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Motor imagery-based brain-computer interfaces (BCI) have shown potential for the rehabilitation of stroke patients; however, low
performance has restricted their application in clinical environments. Therefore, this work presents the implementation of a BCI
system, coupled to a robotic hand orthosis and driven by hand motor imagery of healthy subjects and the paralysed hand of
stroke patients. A novel processing stage was designed using a bank of temporal filters, the common spatial pattern algorithm
for feature extraction and particle swarm optimisation for feature selection. Offline tests were performed for testing the
proposed processing stage, and results were compared with those computed with common spatial patterns. Afterwards, online
tests with healthy subjects were performed in which the orthosis was activated by the system. Stroke patients’ average
performance was 74.1± 11%. For 4 out of 6 patients, the proposed method showed a statistically significant higher performance
than the common spatial pattern method. Healthy subjects’ average offline and online performances were of 76.2± 7.6% and 70
± 6.7, respectively. For 3 out of 8 healthy subjects, the proposed method showed a statistically significant higher performance
than the common spatial pattern method. System’s performance showed that it has a potential to be used for hand rehabilitation
of stroke patients.

1. Introduction

Stroke is the first cause of disability worldwide [1]. Loss of
motor function, known as hemiparesis, is one of the most
disabling consequences of stroke, which usually affects both
upper and lower limbs from one side of the body. If stroke
patients engage in therapy in the first 6 months after the ini-
tial symptoms appear, they have a 70% chance of regaining
motor function in their affected hand [2, 3].

Assistive technologies such as robotic devices could
increase the number of patients that receive therapy within
this time. In addition, robotic devices have produced
stroke rehabilitation outcomes at least as effective as those
achieved with traditional therapies [4]. Brain-computer

interfaces (BCI) are another type of assistive technology;
these systems provide an artificial communication channel
between the brain and an external device such as a robotic
orthosis [5, 6]. BCIs based on motor imagery (MI) of
affected limbs have shown great potential as a tool for
brain plasticity enhancement [7, 8].

MI is a mental rehearsal of movements of a limb, for
example, the hand or foot, without muscle activation [9–11].
MI elicits distinctive patterns in the electrical activity of the
sensory-motor cortex, mainly in the frequency bands
known as mu (8–13Hz) and beta (14–30Hz) [9, 12]. An
MI-based BCI system is comprised of four stages; the first
one is an electrical signal acquisition module such as
electroencephalography (EEG). EEG is a noninvasive
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technique, has a good time resolution, and is easy to accept
by patients. Preprocessing is the second stage of a BCI sys-
tem; in this stage, signal artefacts such as eye movements,
power line noise, and muscle activity are filtered from EEG
recordings [13, 14]. The third stage is encompassed by fea-
ture extraction methods which preserve only significant
information of the BCI user’s intentions. Finally, the fourth
stage is the classification phase, in which the extracted fea-
tures are interpreted as the BCI user’s intentions; linear dis-
criminant analysis (LDA) is the most used classification
technique reported in BCI publications [15, 16]. One of the
most effective feature extraction methods is the common
spatial pattern (CSP) algorithm, which computes a set of
spatial filters that optimally differentiate two classes of
MI. To achieve good classification accuracies using the
CSP algorithm, the temporal filtering of the EEG signal
must be performed on a specific frequency band. Usually,
this band is selected in the mu and beta frequency range.
Two other parameters that need to be set up are the time
interval from which the features are going to be extracted
and the subset of spatial filters involved in the feature
extraction process [17].

