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Abstract

The socially parasitic ant genus Myrmoxenus varies strongly in fundamental life history
traits, such as queen-worker ratio, the timing of sexual production, and mating behavior.
Myrmoxenus queens generally take over nests of Temnothorax ants, kill the resident queen
by throttling, and force the workers to take care of the social parasite’s brood. Young queens
of M. ravouxi and other species produce large numbers of workers, which during “slave-
raids” pillage host pupae from neighboring Temnothorax colonies to increase the workforce
in their own nests. Other species, such as M. corsicus, have lost caste polyphenism and
rear only male and female sexual offspring. Using sequences of the genes CO |/ CO Il and
wingless we reconstruct the phylogeny of Myrmoxenus and document that the worker caste
was lost convergently at least three times. Furthermore, mating in the nest and inbreeding
obviously also evolved in parallel from ancestors whose sexuals presumably mated during
nuptial flights. Myrmoxenus might thus provide a suitable model to investigate caste differ-
entiation and the plasticity of mating behavior in Hymenoptera.

Introduction

The enormous ecological success of ants, bees, and wasps is based on their efficient division of
labor among the two female castes [1, 2]. Reproductive queens and non-reproductive workers
are well adapted to their respective tasks and they often differ strikingly in size and morphol-
ogy, with ant queens often being much larger and more long-lived than their workers. Though
recent studies have revealed a more or less pronounced influence of genotype on caste differen-
tiation, whether a female larva grows into a worker or a queen is typically controlled by the
environment [3], making caste diphenism one of the most conspicuous and abundant cases of
phenotypic plasticity.

In particular in ants, the ancestral pattern of queen-worker diphenism has evolved additional,
more or less complex modifications. For example, in leaf-cutting ants, Atta, worker-destined lar-
vae may develop into different worker morphs, which behaviorally specialize in leaf-cutting, leaf
transportation, defense, or fungus processing etc. [4]. Similarly, queens with reduced wings and
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simplified thoracic structures may complement the “normal” queens, which at least early in their
adult lives are endowed with wings and capable of active flight [5-7].

Other ants show exactly the opposite trend, i.e., a reduction of the number of reaction
norms of female larvae. On the on hand, morphological queens have been completely replaced
by reproductive workers in a number of Ponerinae [8]. On the other hand, several species of
socially parasitic ants have lost the worker caste, i.e., parasite queens rely on host workers from
another species to rear the male sexuals and young queens of the parasite species [9-11].
Monophyla, in which queens produce both workers and sexuals in some species and only sex-
uals in others, might be ideal model systems to elucidate the genomic basis of queen-worker
diphenism and to better understand the evolutionary dynamics of caste ratios. Myrmoxenus, a
genus famous for the bizarre founding behavior of its queens, provides a particularly promising
example of such variation. Myrmoxenus queens sneak into colonies of Temnothorax ants,
where they eliminate the resident queen by slowly throttling it with their mandibles for days or
weeks. Of the 11 presently recognized species of this genus, at least six are active slave-makers
[12]: the queens of these species produce workers, which instead of engaging in the daily main-
tenance activities of the colony pillage pupae from neighboring Temnothorax nests to replenish
or increase the own stock of host workers [13]. M. kraussei is a “degenerate slave-maker,” i.e.,
worker number is greatly reduced and though slave raids have been elicited in the lab it was
thought to be unlikely that they occur in nature [14] (but see [15]). Finally, at least three taxa
have completely lost the worker caste and queens produce only female and male sexuals. Varia-
tion in caste ratio is associated with additional variation in mating behavior (mating flights vs.
intranidal mating, i.e., mating in the nest) and the pattern of brood production [12]. Based on
the detailed description and analysis of the various life histories evolutionary pathways linking
the various taxa were proposed [12].

Aim of our present study is to determine how the different life histories of Myrmoxenus are
interrelated, i.e., whether the worker caste and mating flights were lost once or multiply in evo-
lution. We therefore constructed a phylogeny of this genus based on sequences of mitochon-
drial CO I/ CO II and the nuclear gene wingless and use it to reconstruct the evolution of the
various life history traits of this fascinating genus.

