3 kg 17.1 (15.9, 18.3) 17.4 (16.4, 18.3) 16.8 (16.3, 17.3) 0.89

Height, cm 107.3 6 6.35 108.1 6 5.3 107.4 6 4.7 0.75

Hemoglobin, g/L 114 6 13 117 6 12 118 6 9 0.23

Sex, % male 51.1 47.8 61.7 0.67

Malaria, % 17.0 8.7 8.5 0.35

BMI,3 kg/m2 14.9 (14.6, 15.2) 14.7 (14.5, 14.9) 14.6 (14.4, 14.8) 0.34

Height-for-age z score 21.53 6 1.18 21.40 6 0.91 21.53 6 0.88 0.76

Weight-for-age z score 21.18 6 0.93 21.17 6 0.79 21.31 6 0.81 0.64

BMI-for-age z score3 20.33 (20.57, 20.09) 20.48 (20.67, 20.29) 20.52 (20.69, 20.35) 0.33

1Baseline data were taken during recruitment day, which included the baseline blood draw 1 for 13C-natural abun-

dance. The VA– group received white maize with placebo oil, the orange group received orange maize with placebo oil, and

the VA+ group received white maize with VA in oil (400 mg retinol activity equivalents/d in 214 mL). VA, vitamin A.
2P values were determined by testing the null hypothesis that each variable is equal among treatment groups by using

ANOVA or x2 test.
3Indicates nonnormally distributed residuals; P value reflects nonparametric analysis.
4Median; 95% CI in parentheses (all such values).
5Mean 6 SD (all such values).
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adequate analytic signal (1 compared with 17.5 mmol) (28). This
is important for considering the fraction of dose absorbed and
the specific activity ratio of serum/liver.

Similar absorption (w80%) was noted for 5- and 60-mg VA
doses in Zambian children (36), a 1-mg dose was almost com-
pletely absorbed (99.2%) in the absence of acute infection in
Indian children (37), and a 1-mg dose was completely absorbed
in monkeys (25). Although there was relatively high AGP,
children in this study were absorbing the daily VA doses well
(w70% retention), as indicated by the increase in TBR in the
VA+ group. Together, these data justify 90% absorption of the
dose or 80% absorption in the children with elevated CRP and no
fever on the day of dosing. Furthermore, we administered anti-
helminthic treatment before beginning the study to optimize the
validity of the 13C-RID test and the intervention. If a population
has a high intestinal parasitic load, assumptions used in the iso-
tope dilution equation and efficacy of orange maize may differ.

A factor of 0.65 is used to correct for differences in isotope
enrichment between serum and liver with larger deuterated doses
(21), based on radioactivity studies in rats (46). This ratio in
humans was 0.80 with large deuterated doses (w30 mg), but the
DRD equation has not been updated (22). This ratio was omitted
in our equation because it wasw1 in rats (24) and monkeys (25)
when smaller doses of 13C and GC-CIRMS were used and blood

samples were taken fasting. The ratio of 1 is likely because of
the physiologic nature of small doses along with a low VA diet
during the mixing period. The correction for catabolism of VA
during the mixing period assumes first-order elimination of VA
(21, 41). The dose decay, after mixing with the body pool, was
measured from 14 to 130 d. The calculated half-life (136 d) is
close to that in adults (154 d) (42, 47) but longer than that in
younger children aged 1–2 y (32 d) (39). Our children are older,
are free of severe infection, and have large stores of VA, and the
dose was followed for a longer time.

This study was powered based on change in TBR, and SR did
not respond even though TBR showed a treatment effect. Change
in TBR by using isotope dilution coupled with no response in SR
has been observed frequently (13, 23, 27). Nonsignificant dif-
ferences in SR with and without VA supplementation have also
been observed (40). This is because SR is homeostatically
controlled over a broad range of liver reserves (18, 28). Our
baseline assessment of TBR showed no correlation to SR (R2 =
0.018, P = 0.090), and SR predicted a 17% VAD prevalence:
a moderate public health concern. SR from blood draw 4 mis-
classified 22% as VA deficient, indicating a severe public health
concern. Conversely, in a recent study using 13C-RID in Thai
children with SR .0.7 mmol/L, 64% were deficient based on
liver concentrations ,0.1 mmol/g (27). A high prevalence of