The performance of CSP can be enhanced by selecting
subject-specific parameters. Therefore, modifications to the
original CSP method have been proposed to include this
aspect. One of such modifications is known as filter bank
common spatial patterns (FBCSP); this method performs
an automatic frequency band selection for temporal filtering
of the EEG [18]. FBCSP algorithm employs a filter bank that
decomposes the EEG into different frequency bands. Each
frequency band is spatially filtered using the CSP algorithm;
afterwards, the extracted features for each band are selected
with either the Mutual Information-based Best Individual
Feature (MIBIF) or the Mutual Information-based Rough
Set Reduction (MIRSR) algorithms. Classification is per-
formed only with the selected features [18, 19]. Although,
FBCSP performance was higher than CSP, statistically signif-
icant differences were not observed between both methods. A
bank of filters and CSP are useful for MI; however; in order to
increase classification performance other feature selection
algorithms could be implemented. Feature selection is an
optimisation problem; therefore, artificial intelligence tech-
niques, such as particle swarm optimisation (PSO), could
be applied for finding a solution for it.

PSO was originally proposed by Shi and Eberhart [20]
and inspired by the social behaviour of bird flocks while
searching for food. PSO performs a search in the space of
the problem, with the aid of a population (called swarm) of
individuals (called particles). Each particle executes a search
based on its current position and velocity in the search space.
In each iteration (called generations), the position and veloc-
ity of the particles are updated according to their best previ-
ous position (local search) and the best position of the swarm
(global search). In terms of EEG properties, PSO can be
applied to select which combination of extracted EEG fea-
tures provides higher classification accuracies if used as
inputs for a classifier. In each iteration (generation), several
combinations of selected EEG features (particles) comprise
possible inputs for a classifier. After all combinations have

been used to train the classifier, and afterwards test it, classi-
fication accuracies for each combination (or other optimisa-
tion metrics) can be used to compare the fitness of each
combination of EEG features. With this fitness information
obtained for each combination, a new set of EEG feature
combinations can be generated (a new generation of parti-
cles), which could contain a solution with higher classifica-
tion accuracy than the ones tested in previous generations.
This process is repeated until a stop criterion (like a number
of generations or achieving a fitness value) is met. To the
authors’ knowledge, few reported studies describe the use of
PSO as a feature selection algorithm for BCI systems. For
example, Wei and Wei propose a frequency band selection
using PSO and CSP algorithms; selection is based on the best
classification accuracies achieved by the BCI. They evaluated
their method using MI information from publicly available
dataset IVa from BCI competition III. Classification perfor-
mances were higher using the frequency bands selected by
PSO than the ones computed with a broader frequency
band [21]. Atyabi et al. proposed a PSO-based method to
reduce the number of electrodes and the number of fea-
tures used for MI classification. The authors evaluated their
method with datasets IVa and IIIa from BCI Competition
III [22]. Xu et al. evaluated a PSO-based algorithm for
CSP frequency band and time selection using a database
comprised of finger MI of 18 healthy subjects. They
observed better offline performances with PSO than with
a statistical approach for frequency and time band selection
[23]. These works show that PSO can increase classification
performance of MI while also decreasing the number of
employed features; therefore, PSO could be a good feature
selection method for BCI.

Recent studies have reported better motor rehabilitation
outcomes using MI-based BCIs coupled to robotic assistive
devices than the ones achieved with only robotic assistive
devices [24, 25]. Some of the advantages of these combined
systems are that they are noninvasive, are fully automated,
and could increase brain plasticity. Some studies have evalu-
ated the performances of these BCI systems with healthy sub-
jects [6], as well as some proofs of concept [26, 27] and a
randomised controlled trial [28] that have demonstrated pos-
itive rehabilitation outcomes for stroke patients. Even though
BCI systems coupled to robotic assistive devices have shown
promising outcomes for stroke rehabilitation, to date, none
of such systems are used in clinical practice.

Reasons for this include the fact that most BCI systems
are still under development in research centres and universi-
ties, are usually assessed offline, and have quite different per-
formances in online tests. In addition, new processing stages
designed for stroke rehabilitation BCI systems are not tested
with EEG information of these patients. Therefore, tests must
be performed to evaluate if an MI-based BCI is capable of
classification of user’s intentions and activation of external
devices in online implementations, with a processing stage
previously tested with stroke patients’ data.