Methods
Taxon sampling

We here chose to keep Myrmoxenus as a separate genus rather than synonymize it with Tem-
nothorax, as recently suggested [16]. In our opinion, the presently available data are not suffi-
cient to clearly document if and where Myrmoxenus is rooted within the large and
heterogeneous genus Temnothorax. The phylogeny in [16] contains only two representatives
of the probably 600 extant species of Temnothorax [17]: T. rugatulus from North America and
T. poeyi from Cuba. In particular the latter species differs strongly from Palearctic Tem-
nothorax. It was originally described as belonging to a separate genus, Macromischa [18] and
later referred to as Croesomyrmex poeyi [19]. A preliminary phylogeny of Myrmoxenus and
several old-world Temnothorax based on 651 bp of CO I did not resolve the basal branching
pattern and thus neither supports nor rejects paraphyly of Temnothorax (J. Beibl and J. Heinze,
unpubl.). According to [17] a taxonomy that considers morphological, biochemical, and etho-
logical characters is preferable to a categorization exclusively based on genetic sequences and
the chronology of speciation events. This view is certainly controversial but progressively finds
more and more adherents [20]. We leave it to others to work on the Pandora’s box of evolu-
tionary versus cladistic classifications, but in the light of our limited knowledge of the relation-
ships among the taxa of the tribe Formicoxenini we suggest to keep the socially parasitic
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lineages as separate genera. Myrmoxenus is an easily recognizable, rapidly evolving monophy-
lum with distinctive characters, such as a strongly developed ventral petiolar lobe, and the
unique behavior of throttling host queens, and keeping it as a separate genus separate from
Temnothorax thus is more informative about evolutionary processes.

The current study expands an earlier research with M. tamarae [21], M. kraussei, and M.
ravouxi [22] by now including 10 of the 12 currently recognized species of Myrmoxenus (S1
Table). No material was available of M. africanus from Algeria and M. zaleskyi from Slovakia.
Most samples had been collected by A. Buschinger in the 80s and 90s and were thereafter
stored in 75% EtOH / 2% glycerol. Nuclear and also mitochondrial DNA was frequently
degraded and clear sequences were not available from all samples. Furthermore, preliminary
investigations had shown that nuclear genes vary little among the different species (maximum
difference between T. recedens and M. ravouxi: abdominal-A: 5 of 404 bp, 1.2%; longwave rho-
dopsin: 11 of 541 bp, 2.0%; elongation factor 1o-F1: 7 of 376bp, 1.9%; see also [21]). We there-
fore concentrated on wingless, which could be amplified most consistently, was more variable,
and has been shown previously to be informative for species- and genus-level analyses (e.g.,
[23, 24]). Unfortunately, wingless sequences could not be obtained from all samples. The
mtDNA sequence of M. algerianus from Mts. de Belezma contained several ambiguous nucleo-
tides and we therefore added a shorter sequence from GenBank to the analysis. Two common
host species of Myrmoxenus, T. recedens and T. unifasciatus, were included as outgroups. Spe-
cies names are based on morphology.

DNA sequencing and phylogenetic analysis

Genomic DNA was extracted using a cetyltrimethyl ammonium bromide (CTAB) protocol [25].
In this study we amplified the nuclear gene wingless (WG, approximately 350 base pairs) and the
mitochondrial gene cytochrome oxidase subunit I/II (COI/II, approximately 1450 bp, including
tLeu-region) using the primer pairs C1-J-2195 [26] and CW-3031rev [27] and COI7500ut and
C2-N-3661 [26]. For both genes, PCR was carried out with Mastercycler (Eppendorf AG, Ham-
burg) using a total reaction volume of 20pul. The mix consisted of 1pl template DNA, 1ul 1U/pl
Taq polymerase (Fermentas), 1.2pl 10uM of each forward and reverse primer (MW G Biotech),
2ul 10x Taq buffer (containing 100mM Tris-HCI pH 8.8, 500mM KCl, 0.8% Nonidet P40; MBI
Fermentas), 4pl 5x Enhancer (PEQLAB), 1.6ul 25mM MgCl2, 0.25ul 100mM of mix of each
dNTP (Fermentas, St. Leon-Rot) and 7.75ul PCR water. PCR cycling program for wingless con-
sisted of 40cycles of 30sec at 95°C (denaturation), 30sec at 55°C (annealing) and 30sec at 72°C
(extension), preceded by 3min at 95°C and followed by a final extension of 7min at 72°C and for
mitochondrial gene COI/COII of 40cycles of 1min at 94°C, 1min at 50°C and 1min30sec at 72°C,
preceded by 3min at 94°C and followed by a final extension of 6min at 72°C.

The successful PCR products were purified with the High Pure PCR Cleanup Micro Kit
(Roche Diagnostics GmbH, Mannheim). Cycle sequencing was then conducted in a total reac-
tion volume of 20ul with 2ul of Big Dye Terminator v1.1 Sequencing RR-100 (Applied Biosys-
tems, Weiterstadt), 3pl of 5x sequencing buffer, 1ul 10uM of each primer, 2-7pl of the purified
product and 7-12ul of PCR-H20. Cycling program consisted of 30 cycles of 10sec at 96°C,
8sec at 55°C (for wingless)/ 50°C (for mitochondrial gene COI/COII) and 4min at 60°C. After
cleaning all products were sequenced with ABI Prism 310 Genetic Analyzer (Applied Biosys-
tems, Weiterstadt), and all sequences were corrected with Sequencing Analysis 3.4 and aligned
with Bio-Edit 7.0.5.2 [28] using the Clustal W algorithm. All sequences were verified by analy-
sis of two nestmates for each sample.