FIGURE 2 Trial profile for a randomized, controlled efficacy study that fed orange maize to Zambian children for 90 d compared with positive and
negative controls. VA2 group received white maize throughout and placebo oil (214 mL) daily during the treatment period. Orange group received white
maize during mixing/washout periods and orange maize and placebo oil (214 mL) daily during the treatment period. VA+ group received white maize
throughout and VA in oil (400 mg retinol activity equivalents/d in 214 mL) during the treatment period. 1All 4 blood draws for the subject were analyzed for
13C-retinol content with adequate signal. VA, vitamin A.

1546 GANNON ET AL.



elevated AGP in our study was positively and significantly
correlated with CRP (indicating chronic infection) (48), which is
correlated with a reduction in SR (29). Misclassification by SR
may be a result of this chronic infection. Together, these data
demand further use of stable isotope methods to more accurately
assess VA status, evaluate VA interventions, and investigate the
interaction of VA status, infection, and SR.

The unexpected finding of high liver stores in these Zambian
children raises concern for implementing multiple interventions
to improve VA status in the same groups. Supplementation and
fortification both use preformed VA, which can lead to hyper-
vitaminosis A because it is efficiently absorbed and stored (8, 9).
When multiple interventions are in place, as in our study pop-
ulation, VA intakes can easily exceed requirements, and stores
can build over time, especially in the background of adequate VA
in the diet. This could just be limited to this age group in Zambia
(due to just finishing a 4.5-y VA supplementation, having fortified

sugar available their entire lives, and their mothers consuming
fortified sugar during pregnancy and lactation). However, when
supplemented at just the amount of the U.S. Recommended Dietary
Allowance (400 mg RAEs/d) for 90 d, the VA+ group stored
w70% of these doses, reaching concentrations further above the
subtoxicity cutoff (increasing from 1.18 to 1.44 mmol/g); we should
note, however, that daily VA supplementation may overestimate
response in liver store values as seen with the DRD test (49).

Recently, a fortified rice intervention using preformed VA
increased liver reserves from 0.10 to 0.17 mmol/g in just 50 d
(27). In that study, 75–80% of the additional VA intake from the
fortified rice grains (890 mg RAEs/d) was stored in the liver.
Similarly, evaluation of Nicaraguan sugar fortification demon-
strated that liver reserves rose drastically, with mean liver con-
centrations increasing from 0.57 to 1.20 mmol/g after only 1 y of
implementation (8). TBRs of these Nicaraguan children after
fortification (0.93 mmol) were identical to our VA+ dosed group

TABLE 2

Primary and secondary measures of status by treatment group in Zambian children1

VA2 Orange VA+ P value2

Total body reserves of retinol,3 mmol

Baseline4 686 (567, 805)5 [44] 685 (590, 779) [44] 723 (630, 816) [45] 0.35

Endline4 665 (560, 769)b [44] 806 (664, 947)a [44] 811 (679, 944)a [45] 0.0040

Change4 13 (219, 44)b [44] 84 (21, 146)a [44] 98 (24, 171)a [45] 0.0034

Liver retinol concentration,3 mmol/g

Baseline4 1.02 (0.83, 1.22) [44] 1.04 (0.94, 1.15) [44] 1.11 (0.97, 1.25) [45] 0.29

Endline4 0.96 (0.83, 1.10)b [44] 1.09 (0.90, 1.28)a [44] 1.17 (0.98, 1.35)a [45] 0.0042

Change4 20.04 (20.10, 0.02)b [44] 0.06 (20.07, 0.19)a [44] 0.11 (0.00, 0.22)a [45] 0.0055

Serum retinol concentration,6 mmol/L

Baseline 0.99 6 0.29 [42]7 0.96 6 0.27 [43] 0.97 6 0.25 [43] 0.83

Endline4 0.97 (0.86, 1.09) [43] 0.94 (0.83, 1.06) [43] 0.97 (0.90, 1.05) [43] 0.39