In this work, an MI-based BCI is implemented and
tested; the system is aimed to be driven by hand MI. A novel
signal processing stage comprised of a bank of filters, CSP for
feature extraction, PSO for feature selection, and LDA for
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classification was designed. The proposed algorithm was
evaluated offline with a sample of stroke patients’ and healthy
subjects’ data and afterwards online tests were performed
with the healthy subjects as users of the system. For online
tests, MI was used to activate a robotic hand orthosis to
evaluate the feasibility of the complete BCI system aimed
for neurological rehabilitation of stroke patients.

2. Materials and Methods

2.1. Participants. The sample for this study comprised 8
healthy subjects (mean=23.9± 1.3 years) and 6 patients
diagnosed with stroke (mean= 55.8± 12 years). Both
healthy subjects and stroke patients were required to have
a normal performance in the subscales of digit detection
and visual detection of the neuropsychological test NEU-
ROPSI (this test has been validated for Spanish-speaking
population) [29]. In addition, all subjects were naïve to
BCI, with normal or corrected to normal vision, without
any history of other neurological/psychiatric diseases and
right-handed (at least 90% according to the Mexican adap-
tation of the Edinburgh handedness inventory [30]). In
order to be considered for inclusion in the study, patients
had to have a first stroke event of subcortical localisation,
confirmed by a neurologist by means of neuroimaging
studies (magnetic resonance or computed tomography)
and total or partial paresis of one of their hands. Subcor-
tical stroke patients were selected since their brain damage
does not involve the brain cortex and, therefore, they were
less likely to present significant cognition impairments.
Before the EEG recordings were performed, the partici-
pants signed an informed consent approved by the Ethics
and Research Committee of the National Institute of
Rehabilitation in Mexico. Clinical and demographic data
of the patients are shown in Table 1.

2.2. EEG Acquisition. A g.USBamp biosignal amplifier from
g.tec was used for EEG acquisition. EEG was acquired
with 24 bits of resolution and sampling rate of 256Hz.
Active EEG electrodes were used for acquisition, with 11
electrodes placed over the scalp of the participants, in
positions C3, C4, Cz, T3, T4, F3, F4, Fz, P3, P4, and Pz
of the international 10–20 system. Ground placement
was set in the AFz position, and the reference electrode
was placed in the right earlobe. To verify that no real
movements were elicited during MI, electromyography

(EMG) was recorded from the flexor digitorum superficialis
and flexor digitorum profundus muscles of both forearms.
For the offline tests, each healthy subject participated in
two sessions and performed in consecutive days with 120
trials recorded in total. To avoid exhaustion, stroke
patients participated in four recording sessions which were
performed in consecutive days, with 120 trials recorded in
total. For the online tests, healthy subjects performed in
consecutive days two additional sessions, with another
120 trials recorded in total. Subjects were instructed to
sit in a comfortable armchair, with a computer monitor
placed at 1.5m in front of them. They were directed, by visual
cues shown in the monitor, to perform either rest with their
open eyes or MI from their paralysed hand (dominant hand
in case of healthy subjects). EEG acquisition was performed
using a similar strategy as the one followed by the Graz
paradigm [31]. Figure 1 shows that the rest interval of the
trials lasted 3 s and the MI interval lasted 5 s.

2.3. Offline Implementation and Validation of the Processing
Stage. For offline implementation, a window of one-second
length was extracted from 1.5 s to 2.5 s to obtain the rest
information for each trial (REST). Another window of
one-second length was extracted from the 3.5 to 4.5 s
time interval of each trial, to obtain the MI information
of the trials, as observed in Figure 1. These time windows
were selected based on previous studies which show that
differentiation between MI and REST classes is higher in
these time intervals [32]. The FBCSP algorithm encom-
passed the processing stage of the BCI system, and PSO
was used for feature selection (named FBCSP+PSO). A
block diagram of the algorithm’s implementation is shown
in Figure 2.