Phylogeny was restricted using a Bayesian analysis with MrBayes version 3.2.2 [29] and
maximum likelihood analysis with RAXML v.7.4.2 [30]. For drawing the figures we used
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FigTree version 1.3.1 (available at http://tree.bio.ed.ac.uk/software). The model of evolution for
all genes was estimated with JModeltest v.2.1.3 [31]. We assigned the evolutionary model using
the Akaike information criterion for each partition, GTR+G+I for CO I/ CO II and HKY for
WG. We conducted the MrBayes analysis with the default settings of four Markov chains
(three heated, one cold) and the heating parameter set at 0.2. Each analysis was conducted with
a Markov Chain Monte Carlo method with 3Mio generations, sampled every 1000 generations.
The consensus tree was created discarding the first 25% of the sampled trees (the burn-in). The
maximum likelihood analysis was conducted under a GTR+G+I model for the concatenated
data set and fast bootstrapping with 1000 replicates.

No permits were required for our study. All experiments comply with national and interna-
tional law.

Results

Within Myrmoxenus, GC content of CO I/ CO II ranged from 28.8% (M. bernardi) to 30.3%
(M. birgitae), with a median of 29.6%, that of wingless from 63.1 (M. tamarae) to 63.9% (M.
gordiagini), with a median of 63.7%. The alignment included 328 variable sites and 239 parsi-
mony informative sites in CO I/ CO II and 16 variable sites in wingless, of which 8 were parsi-
mony informative. The largest differences were found between T. recedens / T. unifasciatus and
M. ravouxi (247 and 251 of 1430 bp of CO 1/ CO 11, 17.3% and 17.5%, 8 differences in 355 bp
of wingless, 2.3%). GenBank accession numbers are given in S1 Table.

Both Bayesian (Fig 1) and maximum likelihood analyses (Fig 2) of the concatenated
sequences of wingless and COI/COII resulted in similar, robust tree topologies with Bayesian
posterior probabilities of 1 for several of the more basal major nodes. M. gordiagini consistently
formed a well-supported clade that split early from the other Myrmoxenus lineages. Of the
remaining taxa, M. stumperi and M. bernardi are well-separated from the other lineages. The
other taxa form two clusters, A) with M. kraussei and M. algerianus, and B) with M. ravouxi,
M. tamarae and the three workerless species M. adlerzi, M. birgitae, and M. corsicus, with a few
inconsistent placements. For example, specimens from Algeria and Italy, by morphology
assigned to M. kraussei and M. corsicus, form the outgroup to the two branches A and B, and
one sample referred to as M. kraussei from Venaco clusters with clade A. Because of the mor-
phological similarities among the different taxa we cannot exclude that this presents incorrect
determination and that some of the “misplaced” specimens in fact present undescribed species.
The placement of material assigned to M. algerianus from Mts de Belezma, Algeria, as out-
group to other Epimyrma is presumably erroneous as the sequence contained a number of
ambiguous positions.

A phylogeny based only on the nuclear gene wingless did not help to solve these apparent
“misplacements”. While it supported M. gordiagini, M. tamarae, M. bernardi, and M. stumperi
as separate lineages with Bayesian probabilities of > 0.9, it did not distinguish between M.
ravouxi and M. kraussei. We could not amplify wingless in the workerless species.

Discussion

Our phylogeny of the socially parasitic ant genus Myrmoxenus reveals the existence of two
well-supported lineages, one with M. gordiagini and the other with the remaining taxa. This
matches the original taxonomic treatment of all species other than M. gordiagini as members
of a separate genus, Epimyrma. The two genera were merged first as Epimyrma [32] and later,
because of priority, as Myrmoxenus [33]. Within the “Epimyrma”-clade, one or two species
(M. stumperi, M. bernardi) are rather well supported. The remaining lineage apparently has
undergone a relatively recent range expansion and radiation, which makes it difficult to clearly
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Fig 1. Bayesian tree of the socially parasitic ant genus Myrmoxenus inferred from sequences of the nuclear gene wingless and the mitochondrial
gene CO I/ CO Il. Bayesian posterior probabilities (as percentages) are given at the nodes. Workerless species are given in red.

doi:10.1371/journal.pone.0131023.g001

resolve its phylogeny (M. adlerzi, M. algerianus, M. birgitae, M. corsicus, M. kraussei, M.
ravouxi, M. tamarae). Recent divergence is also supported by the observation that several taxa
of “Epimyrma,” though strictly isolated in nature, readily hybridize and produce fertile off-
spring in the lab [34, 35]. In contrast, cross-breeding of M. kraussei and M. gordiagini did not
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yield any progeny [35] (no mating experiments were done with M. stumperi). The specializa-
tion of most taxa on particular host species, together with the frequent replacement of mating
flights by sib-mating in the nest might promote speciation and prevents natural hybridization
(see also [36]]. The observed “incorrect” placements of some taxa (e.g., M. “corsicus” from
Abruzzi or M. “kraussei” from Azrou) might reflect incomplete lineage sorting in this rapidly
diverging genus or the existence of previously not recognized novel species.