Change 0.042 6 0.26 [41] 0.065 6 0.25 [43] 20.030 6 0.21 [43] 0.16

Prevalence of low serum retinol (% ,0.7 mmol/L)6

Baseline 16.7 [42] 16.3 [43] 18.6 [43] 0.97

Endline 7.0 [43] 4.7 [43] 14.0 [43] 0.33

Prevalence of elevated C-reactive protein (% .10 mg/L)6

Baseline 19.4 [36] 17.1 [41] 17.5 [40] 1.00

Endline 9.8 [41] 4.7 [43] 8.1 [37] 0.71

Prevalence of elevated a-1-acid glycoprotein (% .1.2 g/L)6

Baseline 95.0 [40] 88.4 [43] 97.7 [43] 0.94

Endline 82.9 [41] 68.3 [41] 76.2 [42] 0.75

Prevalence of low serum ferritin (% ,12 mg/L)6

Baseline 17.5 [40] 14.0 [43] 9.3 [43] 0.63

Serum zinc,8 mg/L

Endline4 915 (811, 1018) [40] 930 (843, 1017) [38] 916 (849, 983) [41] 0.82

Hemoglobin,6 g/L

Endline4 117 (113, 121) [44] 117 (113, 120) [44] 120 (117, 123) [45] 0.88

Anthropometric changes6

Weight change, kg 1.1 6 0.7 [44] 1.2 6 0.6 [44] 0.9 6 0.6 [45] 0.075

Height change,4 cm 3.1 (2.9, 3.2) [44] 3.1 (2.7, 3.4) [44] 3.0 (2.8, 3.2) [45] 0.62

1The number of participants analyzed is in brackets. Treatment groups with uncommon superscript lowercase letters are statistically different; a . b. The

VA2 group received white maize with placebo oil, the orange group received orange maize with placebo oil, and the VA+ group received white maize with VA

in oil (400 mg retinol activity equivalents/d in 214 mL). VA, vitamin A.
2P values were determined by testing the null hypothesis that each variable is equal among treatment groups by using ANOVA or x2 test.
3Baseline is calculated from blood draws 1 and 2, endline is calculated from blood draws 3 and 4, and change is the difference between endline and

baseline.
4Indicates nonnormally distributed residuals; P value reflects nonparametric analysis.
5Median; 95% CI in parentheses (all such values).
6Baseline measurements were taken during blood draw 1, endline measurements were taken during blood draw 3, and change is the difference between

endline and baseline.
7Mean 6 SD (all such values).
8Measurement taken at blood draw 4.
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(0.95 mmol). These data, along with the current study, suggest
that consumption of VA above required levels can lead to an
increase in TBR in a short period.

Although provitamin A carotenoids are an ideal choice for
meeting optimal VA status because of their efficacy and regu-
lation of absorption and bioconversion, the orange maize group
continued to absorb and convert b-carotene to VA, increasing
liver stores, even though their liver reserves were also.1.0 mmol/g.
This may be explained by the “last in–first out” hypothesis
of VA metabolism—that is, recently ingested VA will be
preferentially secreted into circulation for use by tissues,
whereas stores are maintained in the liver for a future period of
low VA intake (46, 50). Further elucidation of VA stores with
long-term consumption of provitamin A carotenoids should be
investigated. b-Carotene is regarded as safe, even at doses of
180 mg/d. Carotenodermia is a adverse effect with high con-
sumption (.30 mg/d), but bC is not carcinogenic, mutagenic,
embryotoxic, or teratogenic and does not appear to cause hy-
pervitaminosis A (when assessed for clinical symptoms or by
SR) (51, 52). It is unclear whether b-carotene could lead to high
VA stores over time, as our children were also consuming pre-
formed VA from study foods (e.g., small dried fish) and off-site
intake. Regulation presumably occurred because the bio-
conversion factor obtained (10.4 mg bCEs/1 mg retinol) is
higher than other estimates from maize in humans from single
test meals [i.e., 3.2 (16) and 6.5 (17)].

Our findings using the 13C-RID test demonstrate that orange
maize is an efficacious VA source in humans. Contrary to pre-
vious thinking, baseline estimates showed no VAD and high
liver stores in rural Zambian children. We hypothesize that
multiple years of high-dose supplements and sugar fortification
on top of an already adequate diet (6) has led to excessive stores
in these children. More sensitive measures of VA status other
than SR, notably stable isotope methods, should be used for
population and intervention evaluation.
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