The following is a detailed description of the algorithm’s
implementation:

(a) Temporal filtering: EEG data were filtered to obtain 6
frequency subbands, each 4Hz broad and with 1Hz
of overlapping in order to avoid loss of information.
Encompassing both alpha and beta frequency bands
were as follows: 8–12Hz, 12–16Hz, 16–20Hz, 20–
24Hz, 24–28Hz, and 28–32Hz. A 60Hz band-stop
filter was also applied to the EEG signals. All filters
were FIR filters of the 30th order, selected for their
linear phase features.

Table 1: Patients’ clinical and demographic data.

Patient Gender Age Hemiparesis Evolution Injury location

1 Male 50 Right 7 months Posterior limb of left the internal capsule

2 Female 57 Right 36 months
Left pulvinar nucleus of the thalamus extending to the left internal capsule and

ipsilateral lateral ventricle

3 Male 58 Left 2 months
Right basal ganglia with involvement of the posterior limb of ipsilateral internal

capsule

4 Female 79 Left 1 month Posterior limb of the right internal capsule

5 Male 46 Left 3 months Lenticular nucleus, internal capsule, and right corona radiata

6 Male 45 Left 3months Right side of the brainstem
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(b) Spatial filter: For the EEG data filtered in each sub-
band, spatial filters were computed with the CSP
algorithm. CSP performs a linear transformation on
the EEG data, to obtain features whose variances
are optimal for classification of two classes of MI, in
a specific frequency band. Details of the CSP imple-
mentation can be found in the works of Blankertz
et al. [17] and Ramoser et al. [33]. In this work,
spatial filters were computed using the MATLAB
command W = eig S1, S1 + S2 as suggested in the
abovementioned works. W is the matrix containing
the spatial filters, and S1 and S2 are the covariance
matrices of MI and REST computed from the EEG
data of each filtered frequency subband. In the imple-
mentation of the original CSP, only the first and last
m columns of the W matrix (m is generally 2) are
used to generate the feature vector used for classifica-
tion. With the goal of having a greater chance of

finding the optimal subband for each patient, in this
work, all possible features were extracted with CSP.
The feature vector generated in this work for each
trial i is comprised as follows:

f i = f1,i, f2,i, f3,i, f4,i, f5,i, f6,i 1

Therefore, CSP features computed for the training set
comprised for nt trials are

FTrain = f1 ; f2 ; f3 ; f4 ;… ; f nt , FTrain ∈ℝnt×66

2

And the true class vector of the training set is

yTrain = y1 ; y ; y3 ; y4 ;… ; ynt 3
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Figure 1: Illustration of the experimental paradigm. Dotted lines show the time windows extracted from EEG signals.
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Figure 2: Block diagram of FBCSP+PSO implementation.
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(c) Feature selection: PSO was used for selecting a subset
of features from FTrain, in order to decrease both the
classification error and the number of selected fea-
tures. Equation (4) describes PSO implementation.

vn+1i =w · vni + c1 · r1 · PBestni – xni
+ c2 · r2 · GBestng – xni ,

xn+1i = xni + vn+1i ,

4

where xni and vni are the position and velocity of
the ith particle of the nth generation. In this work,
50 particles and 50 generations were used. w is the
inertial weight of PSO which linearly descends from
0 to 1 as generations of PSO are computed. c1 and
c2 are positive constants set to 1. r1 and r2 have ran-
dom values between 0 and 1, which coupled to c1 and
c2 set the local and global search properties of PSO.
PBestni is the best position reached by the ith particle
in the nth generation. GBestng is the best position (g)
reached by the entire swarm in the nth generation.
The maximum position value that a particle could
reach was 1 and the minimum was 0. Maximum
speed of each particle was set to 1 and minimum
speed to 0. In this work, the search space of PSO
was 1 ×D, where D equals 66 and was comprised of
the 66 features that can be selected. Each computed
solution with PSO is a subset of the selected features.
Solution values are in the range from 0 to 1. If the
value of an element of the solution was higher or
equal to 0.5, then the corresponding feature was
selected. The original CSP algorithm states that
selected features must be paired, so in this work,
complementary features of the selected ones were
also included, in case they were not originally
selected by PSO. Selected features from the training
set were used for designing an LDA classifier. PSO
fitness value was computed using