Despite of the shallow branching pattern and the predominance of mtDNA data in the anal-
yses, the trees allow the tentative reconstruction of the evolution of the different life histories
and colony demographies of Myrmoxenus. The workerless taxa obviously do not form a mono-
phyletic cluster, but workers were lost convergently in M. adlerzi within M. ravouxi, in M. bir-
gitae and M. corsicus as sister taxon of M. ravouxi, and in M. “corsicus” from Abruzzi as a third
separate lineage. A further independent origin of workerlessness is suggested by the observa-
tion that worker number varies tremendously within M. kraussei, with one population from
Crete having lost workers [37] (no molecular data available). The stable production of queens
from all female brood regardless of social and environmental conditions suggests an extensive
loss of phenotypic plasticity. The sporadic occurrence of workers in naturally workerless spe-
cies in the lab (e.g., one worker in a total of 745 female offspring of M. adlerzi, [38]) indicates
the retention of cryptic plasticity rather than genetic accommodation. Though numerous
socially parasitic ants have lost the worker caste, the close relatedness among Myrmoxenus spe-
cies with and without workers and the large variation of queen/worker ratios even within single
species make this genus a suitable model to investigate the functional genomics of caste differ-
entiation in ants.

One might assume that workerless parasites with mating in the nest evolved from slave-
maker species, which already had switched from nuptial flights to mating in the nest, such as
M. kraussei or M. bernardi [35]. Our phylogeny does not support this obvious view. Instead,
workerless M. adlerzi, M. birgitae, and M. corsicus, all with intranidal mating, appear to have
evolved within the clade of M. ravouxi, a widespread species in which mating is thought to
occur during nuptial flights. An excess of homozygous genotypes in several populations of
M. ravouxi nevertheless suggests a mixed mating system with occasional sib-mating [22]. Mat-
ing behavior therefore appears to be a rather labile trait and nuptial flights that guarantee out-
breeding have been convergently replaced by exclusive intranidal mating among close relatives
in both species with and without workers. The driving force of this change of the mating loca-
tion is the difficulty of finding mates when population sizes are low (e.g., [12, 39]). Queens,
which mated in their natal nests, disperse on foot and usurp host colonies nearby. Because of
local resource competition this selects against slave-raids and promotes the loss of workers [12].

Inbreeding is particularly detrimental for species with haplodiploidy and single-locus com-
plementary sex determination, the typical mode of sex determination in the social Hymenop-
tera, because it results in the production of inviable or sterile diploid males. Breeding
experiments in Myrmoxenus with intranidal mating did not yield diploid males, suggesting
that the convergent transition to mating in the nest is associated with a change in the mecha-
nism of sex determination [12]. This again makes Myrmoxenus an interesting system to study
the evolution of sex determination in social Hymenoptera, which appears to be more variable
than occasionally assumed (see also [40, 41].

Finally, our phylogeny indicates that the production of sexuals from non-overwintering
brood (“rapid brood”) evolved convergently in M. kraussei, M. corsicus, and M. adlerzi, while
sexual larvae of the other taxa hibernate in the natal nest before pupation [12]. Rapid brood
may be an adaptation to worker loss, because the absence of slave-raids limits the life expec-
tancy of the parasite colony to that of the host workers present during usurpation. Further-
more, it allows a very quick exploitation of a local patch of host nests.
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At present it remains unclear which ecological factors triggered the evolution of the loss of
workers, but climate might be important. Most workerless taxa have been collected in very dry
and hot places with sparse vegetation cover (e.g., [37, 42], while the active slave-makers tend to
occur either in more temperate woodland, alpine pastures, or, in the Mediterranean, in shady
places in deciduous forests (e.g., [12, 43]. Slave raids are probably difficult in summer when
they are most profitable because of the large numbers of worker pupae present in Temnothorax
colonies. Host nests might be more difficult to locate because many host species protect them-
selves from desiccation and heat by moving deeper down in rock crevices or other nest materi-
als. The observation that neighboring populations of M. kraussei greatly differ in average
worker number indicates, however, that additional factors, e.g., microclimate or evolutionary
history, might also play a role [44].

Supporting Information

$1 Table. Origin of the analyzed specimens of Myrmoxenus and GenBank accession num-
bers of the gene sequences. AB, JH, MS: authors of the present study; AS: Andreas Schulz, Lei-
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