value = err × 2 +
nselec
66

, 5

where err is the computed classification error from
the training set. nselec is the number of selected fea-
tures. Variables err and nselec/66 have values ranging
from 0 to 1. Both parameters err and nselec are
summed so that PSO is able to perform a reduction
of both classification error and the number of fea-
tures used for classification. The err value was multi-
plied by 2 so that the optimization priority of PSO is
the reduction of the classification error over the selec-
tion of a lower number of features. The stop criteria
used for PSO was either achieving 0% of classification
error or 50 generations.

(d) Classification: With the final selected features (x) and
the training set, an LDA classifier was designed,
which was later evaluated with the testing set. Fea-
tures selected with PSO in the training stage were

the same as the ones used for the testing stage of
the classifiers. LDA performance was measured by
computing the percentage of classification accuracy
(%CA). In this offline stage, the necessary parameters
for the online stage were computed. These parame-
ters were the spatial filters for each frequency sub-
band and the LDA coefficients.

A stratified cross-validation of 10× 10-fold was used to
avoid bias in the computation of %CA. Classifiers were tested
using totally different datasets than the ones used for train-
ing. For each fold and repetition, the FBCSP+PSO algorithm
was calculated. The 100 values of %CA obtained from this
procedure were used to compute the average %CA for each
participant.

The performance of the FBCSP+PSO was compared
with that of the original CSP (on filtered data between 8 to
32Hz) using the same training and test subsets. A prelimi-
nary version of the proposed algorithm was presented by
Cantillo-Negrete et al. [34].

2.4. Robotic Hand Orthosis. Since rehabilitation of stroke
patients with robotic assistive devices has advantages, a
right-hand robotic orthosis was developed in previous works
to couple it with the BCI [35, 36]. This orthosis comprised a
3D printed frame of polylactic acid (PLA). The orthosis lin-
ear actuators can provide passive flexion and extension
movements to the fingers. A closed-loop system was used
to sense the moment in which each finger reaches its maxi-
mum extension or flexion. The orthosis has a wireless Blue-
tooth communication with the processing stage of the BCI.
The Bluetooth protocol was programmed in both MATLAB®
and in a microcontroller attached to the electronic control
circuit of the orthosis. The orthosis has four different actua-
tors; however, for this study, all actuators were set to perform
flexion and then extension of the hand fingers.

2.5. Online Implementation of the Designed BCI System. A
graphical user interface (GUI) was programmed using
MATLAB, comprised of user’s/patient’s data, a processing
stage, a screen for visual cues presentation, and wireless Blue-
tooth configuration. Communication was established with
the g.USBamp amplifier by means of an adaptor API (avail-
able from g.tec). The online processing stage was optimised
to process windows of one-second length of the EEG signal.
Healthy subjects’ spatial filters and LDA coefficients com-
puted for each selected frequency subband in the offline stage
were programmed in the online BCI system. The BCI para-
digm used for the online implementation was the same as
the one used for the offline one, with the addition of the feed-
back provided by the robotic orthosis. For the online imple-
mentation, 6 windows of one-second length each were
analysed. The first 3 windows comprised REST and the next
3 windows for MI. As soon as each window had elapsed, data
recorded from them were processed in the GUI using the
proposed FBCSP+PSO method and the LDA classifier.
Afterwards, a classification output was generated which indi-
cated if the time window was classified as REST or as right
hand MI. Therefore, for each trial, the system performed 6
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classification outputs. A total of 20 trials were recorded for
each run, and 3 runs were performed for each session. A total
of 2 sessions were performed in consecutive days recording
720 LDA outputs for the REST class and 720 for the MI class.
Online %CA was computed per healthy subject by compar-
ing the expected output with the real one.

The robotic hand orthosis was activated by a Bluetooth
command sent from the computer, immediately after the
MI time interval, only if 2 out of 3 motor imagery time
windows were correctly detected by the processing stage.
Within the orthosis activation time, the monitor displayed
a grey background. The percentage of trials in which the
orthosis was activated, regarded as percentage of correct
trials (%CT), was computed for all the 120 trials per
healthy subject. Activation of the orthosis was comprised of
the opening and closing of the healthy subjects’ fingers.
After each run (20 trials), performance feedback was shown
in the computer monitor by using faces with different
degrees of smiling expressions. For example, if %CT was in
the 100–90 interval, the most smiling face was shown to the
subject, and if %CT was below 60%, the most serious face
was shown. A depiction of the online processing stage is
shown in Figure 3.

Averaged online processing time was computed for all
the performed trials. This was the average time required by
the preprocessing, FBCSP+PSO, and LDA stages to generate
a classification output. A PC with a Core i5 processor of
2.53GHz and 8GB of RAM was used for running the GUI
with the BCI processing stage. S1 Video shows the complete
BCI system in an online test.

2.6. Statistical Analysis. In order to assess the reliability of the
BCI system, the practical level of chance was computed as
explained by Müller-Putz et al. [37]. This practical level of
chance is defined as the upper confidence interval of a ran-
dom classifier’s accsuracy. Practical level of chance was calcu-
lated with a binomial distribution using a significance level of
0.5, with 120 trials encompassing the data of each class.

Equations (5) and (6) show the computation of the practical
level of chance.

p =
k + 2
n + 4

, 6

Practical level of chance = p +
p 1 − p
n + 4

1 −
α

2
, 7

where p is the probability of correct classification, k is the
expected number of correctly classified trials, n is the number
of trials, z1−α/2 is the 1 − α/2 quantile of the standard distribu-
tion, and α is the level of significance. The computed %CAs
were compared with the practical level of chance to assess if
BCI performance was significantly higher than chance [37].

A Lilliefors-corrected Kolmogorov-Smirnov test (α =
0 05) was used to test if stroke patients’ and healthy subjects’
%CAs for offline tests (obtained from 10× 10-fold cross-
validation) followed a Gaussian distribution. The tests
showed that the offline %CAs computed with FBCSP
+PSO, and CSP for both groups did not have a Gaussian
distribution. Therefore, nonparametric Mann–Whitney U
tests (α = 0 05) were used for comparing the offline
%CAs computed with FBCSP+PSO and CSP. A
Lilliefors-corrected Kolmogorov-Smirnov test (α = 0 05)
showed that healthy subjects’ offline and online averaged
%CAs had a Gaussian distribution. Therefore, a paired t-
test (α = 0 05) was used for comparing offline with online
%CAs. Pearson’s correlation and linear regression analyses
were performed for measuring relationships between
online %CA and %CT.

3. Results

3.1. Offline Analysis. Figure 4 shows the offline %CA com-
puted with stroke patients’ data with FBCSP+PSO and
CSP. Results of the statistical analysis are also shown. The
calculated practical level of chance for all experiments was
56.2%. It can be observed that for all patients %CAs were

REST

Left hand

3

Random interval

3-5

1.5 s

Right hand

0 1 4 7 9 10 122 5 6 8 11

Motor imagery Feedback
Beep

Cue

43 3

Command
output

LDA outputs
for REST

LDA outputs
for MI

Time (seconds) Time (seconds) Time (seconds) Time (seconds)

Figure 3: Timeline of the online BCI system, depicting a single trial.

6 Journal of Healthcare Engineering



above the practical level of chance (p < 0 05) for both
methods. For 4 out of 6 patient’s data, %CA for the
FBCSP+PSO algorithm was statistically significantly
higher (p < 0 05) than the %CA for the CSP algorithm. For
2 patients, there were no statistically significant differences
(p < 0 05) between the %CA for both methods. The averaged
%CA for all stroke patients computed with FBCSP+PSO
(74.1± 11%) was statistically significantly higher (p < 0 05)
than the %CA obtained with CSP (70.2± 12%).

Figure 5 shows the offline performance for healthy
subjects’ using the FBCSP+PSO and CSP algorithms.
The %CA for all subjects were above the practical level
of chance (p < 0 05) with both algorithms. For 3 out of 8
healthy subjects, FBCSP+PSO was statistically significantly
higher (p < 0 05) than CSP. For the other subjects, no

statistically significant differences (p < 0 05) were found
between the %CA for both methods. Averaged %CA for
the FBCSP+PSO method (76.2± 7.6%) was statistically
significantly higher (p < 0 05) than the one obtained with
CSP (75.5± 7.8%).

3.2. Online Analysis. Figure 6 shows healthy subjects’ online
and offline performances. For all subjects, online %CA was
above the practical level of chance (p < 0 05). Averaged off-
line %CA (76.2± 7.6%) was higher compared to online tests
(70± 6.7%); however, there was no statistically significant
difference (p > 0 05) between them.

Figure 7 shows subjects’ online %CA (70± 6.7%) and
%CT (84.5± 12.1%). Using Pearson’s analysis, a 0.8 correla-
tion between %CA and %CT was found. In addition, a linear
regression analysis showed an r2 value of 0.64. Averaged
online processing time was of 0.04± 0.01 s.

4. Discussion

The proposed BCI system was tested with stroke patients’
and healthy subjects’ data. Offline performances computed
with FBCSP+PSO and CSP were above the practical level
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of chance for all stroke patients and healthy subjects. How-
ever, for 4 out of 6 patients, FBCSP+PSO showed a statis-
tically significant higher performance of their paralysed hand
compared to CSP. In addition, 3 out of 8 healthy subjects’
offline tests using FBCSP+PSO also showed statistically
significant higher performances than CSP. Furthermore, for
none of the stroke patients and healthy subjects, FBCSP
+PSO performance was significantly lower than CSP. Ang
et al. also performed an evaluation of their FBCSP using
MIRSR for MI classification. Their algorithm was tested with
a public database comprised of 9 healthy subjects and com-
pared with the performance of CSP. However, FBCSP trained
with MIRSR performances were not statistically significantly
higher than CSP (with a 7 to 35Hz frequency band) [19],
unlike FBCSP+PSO in which the performance was statisti-
cally significantly higher than CSP. Therefore, FBCSP
+PSO could be a better option for an MI BCI processing
stage than CSP since it showed significantly higher perfor-
mances for both stroke patients and healthy subjects.

The heuristic nature of PSO implies that its perfor-
mance will not be limited by statistical features of the
search space, since the method does not need to compute
inverse matrices or other computations which often pres-
ent restrictions, especially for high dimensional search
spaces. Offline performances of the BCI system show that
PSO implementation for feature selection of FBCSP allows
this method to have better performances than CSP. This
performance is achieved by using a multiobjective optimi-
sation for the PSO algorithm by setting a higher impor-
tance to the LDA’s classification than to the number of
selected features in the fitness function.

The system’s average processing time (0.04± 0.01 s)
was lower than the time window used for EEG acquisition
(1 s), which makes possible the online implementation of
the system.

Stroke patients’ offline performances (74.1± 11%) were
similar to the ones reported by Ang et al. with a sample of
46 stroke patients, which achieved an average offline perfor-
mance of 74% using 27 EEG channels and an FBCSP with
MIBIF algorithm. However, in the present work, only 11
EEG channels were recorded. In addition, stroke patients’
offline performances were higher than online performances
reported using other state-of-the-art BCI designs. For exam-
ple, Morone et al. performed an acquisition of 61 EEG chan-
nels from 8 stroke patients. The goal of the study was to
assess if the recruited patients could perform an online grasp-
ing of a virtual hand. They reported an average %CA of 57
± 24% [26]. Performances computed with the proposed BCI
were also higher than the ones reported by Zhang et al. They
recruited 8 stroke patients for the evaluation of a BCI coupled
to a functional electrical stimulator. They processed 19 EEG
channels with a modified CSP algorithm for feature extrac-
tion and support vector machines for classification. The aver-
age performance of their BCI system was 66% [38].

Healthy subjects’ average online performance (70± 6.7%)
was higher than the one reported in a study with a similar
feedback, using a hand exoskeleton by Witkowski et al.
[39]. In the study, a %CA of 67.4% was reported (63.59±
10.8 of sensitivity and 71.3± 11.02 of specificity), using 5

EEG channels, in a sample of 12 healthy subjects. In
another study with a hand exoskeleton feedback reported
by Tang et al., healthy subjects’ online performance was
84.29± 2.11%. However, only 4 subjects with good MI
ability were recruited and 24 EEG electrodes were used
[40]. Healthy subjects’ online performances using the pro-
posed BCI system were not significantly lower than the
offline ones. Therefore, the proposed FBCSP+PSO pro-
cessing stage should be able to handle the increased signal
artefacts present in an online acquisition.

Offline and online tests allow us to suggest that stroke
patients’ online performance with the proposed BCI is
likely to be around 70% or at least higher than the
practical level of chance.

Online %CT was positively correlated with the %CA of
the system, which implies that the feedback shown to users
reflected their ability to voluntary elicit hand MI. This is
important since showing a correct feedback to patients moti-
vates them to keep a successful MI strategy or to seek differ-
ent approaches if feedbacks indicate low performances.

This study showed that the proposed FBCSP+PSO pro-
cessing stage and robotic orthosis feedback are suitable for
a BCI aimed for neurorehabilitation. However, tests involv-
ing patients using the system are still required to evaluate
its neuroplasticity-enhancement capabilities. The partici-
pants of these future tests should include patients with corti-
cal stroke located in the dominant and nondominant
hemisphere. The observed performance differences show
that FBCSP+PSO could be a better option than CSP for fea-
ture extraction in an MI-based BCI. However, online acquisi-
tion data from a higher sample of patients participating in a
randomized controlled trial are still necessary to completely
describe the potential of the proposed BCI system as a neu-
rorehabilitation tool for stroke patients. Another study limi-
tation is that 2 sessions were performed per participant,
and a higher number could provide information on perfor-
mance variations across time. Therefore, the next step in
the system’s assessment should be to define a therapy sched-
ule, which should include the lessons learned from this study
which are to use FBCSP+PSO as processing stage, %CT for
patient’s feedback, 3 runs of 20 trials each per day, and a
somatosensory feedback using a robotic hand orthosis.

5. Conclusions

This work presents a BCI system evaluation using a process-
ing stage comprised of FBCSP+PSO combined with LDA
and feedback provided by a robotic orthosis. PSO as a feature
selection algorithm for FBCSP allows reducing the problem’s
dimensionality and achieving better classification perfor-
mances, compared to those obtained if only the original
CSP is used.

The present study shows that with the proposed BCI
design patients are likely to be able to control a hand robotic
orthosis using motor imagery of their paralysed hand. There-
fore, the next developing stage of the system will be to per-
form a randomised controlled study involving direct EEG
acquisition from patients. The BCI system designed in this
study combines the advantages of a robotic device and motor
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imagery, which have separately produced good results for
stroke patients’ rehabilitation. Therefore, if the proposed
BCI system design is introduced into the clinical practice it
would provide medical facilities with a tool that could aid
stroke patient’s functional recovery.
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